Tutorial in Joint Modeling and Prediction: A Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Software Année : 2017

Tutorial in Joint Modeling and Prediction: A Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event

Résumé

Extensions in the field of joint modeling of correlated data and dynamic predictions improve the development of prognosis research. The R package frailtypack provides estimations of various joint models for longitudinal data and survival events. In particular, it fits models for recurrent events and a terminal event (frailtyPenal), models for two survival outcomes for clustered data (frailtyPenal), models for two types of recurrent events and a terminal event (multivPenal), models for a longitudinal biomarker and a terminal event (longiPenal) and models for a longitudinal biomarker, recurrent events and a terminal event (trivPenal). The estimators are obtained using a standard and penalized maximum likelihood approach, each model function allows to evaluate goodness-of-fit analyses and provides plots of baseline hazard functions. Finally, the package provides individual dynamic predictions of the terminal event and evaluation of predictive accuracy. This paper presents the theoretical models with estimation techniques, applies the methods for predictions and illustrates frailtypack functions details with examples.
Fichier principal
Vignette du fichier
v81i03-3.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03917607 , version 1 (02-01-2023)

Identifiants

Citer

Agnieszka Król, Audrey Mauguen, Yassin Mazroui, Alexandre Laurent, Stefan Michiels, et al.. Tutorial in Joint Modeling and Prediction: A Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event. Journal of Statistical Software, 2017, 81 (3), pp.1-52. ⟨10.18637/jss.v081.i03⟩. ⟨hal-03917607⟩
24 Consultations
21 Téléchargements

Altmetric

Partager

More