Discrete Morse Functions and Watersheds
Résumé
Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a pure (d − 1)-subcomplex that satisfies a drop-of-water principle. In this paper, we introduce Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined, and can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, we prove that such a watershed is the cut of the unique minimum spanning forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.
Fichier principal
MorseWatersheds.pdf (1.57 Mo)
Télécharger le fichier
Figures/collapse_v2.pdf (5.87 Ko)
Télécharger le fichier
Figures/glasses.pdf (111.29 Ko)
Télécharger le fichier
Figures/lambda_path_v2.pdf (11.82 Ko)
Télécharger le fichier
Figures/saliencyCrop.png (168.8 Ko)
Télécharger le fichier
Figures/separating.pdf (54.82 Ko)
Télécharger le fichier
Figures/simplicialStack.png (216.07 Ko)
Télécharger le fichier
Figures/stackA1.pdf (3.92 Ko)
Télécharger le fichier
Figures/stackA2.pdf (3.98 Ko)
Télécharger le fichier
Figures/statuesaliency.png (265.5 Ko)
Télécharger le fichier
Figures/tore_morse_stack_MSF_avec_poids.pdf (60.68 Ko)
Télécharger le fichier
Figures/torus-piched-segment.png (17.18 Ko)
Télécharger le fichier
Figures/torus-pinched-vertex.png (19.35 Ko)
Télécharger le fichier
Figures/torus.png (17.58 Ko)
Télécharger le fichier
Figures/ultimate2collapse.png (256.21 Ko)
Télécharger le fichier
Figures/watershed.png (153.2 Ko)
Télécharger le fichier
MorseWatersheds.bbl (17.76 Ko)
Télécharger le fichier
code.sty (2.41 Ko)
Télécharger le fichier
sn-jnl.cls (54.35 Ko)
Télécharger le fichier
sn-mathphys.bst (62.21 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|