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Fast Hyperspectral Unmixing Using
a Multiscale Sparse Regularization

Taner Ince, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE

Abstract—This letter proposes a simple, fast yet efficient
sparse hyperspectral unmixing algorithm. The proposed method
consists of three main steps. First, a coarse approximation of the
hyperspectral image is built using a off-the-shelf segmentation
algorithm. Then, a low-resolution approximation of the abun-
dance map is estimated by solving a weighted /;-regularized
problem on this coarse approximation of the hyperspectral data.
Finally, this low-resolution abundance map is subsequently used
to design a sparsity-promoting penalization which acts as a
spatial regularization informed by the coarse abundance map.
It is incorporated into another weighted /;-regularized problem
whose solution is a higher resolution abundance map. The
computational efficiency of the two last steps is ensured by solving
the two underlying optimization problems using an alternating
direction method of multipliers. Extensive experiments conducted
on simulated and real data show the effectiveness of the proposed
method.

Index Terms—Sparse unmixing, spatial regularization, total
variation.

I. INTRODUCTION

PECTRAL unmixing (SU) aims at decomposing mixed
Spixels of hyperspectral images into pure spectral signa-
tures characterizing the materials present in the scene (end-
members) and estimating their spatial distributions or relative
proportions in each pixel (abundances) [1]. Even if light
interactions occurring in the scene can suffer from multiple
scattering effects [2], these interactions are often negligible [1],
which eases the mathematical formulation of the hyperspectral
unmixing [3] problem. Under this simplifying assumption,
the measurements are described through the linear mixing
model (LMM), i.e., resulting from linear combinations of the
endmembers with weights defined by the abundances.

SU can be supervised or unsupervised according to the
available knowledge about the endmembers. In an unsuper-
vised context, the endmember spectral signatures should be
extracted from the observed image or estimated jointly with
the abundance maps [4]. Some examples of popular endmem-
ber extraction algorithms include vertex component analysis
(VCA) [5] and N-FINDR [6]. Supervised unmixing algorithms
rely on the availability of a predefined spectral library [7]. In
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this case, SU boils down to estimate the fractional abundance
vectors. When the library is composed of a large number
of spectral signatures, only a few of them are expected to
contribute to the mixtures, i.e., most entries of the fractional
abundance vector are expected to be zero. SU can then be
formulated as a sparse regression task and, in this context,
boils down to recovering sparse abundance vectors given an a
priori known spectral library [1].

Sparse unmixing by variable splitting and augmented La-
grangian (SUnSAL) solves a constrained sparse regression
problem by penalizing the ¢;-norm of the abundance vector. In
a similar fashion, collaborative SUnSAL (CLSUnSAL) solves
an {5 ;-norm regularized problem to promote the row-sparsity
of abundance matrix since similar pixels are expected to share
the same small set of endmembers. Although these sparsity-
based unmixing methods performs, they rely on the spectral
information only and ignore the spatial properties inherent to
hyperspectral images.

Besides, exploiting the spatial characteristics of the image
can be achieved by designing an appropriate regularization.
Under a Bayesian formalism, abundance vectors are assigned
Gaussian priors whose parameters define a Potts-Markov ran-
dom field in [8]. Conversely, total variation (TV), defined as
the 1st-order difference of neighboring abundances, is incor-
porated into SUnSAL-TV to promote spatially homogeneous
(i.e., rather flat) abundance maps [9]. Double reweighted
sparse regression and TV (DRSU-TV) enhances the sparsity
of the abundance matrix by introducing spatial and spec-
tral weights within the ¢;-norm penalization [10]. Following
the success of TV-based unmixing methods, spectral-spatial
weighted sparse unmixing (S*WSU) combines the spatial
and spectral properties into a single ¢;-regularizer which
has a lower computational complexity compared to TV-based
methods [11]. Another strategy to exploit the spatial correla-
tions consists in investigating the linear independence of the
neighboring pixels and enforcing the neighboring abundance
vectors to obey a low-rank structure. Alternating direction
sparse and low-rank unmixing (ADSpLRU) solves a sparsity
regularized low-rank approximation by sliding a window on
the hyperspectral data [12]. Finally, the authors of [13] adopts
a two-phase iterative approach to capture the smoothness and
preserve the discontinuity in abundance maps.

Despite the fact that TV-based regularization or low-rank
approximations lead to reasonable unmixing results, they
require to solve large scale optimization problems which
come with high computational costs. Alternatively, multiscale
methods have been advocated in several works to overcome
the limitations inherent to TV and low-rank based methods



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, AUG. 2022 2

[14], [15]. Multiscale sparse unmixing algorithm (MUA) de-
composes the unmixing problem into two subproblems [16].
The first subproblem is solved in a transformed image domain
while the second one is solved in the actual domain, which
results in a low computational cost and favorable unmixing
performance compared to TV-based methods. Following the
idea of MUA, superpixel-based reweighted low-rank and total
variation (SUSRLR-TV) performs a low-rank approximation
for each region associated to superpixels and applies a TV cri-
terion for the neighboring pixels [17]. SUSRLR-TV assumes
that superpixels, which are known as homogeneous regions,
should have a low-rank structure. SUSRLR-TV reaches good
unmixing performance but comes with a high computational
cost due to the TV term and several singular value decompo-
sitions required by the low-rank approximations.

To lighten the computational complexity without sacrificing
the unmixing performance characterizing the spatially regu-
larized algorithms, this paper proposes a fast sparse unmixing
(FastUn) method exploiting a multiscale approach. The pro-
posed method consists of two main steps. In the first one,
a low resolution abundance map is obtained by transforming
the original hyperspectral data into a lower dimensional space,
following a strategy similar to MUA [16], which allows
spatial and spectral properties to be jointly extracted from the
image. However, contrary to MUA, the coarse abundance map
estimated in this first step is subsequently resorted to design
a spatial regularization incorporated into the second stage of
the method. In this second step, the final high resolution
abundance map is recovered by solving a weighted sparsity
regularized minimization problem. This formulation has the
great advantage of incorporating relevant spatial regularization
into a computationally efficient unmixing algorithm.

The proposed method is described in Section II. Experimen-
tal results obtained on real and synthetic data sets are reported
Section III. Section IV concludes the paper.

II. FAST SPARSE UNMIXING (FASTUN)

As in most of the works dedicated to hyperspectral unmix-
ing [1], the n measured pixel spectra gathered in the matrix
Y € REX™ are assumed to result from the linear combinations
of m elementary spectra (or endmembers), according to the
linear mixing model

Y =AX+N (1)

where A € REX™ is the spectral library composed of m
endmembers, X € R™*"™ is the unknown abundance matrix
to recover and N € RIX™ stand for mismodeling effects
and acquisition noise. The proposed method is composed
of three main steps which consist in ¢) building a coarse
approximation of the hyperspectral image i) estimating the
corresponding coarse approximation of the abundance map
and 7ii) resorting to this coarse approximation to design a
spatially-informed regularization used on the full resolution
image. These three steps are described in what follows.

Coarse approximation of the hyperspectral image — To
mimic TV-regularized unmixing method, the hyperspectral

image Y = [y1,...,¥n] is segmented into 7 € N\{0}
homogeneous regions or superpixels. A coarse approximation
Y = [§1,-..,¥a) € REX™ of this image is then computed by
averaging the spectral signatures in each region. We denote S;
the set of pixel indexes defining the ith homogeneous region
composed of |S;| pixels, with $; N'S; = 0 (i # j) and
U ,S; = {1,...,n}. The ith superpixel of this approximation
is defined as, for i € {1,...,n.},

1
Vi= a7 > Vi 2
y S| Yk )

kES;

This averaging operation in each superpixel aims to reducing
the original data into a lower dimensional space while captur-
ing the spatial structure within the hyperspectral image.

In this work, the original hyperspectral image Y has been
segmented using the simple linear iterative clustering (SLIC)
algorithm [18]. This choice has been mainly motivated by the
fact that SLIC is fast and requires a small set of parameters to
be adjusted. Since it has been designed to segment grayscale
or RGB images, a principal component analysis of the the
hyperspectral image has been conducted and the the three
first components are used to perform the segmentation.

Estimation of the coarse resolution abundance map — The
coarse abundance map X € R™*" is obtained by unmixing
the coarse approximation Y of the hyperspectral image. In
principle, any efficient yet fast unmixing algorithm could
be used here. However, without loss of generality and to
ensure consistency with the third and last step of the proposed
pipeline, this coarse resolution unmixing is conducted by
solving the reweighted sparsity-regularized problem

1 _
min [ ¥ — AXE + MW o X[ +04(X) )

where ¢ (-) is the indicator function on the positive orthant
imposing the nonnegativity constraint, \ is a parameter adjust-
ing the regularization, W is a weighting term which evolves
at each iteration based on a rule to enhance the sparsity of the
solution and ©® denotes the term-wise product. The sparsity of
the solution is enhanced by adjusting W inversely proportional
to the estimated solution at each iteration (see details in Algo.
1). The problem (3) is separable and can be solved efficiently
using an alternating direction method of multipliers (ADMM).
More precisely, after introducing two auxiliary variables, the
splitting scheme leads to the equivalent problem

i SIY - AXJE 4 AW O Vil +04(Va) @)

st. Vi =X and V5, = X.

This problem can be solved following an algorithmic scheme
similar to SUnSAL [19] with slight modifications induced by
the weighting term. It is summarized in Algorithm 1. In this
pseudo-code, the operators abs(-), soft(-) and max(-) as well
as the inversion - ! should be understood as component-wise.
Moreover, the soft-thresholding operator in line 5 of Algo. 1
is defined as soft(t,d) = sign(t) max{|t| — J,0}.
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Algorithm 1 Estimation of the coarse abundance map

Algorithm 2 Estimation of the full resolution abundance map

Input: Y, A, \, >0, ¢,
Initialization: & =0, V¥, v{¥ D D

1 A=ATA 121

2: while not converged do
X(k+1) _ A_l(ATY-l-[L(ng)-i-Vék)+D(1k)+ng)))
W = Labs(X(k“) —-DW) 4t
VD = sof(XE+D — DM (X /)W)
VI = max(0, X+ — D)
ngm _ D) (Xt _ yED

k1 k k+1

D, Y =D, ) (X(kﬂ) -V * ))

9: k< k+1
10: end while
Output: X = X*)

® R W

Estimation of the full resolution abundance map — Given
the coarse approximation X of the abundance map, a crude
estimation X = [X1,...,%,] € R™*™ of the full resolution
abundance map can be obtained by assigning the abundance

value X, estimated at the ith superpixel (: = 1,...,n) to the
|S;| pixels which composes it, i.e.,
ViE{l,...,ﬁ}, Vk e S;, X =X%; (@)

Since the coarse abundance map is expected to capture the
inter-pixel spatial structure within each superpixel, this map
is used to design a spatial weighting matrix to define a sparse
regularization that can be interpreted as a proxy of TV. The
ith column of the weighting matrix S = [s1,...,s,] € R"*"
is defined as (. = 1,...,n)

1 1 T

—_ (6)
Xl e [ Xl +€

S; =
where X denotes the jth row of X and ¢ > 0 is a
small constant to avoid numerical instabilities. Then the high
resolution abundance map X is then defined as the solution
of the following weighted sparsity-regularized problem

1 ;
min 2 [[Y — AX[[f + S © (X = X)[li +14(X). (D

The proposed regularization aims at minimizing the difference
between the low and high resolution abundance map to mimic
1st-order difference as in TV. However, it is known that TV
blurs the edge details in the abundance map, we introduce
a weight term to take into account the edge details. The
weighting matrix S penalizes large differences between the
low and high resolution maps to reduce any smoothing effect
in the high resolution approximation. The problem (7) can be
solved following an ADMM similar to Algo. 1. By introducing
a pair of auxiliary variables, the problem can be rewritten as

i SIY = AX[E+AIS© Vil + (V) ®)
st. Vi=X-X; V,=X.

Algo. 2 details the steps followed to solve this problem.
In term of computational complexity, the proposed FastUn
method is composed of Algo. 1 and Algo. 2. Since Algo.

Imput: Y, A, S, A\, u>0,¢
Initialization: & =0, V{”, v{” D DY
10 A=ATA +2ul
2: while not converged do
3 XD — AT ATY +u(VP v D D))
4 VY = oo (XD — X — D (A/p)S)
s VI = max(0, XD — D(k‘%)
) ngm _ D) (D) _ X kD)
7. D2k+1) _ ng) _ (X(k+1) . ngﬂ))
8: k+—k+1
9: end while
Output: X = X*)

1 is applied to a coarse approximation of the hyperspectral
data (i.e., with n < n), Algo. 2 dominates the computational
complexity of FastUn where the term in step 1 can be
precomputed. Therefore, the overall computational complexity
is O(nmL) per iteration. It is worth noting that the complexity
of FastUn is the same as SUnSAL which only solves a sparsity
regularized unmixing problem without spatial regularization.
Algo.s 1 and 2 stop once reconstruction error reaches 1076
or iteration number is 1000.

III. EXPERIMENTAL RESULTS
A. Simulated data sets

The proposed FastUn algorithm is compared with state-of-
art TV-based and competitive multiscale based unmixing algo-
rithms: SUnSAL-TV [9], S?WSU [11], MUA [16], SUSRLR-
TV [17], DRSUTV [10] and RDRSU [20]. These algorithms
are quantitatively compared in term of signazl reconstruction
error (SRE) defined as SRE = 10log;, H)!)_CQ{HQ
of sparsity of the solution is also monitored. ThFey are defined
as the proportion of elements in X that are larger than a given
threshold set as 5.0 x 1073,

Two simulated data sets have been considered. For both
experiments, the pixel spectra have been generated according
to the LMM (1). The endmember matrix A has been defined
by extracting m = 240 signatures from the spectral library
splib06 [21] which covers L = 224 spectral bands ranging
from 0.4 to 2.5um. The two simulated data sets, referred
to as SD1 and SD2, differ by the generation of the true
abundance map X. For SD1, which consists of 75 x 75
pixels organized with squared patches, the abundance map
has been generated by selecting 5 active endmembers out
of the m = 240, i.e., with 5 non-zeros abundance values
in each pixel. The abundance map associated to SD2, of
spatial size 100x 100 with a more realistic spatial organization,
has been generated by selecting 9 endmembers from A. The
resulting linear mixtures have been corrupted by an additive
Gaussian noise with different signal-to-noise ratios (SNR):
SNRe {20dB, 30dB, 40dB}. The regularization parameters of
all algorithms have been adjusted using a grid search approach
to reach the highest SRE. For RDRSU, MUA and SUSRLR-
TV, the segmentation algorithm has been chosen as SLIC

. The level p
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Fig. 1. Estimated abundance maps for endmember #4 in SD1 (top) and endmember #9 in SD2 (bottom) with SNR= 30dB.

TABLE I
SIMULATED DATA SETS: SRE AND SPARSITY LEVELS OBTAINED BY THE
COMPARED ALGORITHMS.

SUnSAL | SUSRLR | DRSU

v S*WSU | MUA v v RDRSU | FastUn

2 SRE 7.06 5.28 7.68 14.83 6.46 | 2048 | 21.62

S sparsity | 0.0902 | 0.0270 [0.0543 | 0.0357 | 0.044 |0.00211 | 0.0203
a 2 SRE 13.34 15.11 | 1496 | 2335 |23.61 | 2795 | 29.25
D 3R sparsity | 0.0388 | 0.0240 [0.0401| 0.0211 [0.0246| 0.0204 | 0.0200
2 SRE 21.48 2640 | 23.74 | 3729 |36.45| 3500 | 37.68

S sparsity | 0.0258 | 0.0200 [0.0264| 0.0201 | 0.02 | 0.020 | 0.0199

2 SRE 6.25 6.61 6.74 7.56 6.73 | 13.29 | 1227

& sparsity | 0.0900 | 0.0379 [0.0745| 0.0670 [0.0482| 0.0229 | 0.0230
S £ SRE 11.16 9.62 8.22 12.01 13.74 | 19.00 | 19.63
D 3R sparsity | 0.0501 | 0.0179 [0.0658 | 0.0323 [0.0281| 0.0197 | 0.0174
2 SRE 17.26 31.11 | 11.47 | 21.11 18.01 | 28.66 | 28.57

S sparsity| 0.041 | 0.0136 [0.0561 | 0.0017 [0.0178| 0.0144 | 0.0144

whose parameters have been set as prescribed in their original
papers. For the FastUn algorithm applied to SD1 (resp. SD2),
the SLIC parameter has been set to 8, 6 and 6 (resp. 7, 6 and
6) for the noise levels SNR= 20dB, 30dB and 40dB.

The SRE and the sparsity levels reached by all algorithms
for SD1 and SD2 are reported in Table I where the best scores
are highlighted with bold face. FastUn generally provides the
best results for the two data sets for all noise levels except for
the data sets SD2 with SNR= 20dB or SNR= 40dB for which
RDRSU provides slightly better results. For the lowest SNR
case, this can be explained by the inaccurate segmentation,
leading to a weighting matrix S that does not encode properly
the spatial information. Fig. 1 shows the estimated abundance
maps for two particular endmembers of SD1 and SD2 for a
noise level of SNR= 30dB. Visually, it appears that FastUn
provides more consistent estimations of the abundance maps
than the compared algorithms.

B. Real data sets

Experiments have been also conducted on two real data
sets to empirically assess the performance of the propsoed
unmixing method. The first real hyperspectral image is the
well-known Cuprite dataset!. A subimage of size 250 x 191
pixels has been used in the experiment. The hyperspectral
image is originally composed of 224 bands but the bands 1-
2, 105-115, 150-170 and 223-224 have been removed due to
poor SNR. The endmember matrix A has been chosen as a
collection of m = 498 spectral signatures selected from the

Uhttp://aviris.jpl.nasa.gov/html/aviris. freedata.html

TABLE 11
JASPER RIDGE DATA SET: SRE AND SPARSITY LEVELS OBTAINED BY THE
COMPARED ALGORITHMS.

SUnSAL | SUSRLR | DRSU
v S*WSU | MUA v v RDRSU | FastUn
SRE 8.41 14.00 | 9.37 9.69 10.67 | 1090 | 15.15
sparsity | 0.0163 | 0.0051 [0.0184| 0.0145 [0.0087 | 0.0078 | 0.0051

spectral library splib06. Since no ground truth abundance maps
are associated to this data set, classification map produced by
Tetracorder 4.4 [22] have been used as a benchmark. Note
that the results in [22] have been only exploited as a proxy of
the ground truth, not to design the spectral library A. Fig.
2 shows the estimated abundance map for the Chalcedony
mineral. FastUn is shown to provides a consistent map without
smoothing the details, contrary to the TV-based methods.

Then the compared unmixing algorithms have been used on
the Jasper Ridge dataset?. The image is composed of 100 x 100
pixels with 224 spectral bands. Again, the bands numbered 1-
3, 108-112, 154-166 and 220-224 have been removed due to
poor SNR. Jasper Ridge dataset contains 4 endmembers (tree,
water, soil and dirt) and are accompanied with ground truth
abundance maps. To evaluate the sparsity of the solutions, the
endmember matrix is designed to be made of 498 minerals
in addition to the 4 endmembers, i.e., m = 502 [23]. The
SRE and sparsity levels are reported in Table II. FastUn
obtains higher SRE and sparsity values. Moreover, Fig. 3
shows the estimated abundance maps for the tree endmember.
The abundance map estimated by FastUn seems to be visually
in better agreement with the ground truth than the maps
recovered by the compared algorithms.

Finally, the computation times required by all algorithms for
the experiments conducted on the simulated and real data sets
are reported in Table III. FastUn and MUA are shown to have
the smallest computation times compared to other algorithms,
which demonstrated the efficiency of the proposed method.

IV. CONCLUSION

This letter proposed a fast sparse unmixing method includ-
ing a spatial regularization based on superpixel segmentation
which allows spatial-spectral information to be extracted,
leading to a low-resolution counterpart of the hyperspectral
image. A low-resolution abundance map was obtained from
this image by solving a weighted /;-regularized minimization

Zhttps://rslab.ut.ac.ir/data
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Fig. 2. Cuprite dataset: abundance maps for the chalcedony mineral estimated by the compared algorithms.
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Fig. 3. Jasper Ridge data set: abundance maps for the tree endmember estimated by the compared algorithms.

TABLE III

SIMULATED AND REAL DATA SETS: COMPUTATIONAL TIMES REQUIRED BY

THE COMPARED ALGORITHMS.

SUnSAL S?WSU | MUA SUSRLR | DRSU RDRSU | FastUn
TV TV TV
SD1 7026 | 24.01 | 1.67 | 118.19 |113.55| 107.14 | 2.82
SD2 97.42 | 41.07 | 7.19 | 173.67 |166.36| 323.85 | 10.16
Cuprite 1140 384 | 113 1831 1268 | 1688 138
Jasper Ridge | 245 84 93 362 253 367 35

problem. This coarse approximation of the abundance map was
subsequently used to design a spatially informed regularization
that mimicked TV-based regularizations. The high resolu-
tion abundance map was finally obtained by solving another
weighted ¢;-regularized minimization exploited by new spatial
regularization. This performance of the resulting FastUn was
assessed through experiments conducted on simulated real
data sets. It was shown to provide competitive results when
compared to state-of-the-art TV-based unmixing algorithms,
while coming with a significantly lower computational cost.
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