A construction of equivariant bundles on the space of symmetric forms - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2022

A construction of equivariant bundles on the space of symmetric forms

Résumé

We construct stable vector bundles on the space P ((SCn+1)-C-d) of symmetric forms of degree d in n + 1 variables which are equivariant for the action of SLn+1 (C) and admit an equivariant free resolution of length 2. For n = 1, we obtain new examples of stable vector bundles of rank d - 1 on P-d, which are moreover equivariant for SL2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.

Dates et versions

hal-03927466 , version 1 (06-01-2023)

Identifiants

Citer

Ada Boralevi, Daniele Faenzi, Paolo Lella. A construction of equivariant bundles on the space of symmetric forms. Revista Matemática Iberoamericana, 2022, 38 (3), pp.761-782. ⟨10.4171/RMI/1307⟩. ⟨hal-03927466⟩
26 Consultations
0 Téléchargements

Altmetric

Partager

More