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Abstract

Extensions in the field of joint modeling of correlated data and dynamic predictions
improve the development of prognosis research. The R package frailtypack provides esti-
mations of various joint models for longitudinal data and survival events. In particular,
it fits models for recurrent events and a terminal event (frailtyPenal), models for two
survival outcomes for clustered data (frailtyPenal), models for two types of recurrent
events and a terminal event (multivPenal), models for a longitudinal biomarker and a ter-
minal event (longiPenal) and models for a longitudinal biomarker, recurrent events and
a terminal event (trivPenal). The estimators are obtained using a standard and penal-
ized maximum likelihood approach, each model function allows to evaluate goodness-of-fit
analyses and provides plots of baseline hazard functions. Finally, the package provides
individual dynamic predictions of the terminal event and evaluation of predictive accu-
racy. This paper presents the theoretical models with estimation techniques, applies the
methods for predictions and illustrates frailtypack functions details with examples.

Keywords: dynamic prediction, frailty, joint model, longitudinal data, predictive accuracy, R,
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1. Introduction

Joint models

Recent technologies allow the registration of greater and greater amount of data. In medical
research different kinds of patient information are gathered over time together with clinical
outcome data such as overall survival (OS). Joint models enable the analysis of correlated data
of different types such as individual repeated data and clustered data together with OS. The
repeated data may be recurrent events (e.g., relapses of a tumor, hospitalizations, appearance
of new lesions) or a longitudinal outcome called biomarker (e.g., tumor size, prostate-specific
antigen or CD4 cell counts). The correlated data that are not analyzed jointly with OS,
are subjugated to a bias coming from ignoring the terminal event which is the competing
event for the occurrence of repeated outcomes (not only does it preclude the outcomes from
being observed but it also prevents them from occurring). On the other hand, the standard
survival analysis for OS may lead to biased estimations, if the repeated data is considered as
time-varying covariates or if it is completely ignored in the analysis.
For these correlated data one can consider joint models, e.g., a joint model for a longitudi-
nal biomarker and a terminal event, which received most of the attention in the literature.
This joint model estimates simultaneously the longitudinal and survival processes using the
relationship via a latent structure of random effects (Wulfsohn and Tsiatis 1997). Extensions
of these include, among others, models for multiple longitudinal outcomes (Hatfield, Boye,
Hackshaw, and Carlin 2012), multiple failure times (Elashoff, Li, and Li 2008) and both (Chi
and Ibrahim 2006). A review of the joint modeling of longitudinal and survival data was
already given elsewhere (McCrink, Marshall, and Cairns 2013; Lawrence Gould et al. 2015;
Asar, Ritchie, Kalra, and Diggle 2015).
Another option for the analysis of correlated data are joint models for recurrent events and a
terminal event (Liu, Wolfe, and Huang 2004; Rondeau, Mathoulin-Pélissier, Jacqmin-Gadda,
Brouste, and Soubeyran 2007). These models are usually called joint frailty models as the
processes are linked via a random effect that represents the frailty of a subject (patient) to
experience an event. They account for the dependence between two survival processes quan-
tified by the frailty term, contrary to the alternative marginal approach (Li and Lagakos
1997), which does not model the dependence. Some extensions to joint frailty models in-
clude incorporation of a nonparametric covariate function (Yu and Liu 2011), inclusion of
two frailty terms for the identification of the origin of the dependence between the processes
(Mazroui, Mathoulin-Pélissier, Soubeyran, and Rondeau 2012), consideration of the disease-
specific mortality process (Belot, Rondeau, Remontet, Roch, and CENSUR Working Survival
Group 2014) and accommodation of time-varying coefficients (Yu, Liu, Bravata, and Williams
2014; Mazroui, Mauguen, Macgrogan, Mathoulin-Pélissier, Brouste, and Rondeau 2016). Fi-
nally, Mazroui, Mathoulin-Pélissier, Macgrogan, Brouste, and Rondeau (2013) proposed a
model with two types of recurrent events following the approach of Zhao, Liu, Liu, and Xu
(2012). A review of joint frailty models in the Bayesian context was given by Sinha, Maiti,
Ibrahim, and Ouyang (2008).
Joint models for recurrent events and longitudinal data have received the least attention
among the joint models so far. However, a marginal model based on the generalized linear
mixed model was proposed by Efendi, Molenberghs, Njagi, and Dendale (2013). This model
allows several longitudinal and time-to-event outcomes and includes two sets of random ef-
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fects, one for the correlation within a process and between the processes, and the second to
accommodate for overdispersion.
Finally, in some applications all the types of data, i.e., a longitudinal biomarker, recurrent
events and a terminal event can be studied so that all of them are correlated to each other
(in the following we call such models trivariate models). Liu, Huang, and O’Quigley (2008)
proposed a trivariate model for medical cost data. The longitudinal outcomes (amount of
medical costs) were reported at informative times of recurrent events (hospitalizations) and
were related to a terminal event (death). The dependence via random effects was introduced
so that the process of longitudinal measurements and the process of recurrent events were
related to the process of the terminal event. A relationship between longitudinal outcomes
and recurrent events was not considered. This relationship was incorporated into a trivariate
model proposed by Liu and Huang (2009) for an application of an HIV study. In this para-
metric approach the focus was on the analysis of the associations present in the model and
the effect of the repeated measures and recurrent events on the terminal event. Kim, Zeng,
Chambless, and Li (2012) analyzed the trivariate data using the transformation functions
for the cumulative intensities for recurrent and terminal events. Finally, Król et al. (2016)
proposed a trivariate model in which all the processes were related to each other via a latent
structure of random effects and applied the model to the context of a cancer evolution and
OS.

Prediction in joint models

In the framework of joint models that consider a terminal event, one can be interested in
predictions of the event derived from the model. As joint models include information from
repeated outcomes, these predictions are dynamic and they change with the update of the ob-
servations. Dynamic predictive tools were proposed for joint models for longitudinal data and
a terminal event (Proust-Lima and Taylor 2009; Rizopoulos 2011), joint models for recurrent
events and a terminal event (Mauguen, Rachet, Mathoulin-Pélissier, MacGrogan, Laurent,
and Rondeau 2013) and trivariate models (Król et al. 2016).
For the evaluation of the predictive accuracy of a joint model few methods were proposed
due to the complexity of the models in which the survival data are usually right-censored.
The standard methods for the assessment of the predictive abilities derived from the sur-
vival analysis and adapted to the joint models context are the Brier score (Proust-Lima and
Taylor 2009; Mauguen et al. 2013; Król et al. 2016) and the receiver operating characteristic
(ROC) methodology (Rizopoulos 2011; Blanche, Proust-Lima, Loubère, Berr, Dartigues, and
Jacqmin-Gadda 2015). Finally, the expected prognostic cross-entropy (EPOCE), a measure
based on information theory, provides a useful tool for the evaluation of predictive abilities
of a model (Commenges, Liquet, and Proust-Lima 2012; Proust-Lima, Séne, Taylor, and
Jacqmin-Gadda 2014).

Software for joint models

Together with the theoretical development of the joint models, an increase of appropriate
software is observed, mostly for standard frameworks. Among the available R (R Core Team
2017) packages, the joint analysis of a single longitudinal outcome and a terminal event can be
performed using JM (Rizopoulos 2010, 2017) based on the likelihood maximization approach
using an expectation-maximization (EM) algorithm, JMbayes (Rizopoulos 2016b,a) built in
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the Bayesian context, and joineR (Philipson, Sousa, Diggle, Williamson, Kolamunnage-Dona,
and Henderson 2017), a frequentist approach that allows a flexible formulation of the depen-
dence structure. For the approach based on joint latent class models, i.e., joint models that
consider homogeneous latent subgroups of individuals sharing the same biomarker trajectory
and risk of the terminal event, the extensive package lcmm (Proust-Lima, Philipps, and Li-
quet 2017b; Proust-Lima, Philipps, Diakite, and Liquet 2017a) provides estimations based
on the frequentist approach. Apart from the R packages, a stjm package (Crowther 2013) in
Stata (StataCorp. 2015) uses maximum likelihood estimation and provides flexible methods
for modeling the longitudinal outcome based on polynomials or splines. Another possibility
for the analysis of the joint models for a longitudinal outcome and a terminal event is the SAS
(SAS Institute Inc. 2013) macro JMFit (Zhang, Chen, Ibrahim, Boye, and Shen 2016). Joint
models using nonlinear mixed effects models can be estimated using the MONOLIX software
(Mbogning, Bleakley, and Lavielle 2015). The packages JM, JMbayes and lcmm also provide
predictive tools and predictive accuracy measures: the EPOCE estimator in lcmm, ROC and
AUC (area under the curve) measures and prediction error in JM and JMbayes.

For joint models for correlated events (recurrent event or clustered event data) and a terminal
event the available statistical software is limited. Among the available R packages, joint.Cox
(Emura 2017) provides the estimations using penalized likelihood under the copula-based
joint Cox models for time to clustered events (progression) and a terminal event. Trivariate
joint models proposed by Liu and Huang (2009) were performed in SAS using the procedure
NLMIXED.

The R package frailtypack (Rondeau et al. 2017) fits several types of joint models. Originally
developed for the shared frailty models for correlated outcomes it has been extended into
the direction of joint models. These extensions include the joint model for one or two types
of recurrent events and a terminal event, the joint model for a longitudinal biomarker and
a terminal event and the trivariate model for a longitudinal biomarker, recurrent events
and a terminal event. Moreover, frailtypack includes prediction tools, such as concordance
measures adapted to shared frailty models and predicted probability of events for the joint
models. The package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=frailtypack.

Characteristics of a previous version of the package, such as estimation of several shared and
standard joint frailty models using penalized likelihood, were already described elsewhere
(Rondeau, Mazroui, and Gonzalez 2012). This work focuses on an overview and the devel-
opments of joint models included in the package (models for recurrent/clustered events and
a terminal event, models for multivariate recurrent events and a terminal event, models for
longitudinal data and a terminal event and models for longitudinal data, recurrent events
and a terminal event) and the prediction tools accompanied by predictive accuracy measures.
Finally, several options available for the models (e.g., two correlated frailties in the model for
recurrent events and a terminal event, left-censoring for the longitudinal data) will be pre-
sented with the appropriate examples. A practical guide to different types of models included
in the package along with available options is presented in a schematic table in Appendix A.

This article firstly presents joint models with details on estimation methods (Section 2) and
predictions of an event in the framework of these joint models (Section 3). In Section 4, the
frailtypack package features are detailed. Section 5 contains some examples on real datasets
and finally, Section 6 concludes the paper.

https://CRAN.R-project.org/package=frailtypack
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2. Models for correlated outcomes

2.1. Bivariate joint frailty models for two types of survival outcomes

Joint model for recurrent events and terminal event

We denote by i = 1, . . . , N the subject and by j = 1, . . . , ni the rank of the recurrent event.
For each subject i we observe the time of the terminal event Ti = min(T ∗i , Ci) with T ∗i the
true terminal event time and Ci the censoring time. We denote the observed recurrent times
Tij = min(T ∗ij , Ci, T ∗i ) with T ∗ij the real time of the recurrent event. Thus, for each rank
j we can summarize the information with a triple {Tij , δij , δi}, where δij = I{Tij=T ∗ij} and
δi = I{Ti=T ∗i }. Let r0(.) and λ0(.) be baseline hazard functions related to the recurrent and
terminal events, respectively. Let XRij and XT i be two vectors of covariates associated with
the risk of the related events. Let βR and βT be constant effects of the covariates whereas
βR(t) and βT (t) denote a time-dependent effect. Finally, a frailty ui is a random effect that
links the two risk functions and follows a given distribution D and α is a parameter allowing
more flexibility. The hazard functions are defined by (Liu et al. 2004; Rondeau et al. 2007):{

rij(t|ui) = uir0(t) exp(X>RijβR) = uirij(t) (recurrent event)
λi(t|ui) = uαi λ0(t) exp(X>T iβT ) = uαi λi(t) (terminal event) (1)

where the frailty terms ui are iid (independent and identically distributed) and follow either
the Gamma distribution with unit mean and variance θ (θ > 0), i.e., ui ∼ G(1

θ ,
1
θ ), or the log-

normal distribution, i.e., ui = exp(vi) ∼ lnN (0, σ2
v). The parameter α determines direction

of the association (if found significant) between the processes.
For a given subject we can summarize all the information with Θi = {T (1)

i , Ti, δ
(1)
i , δi}, where

T
(1)
i = {Tij , j = 1, . . . , ni} and δ(1)

i = {δij , j = 1, . . . , ni}. Finally, we are interested to
estimate ξ = {r0(·), λ0(·),βR,βT , θ, α}.
In some cases, e.g., long follow-up, effects of certain prognostic factors can be varying in time.
For this reason a joint model with time-dependent coefficients was proposed by Mazroui et al.
(2016). The coefficients βR(t) and βT (t) are modeled with regression B-splines of order q
and m interior knots. The general form of an estimated time-dependent coefficient β̂(t) is

β̂(t) =
m∑

j=−q+1
ζ̂jBj,q(t),

where Bj,q(t) is the basis of B-splines calculated using a recurring expression (De Boor 2001).
Therefore, for every time-varying coefficient, m+ q parameters ζj , j = −q+ 1, . . . ,m need to
be estimated. It has been shown that quadratic B-splines, i.e., q = 3, with a small number
of interior knots (m ≤ 5) ensure stable estimation (Mazroui et al. 2016). The pointwise
confidence intervals for β(t) can be obtained using the Hessian matrix.
The application of time-varying coefficients is helpful if there is a need to verify the pro-
portional hazard (PH) assumption. Using a likelihood ratio (LR) test, the time-dependency
of a covariate can be examined. A model with the time-dependent effect and a model with
the constant effect are compared and the test hypotheses depend on whether the covariate
is related to one of the events or both. If the time-dependency is tested for both events



6 Tutorial in Joint Modeling and Prediction

the null hypothesis is H0 : βR(t) = βR, βT (t) = βT and the alternative hypothesis is
H1 : βR(t) 6= βR, βT (t) 6= βT . The LR statistic has a χ2 distribution of degree k(m+ q− 1),
where k is the number of events to which the covariate is related.
The LR test can also be used to verify whether a covariate with the time-dependent effect
is significant for the events. In this case, a model with the time-varying effect covariate is
compared to a model without this covariate. Again, the null hypotheses depend on the events
considered. If the covariate is associated to both events, the null hypothesis H0 : βR(t) =
0, βT (t) = 0 is tested against H1 : βR(t) 6= 0, βT (t) 6= 0. The LR statistic has a χ2

distribution of degree k(m+ q).

Joint model for two clustered survival events

An increasing number of studies favor the presence of clustered data, especially multi-center
or multi-trial studies. In particular, meta-analyses are used to calculate surrogate endpoints
in oncology. However, the clustering creates some heterogeneity between subjects, which
needs to be accounted for. Using the above notations, the clustered joint model is similar
to the model (1) but here, the index j (j = 1, . . . , ni) represents a subject from cluster i
(i = 1, . . . , N) and the cluster-specific frailty term ui is shared by the subjects of a given
group. Thus, the model can be written as (Rondeau, Pignon, and Michiels 2015):{

rij(t|ui) = uir0(t) exp(X>RijβR) = uirij(t) (time to event 1)
λij(t|ui) = uαi λ0(t) exp(X>T ijβT ) = uαi λij(t) (time to event 2) ,

and we assume the frailty terms ui to be iid Gamma distributed. The events can be chosen
arbitrarily but it is assumed that the event 2 impedes the process of the event 1. Usually the
event 2 is death of a patient and the other is an event of interest (e.g., surrogate endpoint for
OS) such as time to tumor progression or progression-free survival.
The interest of using the joint model for the clustered data stems from the fact that it considers
the dependency between the survival processes and respects that event 2 is a competitive event
for event 1. The frailty term ui is common for a given group and represents the clustered
association between the processes (at the cluster level) as well as the intra-cluster correlation.
The package frailtypack includes clustered joint models for two survival outcomes in presence
of semi-competing risks (time-to-event, recurrent events are not allowed). To ensure identifi-
ability of the models, it is assumed that α = 1. For these models, only a Gamma distribution
of the frailty term is implemented in the package.

Joint model for recurrent events and a terminal event with two frailty terms

In model (1) the frailty term ui reflects the inter- and intra-subject correlation for the recurrent
event as well as the association between the recurrent and the terminal events. In order to
distinguish the origin of dependence, two independent frailty terms ui = (ui, vi) can be
considered (Mazroui et al. 2012):{

rij(t|ui) = uivir0(t) exp(X>RijβR) = uivirij(t) (recurrent event)
λi(t|ui) = uiλ0(t) exp(X>T iβT ) = uiλi(t) (terminal event) , (2)

where vi ∼ Γ( 1
η ,

1
η ) (η > 0) specific to the recurrent event rate and ui ∼ Γ(1

θ ,
1
θ ) (θ > 0)

specific to the association between the processes. The variance of the frailty terms represents
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the heterogeneity in the data, associated with unobserved covariates. Moreover, a high value
of the variance η indicates strong dependence between the recurrent events and a high value
of the variance θ indicates that the recurrent and the terminal events are strongly dependent.
The individual information is equivalent to Θi from model (1) and the parameters to estimate
are ξ = {r0(·), λ0(·),βR,βT , θ, η}.
In the package frailtypack for model (2), called also general joint frailty model, only the
Gamma distribution is allowed for the random effects.

2.2. Multivariate joint frailty model

One of the extensions to the joint model for recurrent events and a terminal event (1) is the
consideration of different types of recurrence processes and time-to-event data. Two types of
recurrent events are taken into account in a multivariate frailty model proposed by Mazroui
et al. (2013). The aim of the model is to analyze dependencies between all types of events.
The recurrent event times are defined by T (1)

ij (j = 1, . . . , n(1)
i ) and T (2)

ij (j = 1, . . . , n(2)
i ) and

both processes are censored by the terminal event Ti. The joint model is expressed using the
recurrent events and terminal event hazard functions:
r

(1)
ij (t|ui, vi) = r

(1)
0 (t) exp(ui +X(1)

Rij

>
β

(1)
R ) = exp (ui)r(1)

ij (t) (rec. event 1)

r
(2)
ij (t|ui, vi) = r

(2)
0 (t) exp(vi +X(2)

Rij

>
β

(2)
R ) = exp(vi)r(2)

ij (t) (rec. event 2)
λi(t|ui, vi) = λ0(t) exp(α1ui + α2vi +X>T iβT ) = exp(α1ui + α2vi)λi(t) (terminal event)

,

(3)
with vectors of regression coefficients β(1)

R ,β
(2)
R ,βT and covariates X(1)

Rij ,X
(2)
Rij ,XT i for the

first recurrent event, the second recurrent event and the terminal event, respectively. The
frailty terms ui = (ui, vi)> explain the intra-correlation of the processes and the dependencies
between them. For these correlated random effects the multivariate normal distribution of
dimension 2 is considered:

ui =
(
ui
vi

)
∼ N

(
0,
(

σ2
u ρσuσv

ρσuσv σ2
v

))
.

The variances σ2
u and σ2

v explain the within-subject correlation between occurrences of the
recurrent event of type 1 and type 2, respectively. The dependency between the two recurrent
events is explained by the correlation coefficient ρ and the dependency between the recurrent
event 1 (event 2) and the terminal event is assessed by the term α1 (α2) in case of significant
variance σ2

u (σ2
v).

Here, for each subject i we observe Θi = {T (1)
i ,T

(2)
i , Ti, δ

(1)
i , δ

(2)
i , δi}, where T (l)

i = {T (l)
ij , j =

1, . . . , n(l)
i } and δ(l)

i = {δ(l)
ij , j = 1, . . . , n(l)

i }, l = 1, 2 and the parameters to estimate are
ξ = {r(1)

0 (·), r(2)
0 (·), λ0(·),β(1)

R ,β
(2)
R ,βT , σ

2
u, σ

2
v , ρ, α1, α2}.

2.3. Bivariate joint model with longitudinal data

Here, instead of recurrent events we consider a longitudinal biomarker. For subject i we
observe an li-vector of longitudinal measurements yi = {yi(tik), k = 1, . . . , li}. Again, the
true terminal event time T ∗i impedes the longitudinal process and the censoring time does
not stop it but values of the biomarker are no longer observed. For each subject i we observe
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Θi = {yi, Ti, δi}. A random variable Yi(t) representing the biomarker is expressed using a
linear mixed effects model and the terminal event time T ∗i using a proportional hazards model.
The sub-models are linked by the random effects ui = b>i :{

Yi(t) = mi(t) + εi(t) = XLi(t)>βL +Zi(t)>bi + εi(t) (biomarker)
λi(t|bi) = λ0(t) exp(XT i

>βT + h(bi,βL,Zi(t),XLi(t))>ηT ) (death) , (4)

where XLi(t) and XT i are vectors of fixed effects covariates. Coefficients βL and βT are
constant in time. Measurements errors εi(·) are iid normally distributed with mean 0 and
variance σ2

ε . We consider a q-vector of the random effects parameters bi = (b0, . . . , bq−1)> ∼
N (0,B1) associated to covariates Zi(t) and independent from the measurement error. In the
frailtypack package, the maximum size of the matrix B1 is 3. The relationship between the
two processes is explained via a function h(bi,βL,Zi(t),XLi(t)) and quantified by coefficients
ηT . This possibly multivariate function represents the prognostic structure of the biomarker
mi(t) (we assume that the measurement errors are not prognostic for the survival process)
and in the frailtypack these are either the random effects bi or the current biomarker level
mi(t). The structure of dependence is chosen a priori and should be designated with caution
as it influences the model in terms of fit and predictive accuracy.
We consider that the longitudinal outcome yi(tik) can be subject to a quantification limit,
i.e., some observations, below a level of detection s cannot be quantified (left-censoring). We
introduce this in the vector yi which includes loi observed values yoi and lci censored values yci
(li = loi + lci ). The aspect of the left-censored data is handled in the individual contribution
from the longitudinal outcome to the likelihood. The individual observed outcomes are Θi =
{yoi ,yci , Ti, δi} (in case of no left-censoring yci is empty and yoi is equivalent to yi) and the
parameters to estimate are ξ = {λ0(·),βL,βT ,B1, σ

2
ε ,ηT }.

2.4. Trivariate joint model with longitudinal data

The trivariate joint model combines the joint model for recurrent events and a terminal event
(model (1)) with the joint model for longitudinal data and a terminal event (4). We consider
the longitudinal outcome Y observed in discrete time points yi = {yi(tik), k = 1, . . . , li}, times
of the recurrent event Tij (j = 1, . . . , ni) and the terminal event time Ti that is an informative
censoring for the longitudinal data and recurrences. The respective processes are linked to
each other via a latent structure. We define multivariate functions g(·) and h(·) for the
associations between the biomarker and the recurrent events and between the biomarker and
the terminal event, respectively. For the link between the recurrent events and the terminal
event we use a frailty term vi from the normal distribution. This distribution was chosen here
to facilitate the estimation procedure involving multiple numerical integration. Interpretation
of vi should be performed with caution as the dependence between the recurrences and the
terminal data is partially explained by the random effects of the biomarker trajectory. We
define the model by (Król et al. 2016):
Yi(t) = mi(t) + εi(t) = XLi(t)>βL +Zi(t)>bi + εi(t) (biomarker)
rij(t|vi, bi) = r0(t) exp(vi +XRij

>βR + g(bi,βL,Zi(t),XLi(t))>ηR) (recurrent event) ,
λi(t|vi, bi) = λ0(t) exp(αvi +XT i

>βT + h(bi,βL,Zi(t),XLi(t))>ηT ) (terminal event)
(5)

where the regression coefficients βL,βR,βT are associated to possibly time-varying covari-
ates XLi(t),XRij ,XT i for the biomarker, recurrent events and the terminal event (baseline
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prognostic factors), respectively. The strength of the dependencies between the processes is
quantified by α and vectors ηR and ηT . The vector of the random effects ui = (b>i , vi)> of
dimension q = q1 + 1 follows the multivariate normal distribution:

ui =
(
bi
vi

)
∼ N

(
0,
(

B1 0
0 σ2

v

))
,

where the dimension of the matrix B1 in the frailtypack package is allowed to be maximum
3. It is convenient if one assume for the biomarker a random intercept and slope:

Yi(t) = mi(t) + εi(t) = XLi(t)>βL + bi0 + bi1 × t+ εi(t)

and then bi0 represents the heterogeneity of the baseline measures of the biomarker among
the subjects and bi1 the heterogeneity of the slope of the biomarker’s linear trajectory among
the subjects. For non-linear trajectories, one can use parametric functions to assume two
slopes of time, e.g., initial drop and long-term regrowth of tumor size under a treatment.
As for model (4) we allow the biomarker to be left-censored, again with yoi the observed out-
comes and yci the undetected ones. For individual i we observe then Θi = {yoi ,yci ,T

(1)
i , Ti, δ

(1)
i ,

δi} and the interest is to estimate ξ = {r0(·), λ0(·),βL,βR,βT ,B1, σ
2
v , σ

2
ε , α,ηR,ηT }.

2.5. Estimation

Maximum likelihood estimation

Estimation of a model’s parameters ξ is based on the maximization of the marginal log-
likelihood derived from the joint distribution of the observed outcomes that are assumed to
be independent from each other given the random effects. Let ui represent random effects of
a joint model (ui can be a vector, for models (2), (3), (4), (5) or a scalar, for model (1)) and
fui(ui; ξ) the density function of the distribution of ui. The marginal individual likelihood is
integrated over the random effects and is given by:

Li(Θi; ξ) =
∫
ui

fyi|ui
(yi|ui; ξ)γLf

T
(1)
i |ui

(T (1)
i , δ

(1)
i |ui; ξ)

γ
R(1)

f
T

(2)
i |ui

(T (2)
i , δ

(2)
i |ui; ξ)

γ
R(2)

× fTi|ui
(Ti, δi|ui; ξ)fui(ui; ξ) dui, (6)

where indicators γ· are introduced so that the likelihood is valid for all the joint models (1–5).
Therefore, γL = 1 in case of models (4) and (5) and 0 otherwise, γR(1) = 1 in case of the
models (1), (3) and (5) and 0 otherwise, γR(2) = 1 in case of the model (3) and 0 otherwise.
The conditional density of the longitudinal outcome fyi|ui

is the density of the li-dimensional
normal distribution with mean mi = {mi(tik), k = 1, . . . , li} and variance σ2

ε Imi . In case of
left-censored data, we observe loi outcomes yoi and lci outcomes yci are left-censored (below the
threshold s). Then fyi|ui

can be written as a product of the density for the observed outcomes
(normal with mean mi(tik) and variance σ2

ε ) and the corresponding cumulative distribution
function (cdf) Fyi|ui

for the censored outcomes:

fyi|ui
(yi|ui; ξ) =

loi∏
k=1

fyo
i (tik)|ui

(yoi (tik)|ui; ξ)
lci∏
k=1

Fyc
i (tik)|ui

(s|ui).
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Modeling of the risk of an event can be performed either in a calendar timescale or in a gap
timescale. This choice depends on the interest of the application, whether the focus is on time
from a fixed date, e.g., beginning of a study, date of birth (calendar timescale) or on time
between two consecutive events (gap timescale). The calendar timescale is often preferred in
analyses of disease evolution, for instance, in a randomized clinical trial. In this approach,
the time of entering the interval for the risk of experiencing the jth event is equal to the time
of the (j− 1)th event, an individual can be at risk of having the jth event only after the time
of the (j − 1)th event (delayed entry). On the other hand, in the gap timescale, after every
recurrent event, the time of origin for the consecutive event is renewed to 0. In the medical
context, this timescale is less natural than the calendar timescale, but it might be considered
if the number of events is low or if the occurrence of the events does not importantly affect
the subject’s condition.
For the recurrent part of the model, the individual contribution from the recurrent event
process of type l (l = 1, 2) is given by the contribution from the right-censored observations
and the event times and in the calendar timescale it is:

f
T

(l)
i |ui

(T (l)
i , δ

(l)
i |ui; ξ) =

n
(l)
i∏

j=1

(
r

(l)
ij (T (l)

ij |ui; ξ)
)δ(l)

ij exp

− ∫ T
(l)
ij

T
(l)
i(j−1)

r
(l)
ij (t|ui; ξ)dt

 .
For the gap timescale the lower limit of the integral is 0 and the upper limit is the gap
between the time of the (j − 1)th event and the jth event (Duchateau, Janssen, Kezic, and
Fortpied 2003). In case of only one type of recurrent events, r(l)

ij is obviously rij . Similarly,
the individual contribution from the terminal event process is:

fTi|ui
(Ti, δi|ui; ξ) = (λi(Ti|ui; ξ))δi exp

(
−
∫ Ti

0
λi(t|ui; ξ)dt

)
.

For all the analyzed joint models the marginal likelihood (Equation 6) does not have an
analytic form and integration is performed using quadrature methods. If a model includes one
random effect that follows the Gamma distribution, the Gauss-Laguerre quadrature is used
for the integral. The integrals over normally distributed random effects can be approximated
using the Gauss-Hermite quadrature.
For the multivariate joint frailty model (3), the bivariate joint model for longitudinal data and
a terminal event (4) and the trivariate joint model (5) it is required (except for the bivariate
joint model with a random intercept only) to approximate multidimensional integrals. In this
case, the standard non-adaptive Gauss-Hermite quadrature, that uses a specific number of
points, gives accurate results but often can be time consuming and thus alternatives have
been proposed. The multivariate non-adaptive procedure using fully symmetric interpolatory
integration rules proposed by Genz and Keister (1996) offers advantageous computational
time but in case of datasets in which some individuals have few repeated measurements,
this method may be moderately unstable. Another possibility is the pseudo-adaptive Gauss-
Hermite quadrature that uses transformed quadrature points to center and scale the integrand
by utilizing estimates of the random effects from an appropriate linear mixed effects model
(this transformation does not include the frailty in the trivariate model, for which the standard
method is used). This method enables using less quadrature points while preserving the
estimation accuracy and thus lead to a better computational time (Rizopoulos 2012).
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Parametric approach

We propose to estimate the hazard functions using cubic M -splines, piecewise constant func-
tions (PCF) or the Weibull distribution. In case of PCF and the Weibull distribution applied
to the baseline hazard functions, the full likelihood is used for the estimation. Using the PCF
for the baseline hazard function h0(t) (of recurrent events or a terminal event), an interval
[0, τ ] (with τ the last observed time among N individuals) is divided into nint subintervals
in one of two manners: equidistant so that all the subintervals are of the same length or
percentile so that in each subinterval the same number of events is observed. Therefore, the
baseline hazard function is expressed by h0(t) =

∑nint
i=1 I{t∈(ti−1,ti)}ci, with ci ≥ 0. In the ap-

proach of PCF the crucial point is to choose the appropriate number of the intervals so that
the estimated hazard function could capture enough the flexibility of the true function. The
other possibility in the parametric approach is to assume that the baseline hazard function
h0(t) comes from the Weibull distribution with the shape parameter a > 0 and the scale
parameter b > 0. Then the baseline hazard function is defined by h0(t) = (ata−1)/ba. This
approach is convenient given the small number of parameters to estimate (only two for each
hazard function) but the resulting estimated functions are monotone and this constraint, in
some cases, might be too limiting.

Semi-parametric approach based using penalized likelihood

In the semi-parametric approach, with regard to expected smooth baseline hazard functions,
the likelihood of the model is penalized by terms depending on the roughness of the functions
(Joly, Commenges, and Lettenneur 1998). Cubic M -splines, polynomial functions of 3rd
order, are combined linearly to approximate the baseline hazard functions (Ramsay 1988).
For the estimated parameters ξ the full log-likelihood, ljoint(ξ) =

∑N
i=1 lnLi(Θi, ξ) is penalized

in the following way:

pl(ξ) = ljoint(ξ)− κ1
∫∞

0 r
′′
0 (t)2dt− κ2

∫∞
0 λ

′′
0(t)2dt, for model (1), (2), (5)

pl(ξ) = ljoint(ξ)− κ1
∫∞

0 r
(1)′′
0 (t)2dt− κ2

∫∞
0 r

(2)′′
0 (t)2dt− κ3

∫∞
0 λ

′′
0(t)2dt, for model (3)

pl(ξ) = ljoint(ξ)− κ1
∫∞

0 λ
′′
0(t)2dt, for model (4)

.

The positive smoothing parameters (κ1, κ2 and κ3) provide a balance between the data fit and
the smoothness of the functions. Both the full and penalized log-likelihood are maximized
using the robust Marquardt algorithm (Marquardt 1963), a mixture between the Newton-
Raphson and the steepest descent algorithm.

Goodness-of-fit

For verification of model assumptions, residuals are used as a standard statistical tool for
visual assessment. In the context of the survival data (recurrent and terminal events) these
are the martingale residuals and in the context of the longitudinal data, both, the residuals
conditional on random effects and the marginal residuals are often used.
The martingale residuals model whether the number of observed events is correctly predicted
by a model. Principally, it is based on the counting processes theory and for subject i and
time t they are defined as the difference between the number of events of subject i until t
and the Breslow estimator of the cumulative hazard function of t. Let Ni(t) be the counting
process of the event of type p (recurrent or terminal), ui represent the random effects and the
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process’s intensity ζ(p)
i (t|ui) = uiζ

(p)
0 (t) exp(Xpi(t)>βp) = uiζ

(p)
i (t) with ζ(p)

0 (t) the baseline
risk and Xpi(t) the prognostic factors. The martingale residuals can be expressed by (for
details, see Commenges and Rondeau 2000):

Mi(t) = Ni(t)− ûi
∫ t

0
Wi(s)ζ̂(p)

i (s)ds, (7)

whereWi(t) is equal to 1 if the individual is at risk of the event at time t and 0 otherwise. The
martingale residuals are calculated at Ti, that is at the end of the follow-up (terminal event).
The assessment of the model is performed visually, the mean of the martingale residuals at a
given time point should be equal to 0.
For the longitudinal data estimated in the framework of linear mixed effects models, there
exist marginal residuals averaged on the population level defined by R(m)

i = yi−X>Liβ̂L and
conditional residuals that are subject-specific, R(c)

i = yi−X>Liβ̂L−Z>i b̂i. These raw residuals
are recommended for checking homoscedasticity of the conditional and marginal variance. For
verification of the normality assumption and detection of outlying observations, the Cholesky
residuals are more adapted as they represent decorrelated residuals and are defined by:

R
(m)∗
i = Û

(m)
i R

(m)
i , R

(c)∗
i = Û

(c)
i R

(c)
i ,

where the raw residuals are multiplied by the upper-triangular matrices (Û (m)
i and Û (c)

i )
obtained by the Cholesky decomposition of the variance-covariance matrices:

V
R

(m)
i

= V̂ i −XLi(
∑N
i=1X

>
LiV̂ i

−1
XLi)−1X>Li = Û

(m)
i

>
Û

(m)
i ,

V
R

(c)
i

= σ̂ε
2IniV̂ i

−1
V
R

(m)
i

V̂ i
−1
σ̂ε

2Ini = Û
(c)
i

>
Û

(c)
i ,

where V i is the marginal variance-covariance matrix of the longitudinal outcome yi, equal
to ZiB1Z

>
i + σ2

ε Ini and of dimension li × li. The marginal Cholesky residuals should be
approximately normally distributed and thus, their normal Q-Q plot allows to verify the
assumption of normality.
Both, for the calculation of the martingale residuals and the residuals of the longitudinal
outcome, the values of the random effects are necessary. For this purpose, the empirical
Bayes estimators of ui are calculated using the formula for the posterior probability function:

f(ui|Θi; ξ̂) = f(Θi|ui; ξ̂)f(ui; ξ̂)
f(Θi; ξ̂)

∝ f(Θi|ui; ξ̂)f(ui; ξ̂).

For the joint models, this expression does not have an analytical solution and the numerical
computation is applied that finds the ui that maximizes f(ui|Θi; ξ̂):

ûi = arg max
ui

f(ui|Θi; ξ̂),

and this is obtained using the Marquardt algorithm.
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Setting 1 

Exactly 2 recurrent events (x) before t 

Complete information 

Setting 2 

At least 2 recurrent events (x) before t 

Incomplete information 

Setting 3 

Whatever the history of recurrent 

events before t 

t 

t 

t 

t+w 

t+w 

t+w 

Window of prediction of death Observed recurrences history Unobserved recurrences history 

Figure 1: Three settings to take into account patient history of recurrent events in prediction.
Illustration with two recurrent events.

3. Prediction of risk of the terminal event
Specific predictions can be obtained in the framework of joint modeling. Prediction consists of
estimating the probability of an event at a given time t+w knowing the available information
at prediction time t. Using a joint model, it is possible to estimate the probability of having
the terminal event at time t+w given the history of the individual (occurrences of the recurrent
events and/or the measurements of the longitudinal biomarker) prior to t. For the joint model
for recurrent events and a terminal event (1), three settings of prediction were developed by
Mauguen et al. (2013). In the first one, all the available information is accounted for, and we
consider that this information is complete. In the second setting, all the known information is
accounted for, however we consider that this information may be incomplete. Finally, in the
third setting, recurrence information is not accounted for and only covariates are considered.
All the settings are represented in Figure 1. Here, we focus on the first setting, for which we
present the predictions and the measures of predictive accuracy but in the package all the
three settings are implemented for the joint models for recurrent and terminal events.
For the joint models with a longitudinal outcome a complete history of the biomarker is
considered (Król et al. 2016). Thus, for model (4) the individual’s history is the whole
observed trajectory of the biomarker and for model (5) it is the the whole observed trajectory
of the biomarker and all the observed occurrences of the recurrent event (see Figure 2).
The proposed prediction can be performed for patients from the population used to develop the
model, but also for “new patients” from other populations. This is possible as the probabilities
calculated are marginal, i.e., the conditional probabilities are integrated over the distribution
of the random effects. Thus, values of patients’ frailties are not required to estimate the
probabilities of the event. However, it should be noted that the predictions include individual
deviations via the estimated parameters of the random effects’ distribution in a joint model.
We denote by t the time at which the prediction is made and by w the window of prediction.
Thus, we are interested in the probability of the event (death) at time t + w, knowing what
happened before time t. The general formulation of predicted probability of the terminal
event conditional on random effects and patient’s history is:

Pi(t, t+ w; ξ) = P(T ∗i ≤ t+ w|T ∗i > t,Fi(t),Xi; ξ), (8)
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Setting of complete history  

2 recurrent events (x) and 5 

longitudinal measures (o) before t 

t t+w 

Setting of complete history  

5 longitudinal measures (o) before t 

t t+w 

Prediction 

of death 

Prediction 

of death 

Figure 2: The possible prediction settings including the longitudinal data and considering the
whole information available. The top setting corresponds to the model (4) and the bottom
setting to the model (5).

where Xi are all the covariates included in the model, Fi(t) corresponds to the complete
repeated data of patient i observed until time t. We define the complete history of recurrences
HJ(l)
i (t) = {NR(l)

i (t) = J (l), T
(l)∗
i1 < · · · < T

(l)∗
iJ ≤ t} (NR

i (t) is the counting process of the
recurrent events, l = 1, 2 for the two types of recurrent events, and in case of only one type
of recurrent events in the models the index (l) is omitted) and the history of the biomarker
Yi(t) = {yi(tiK), ti1 < · · · < tiK < t}. Therefore, the individual’s history Fi(t) depends on
the model considered and is equal to:

Fi(t) = HJi (t), for model (1), (2)
Fi(t) = {HJ(1)

i (t),HJ(2)
i (t)}, for model (3)

Fi(t) = Yi(t), for model (4)
Fi(t) = {HJi (t),Yi(t)}, for model (5)

and for the recurrent events we assume T ∗i0 = 0 and T ∗i(J+1) > t. For the estimated probabili-
ties, confidence intervals are obtained by the Monte Carlo (MC) method, using the 2.5th and
97.5th percentiles of the obtained distribution (percentile confidence interval).

3.1. Brier score

In order to validate the prediction ability of a given model, a prediction error is proposed using
the weighted Brier score (Gerds and Schumacher 2006; Mauguen et al. 2013). It measures
the distance between the prediction (probability of event) and the actual outcome (dead or
alive). Inverse probability weighting corrects the score for the presence of right censoring. At
a given horizon of prediction t+ w, the error of prediction is calculated by:

Errt+w = 1
Nt

Nt∑
i=1

[I(T ∗i > t+ w)− (1− P̂i(t, t+ w; ξ̂))]2ŵi(t+ w, ĜN ), (9)
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where the weights ŵi(t+ w, Ĝn) are defined by:

ŵi(t+ w, Ĝn) = I(T ∗i ≤ t+ w)δi
ĜN (T ∗i )/ĜN (t)

+ I(T ∗i > t+ w)
ĜN (t+ w)/ĜN (t)

,

and ĜN (t) is the Kaplan-Meier estimate of the population censoring distribution at time t,
Nt is the number of patients at risk of the event (alive and uncensored).
Direct calculations of the Brier score are not implemented in the package frailtypack but using
predictions P̂i(t, t + w; ξ̂)), the Brier score can be obtained using weights ŵi(·) function pec
from the package pec (Gerds 2016) (for details, see the colorectal example in Section 5.3).
For an internal validation (on a training dataset, i.e., used for estimation) of the model as a
prediction tool for new patients, a k-fold cross-validation is used to correct for over-optimism.
In this procedure, the joint model estimations are performed k times on k− 1 partitions from
the random split and the predictions are calculated on the left partitions. Finally, the Brier
score can be calculated using predictions for all individuals at several time points to obtain
cross-validated prediction error curves.

3.2. EPOCE
Another method to evaluate a model’s predictive accuracy is the EPOCE estimator that is
derived using prognostic conditional log-likelihood (Commenges et al. 2012). This measure
is adapted both for external data and then the mean prognosis observed loss (MPOL) is
computed, as well as for the training data using the approximated cross-validated prognosis
observed loss (CVPOLa).
This measure of predictive accuracy is the risk function of an estimator of the true prognostic
density function f∗T |F(t),T ∗≥t, where F(t) denotes the history of repeated measurements and/or
recurrent events until time t. Using information theory this risk is defined as the expectation of
the loss function, that is the estimator derived from the joint model fT |F(t),T ∗≥t conditioned
on T ∗ > t and this can be written as EPOCE(t) = E(−ln(fT |F(t),T ∗>t)|T ∗ > t). In case
where the model is evaluated on the training data the approximated leave-one-out CVPOLa
is defined by:

CVPOLa(t) = − 1
Nt

Nt∑
i=1

Fi(ξ̂i, t) +NTrace(H−1Kt), (10)

where H−1 is the inverted Hessian matrix of the joint log-likelihood (Equation 6), Kt =
1

Nt(N−1)
∑N
i=1 I{Ti>t}v̂id̂

>
i with v̂i = ∂Fi(ξ,t)

∂ξ |ξ̂ and d̂i = ∂li(Θ,ξ)
∂ξ |ξ̂. The individual contribution

to the log-likelihood of a terminal event at t defined for the individuals that are still at risk
of the event at t can be written as:

Fi(ξ̂, t) =

ln


∫
ui
fYi(t)|ui

(Yi(t)|ui; ξ̂)γL

l∏
k=1

fHJ(k)
i (t)|ui

(HJ(k)
i (t)|ui; ξ̂)γ

(k)
R fTi|ui

(Ti, δi|ui; ξ̂)fui(ui) dui

∫
ui
fYi(t)|ui

(Yi(t)|ui; ξ̂)γL

l∏
k=1

fHJ(k)
i (t)|ui

(HJ(k)
i (t)|ui; ξ̂)γ

(k)
R Sti (Ti|ui; ξ̂)fui(ui) dui


Sti is the survival function of the terminal event for individual i. Again, l denotes the number
of types of recurrent events included in the model.
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In case of external data MPOL(t) is expressed by the first component of the sum in CVPOLa(t)
(Equation 10). Indeed, the second component corresponds to the statistical risk introduced to
CVPOLa in order to correct for over-optimism coming from the use of the approximated cross-
validation. The comparison of the models using EPOCE can be done visually by tracking the
95% intervals of difference in EPOCE.
The EPOCE estimator has some advantages compared to the prediction error, in particular
for the training data the approximated cross-validation technique is less computationally
demanding than the crude leave-one-out cross-validation method for the prediction error,
which is important in case of joint models when time of calculation is often long (Proust-
Lima et al. 2014).

4. Modeling and prediction using the R package frailtypack

4.1. Estimation of joint models

In the package frailtypack there are four different functions for the estimation of joint models,
one for each model. The joint models for recurrent events and a terminal event (1) (and
models for two clustered survival outcomes) as well as the general joint frailty models (2)
are estimated with function frailtyPenal. The joint models for two recurrent events and
a terminal event (3) are estimated with multivPenal. The estimation of joint models for
a longitudinal outcome and a terminal event (4) is performed with longiPenal. Finally,
function trivPenal estimates trivariate joint models (5). All these functions make calls to
compiled Fortran codes programmed for computation and optimization of the log-likelihood.
In the following, we detail each of the joint model functions.

frailtyPenal function

frailtyPenal(formula, formula.terminalEvent, data, recurrentAG = FALSE,
cross.validation = FALSE, jointGeneral, n.knots, kappa, maxit = 300,
hazard = "Splines", nb.int, RandDist = "Gamma", betaknots = 1,
betaorder = 3, initialize = TRUE, init.B, init.Theta, init.Alpha, Alpha,
init.Ksi, Ksi, init.Eta, LIMparam = 1e-3, LIMlogl = 1e-3, LIMderiv = 1e-3,
print.times = TRUE)

Argument formula is a two-sided formula for a survival object ‘Surv’ from the survival
package (Therneau 2017) and it represents the recurrent event process (the first survival
outcome for the joint models in case of clustered data) with the combination of covariates on
the right-hand side, the indication of a grouping variable (with term cluster(group)) and the
indication of the variable for the terminal event (e.g., terminal(death)). It should be noted
that the function cluster(x) is different from that included in the package survival. In both
cases it is used for the identification of the correlated groups but in frailtypack it indicates
the application of the frailty model and in survival, a GEE (generalized estimating equations)
approach is used, without random effects. Argument formula.terminalEvent requires the
combination of covariates related to the terminal event on the right-hand side. The name
of the data.frame containing the variables used in the function should be specified in the
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argument data. The logical argument recurrentAG indicates whether the calendar timescale
for recurrent events or clustered data with the counting process approach of Andersen and
Gill (1982) (TRUE) or the gap timescale (FALSE; by default) is to be used. The argument for
the cross-validation cross.validation is not yet implemented for the joint models; thus its
logical value must be FALSE. The smoothing parameters κ for a joint model can be chosen by
first fitting suitable shared frailty and Cox models with the cross-validation method.
The general joint frailty models (2) can be estimated if argument jointGeneral is TRUE. In
this case, the additional gamma frailty term is assumed and the α parameter is not considered.
These models can be applied only with the Gamma distribution for the random effects.
The type of approximation of the baseline hazard functions is defined by argument hazard
and can be chosen among "Splines" for semiparametric functions using equidistant inter-
vals, "Splines-per" using percentile intervals, "Piecewise-equi" and "Piecewise-per"
for piecewise constant functions using equidistant and percentile intervals, respectively and
"Weibull" for the parametric Weibull baseline hazard functions. If either "Splines" or
"Splines-per" is chosen for the baseline hazard functions, arguments kappa for the posi-
tive smoothing parameters and n.knots should be given with the number of knots chosen
between 4 and 20 which corresponds to n.knots+2 splines functions for approximation of
the baseline hazard functions (the same number for hazard functions for both outcomes). If
"Percentile-equi" or "Percentile-per" is chosen for the approximation, argument nb.int
should be given with a 2-element vector of numbers of time intervals (1–20) for the two base-
line hazard functions of the model.
Argument RandDist represents the type of the random effect distribution, either "Gamma" for
the Gamma distribution or "LogN" for the normal distribution (log-normal joint model). If
it is assumed that α in model (1) is equal to zero, argument Alpha should be set to "None".
In case of time dependent covariates, arguments betaknots and betaorder are used for the
number of inner knots used for the estimation of B-splines (1, by default) and the order of
B-splines (3 for quadratic B-splines, by default), respectively.
The rest of the arguments are allocated for the optimization algorithm. Argument maxit
declares the maximum number of iterations for the Marquardt algorithm. For a joint nested
frailty model, i.e., a model that allows joint analysis of recurrent and terminal events for hi-
erarchically clustered data, argument initialize determines whether the parameters should
be initialized with estimated values from the appropriate nested frailty models. Arguments
init.B, init.Theta, init.Eta and init.Alpha are vectors of initial values for regression
coefficients, variances of the random effects and for the α parameter (by default, 0.5 is set
for all the parameters). Arguments init.Ksi and Ksi are defined for joint nested frailty
models and correspond to initial values for the flexibility parameter and the logical value
indicating whether to include this parameter in the model or not, respectively. The conver-
gence thresholds of the Marquardt algorithm are for the difference between two consecutive
log-likelihoods (LIMlogl), for the difference between the consecutive values of estimated co-
efficients (LIMparam) and for the small gradient of the log-likelihood (LIMderiv). All these
threshold values are 10−3 by default. Finally, argument print.times indicates whether to
print the iteration process (the information note about the calculation process and time taken
by the program after terminating), the default is TRUE.
The function frailtyPenal returns objects of class ‘jointPenal’ if joint models are esti-
mated. It should be noted that using this function for univariate models, shared frailty
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models (Rondeau et al. 2012) and Cox models can be applied as well and they result in ob-
jects of class ‘frailtyPenal’. For both classes methods print(), summary() and plot() are
available.

multivPenal function

multivPenal(formula, formula.Event2, formula.terminalEvent, data,
initialize = TRUE, recurrentAG = FALSE, n.knots, kappa, maxit = 350,
hazard = "Splines", nb.int, print.times = TRUE)

This function allows to fit the multivariate frailty models (3). Argument formula must be a
two-sided formula for a ‘Surv’ object, corresponding to the first type of the recurrent event
(no interval-censoring is allowed). Arguments formula.Event2 refer to the second type of the
recurrent event and formula.terminalEvent to the terminal event, and are equal to linear
combinations related to the respective events. The rest of the arguments is analogical to
frailtyPenal. Arguments n.knots (values between 4 and 20) and kappa must be vectors of
length 3 for each type of event, first for the recurrent event of type 1, second for the recurrent
event of type 2 and third for the terminal event. The function multivPenal return objects
of class ‘multivPenal’ with print(), summary() and plot() methods available.

longiPenal function

longiPenal(formula, formula.LongitudinalData, data, data.Longi, random, id,
intercept = TRUE, link = "Random-effects", left.censoring = FALSE, n.knots,
kappa, maxit = 350, hazard = "Splines", nb.int, init.B, init.Random,
init.Eta, method.GH = "Standard", n.nodes, LIMparam = 1e-3, LIMlogl = 1e-3,
LIMderiv = 1e-3, print.times = TRUE)

In this function for the joint analysis of a terminal event and a longitudinal outcome, ar-
gument formula refers to the terminal event and the left-hand side of the formula must
be a ‘Surv’ object and the right-hand side indicate the explanatory variables. Argument
formula.LongitudinalData is equal to the sum of fixed explanatory variables for the longi-
tudinal outcome. For the model, two datasets are required: data containing information on
the terminal event process and data.Longi with data related to longitudinal measurements.
Random effects associated to the longitudinal outcome are defined with random using the
appropriate names of the variables from data.Longi. If a random intercept is assumed, the
option "1" should be used. For a random intercept and slope, arguments random should be
equal to a vector with elements "1" and the name of a variable representing time points of
the biomarker measurements. At the moment, more complicated structures of the random
effects are not available in the package. The name of the variable representing the individuals
in data.Longi is indicated by id. The logical argument intercept determines whether a
fixed intercept should be included in the longitudinal part or not (default is TRUE). Two types
of subject-specific link function can be selected and are defined with the argument link.
The default option "Random-effects" represents the link function of the random effects bi,
otherwise the option is "Current-level" for the link function of the current level of the
longitudinal outcome mi(t).
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The initial values of the estimated parameters can be indicated by init.B for the fixed
covariates (a vector of values starting with the parameters associated to the terminal event and
then for the longitudinal outcome, interactions in the end of each component), init.Random
for the vector of elements of the Cholesky decomposition of the covariance matrix of the
random effects ui and init.Eta for the regression coefficients associated to the link function.
There are three methods of the Gaussian quadrature to approximate the integrals to choose
from. The default "Standard" corresponds to the non-adaptive Gauss-Hermite quadrature for
multidimensional integrals. The other possibility is the pseudo-adaptive Gaussian quadrature
("Pseudo-adaptive") (Rizopoulos 2012). Finally, the multivariate non-adaptive Gaussian
quadrature using the algorithm implemented in a Fortran subroutine HRMSYM is indicated by
"HRMSYM" (Genz and Keister 1996). The number of the quadrature nodes (n.nodes) can be
chosen among 5, 7, 9, 12, 15, 20 and 32 using this argument (default is 9).
The function longiPenal returns objects of class ‘longiPenal’ with print(), summary()
and plot() methods available.

trivPenal function

trivPenal(formula, formula.terminalEvent, formula.LongitudinalData, data,
data.Longi, random, id, intercept = TRUE, link = "Random-effects",
left.censoring = FALSE, recurrentAG = FALSE, n.knots, kappa, maxit = 300,
hazard = "Splines", nb.int, init.B, init.Random, init.Eta, init.Alpha,
method.GH = "Standard", n.nodes, LIMparam = 1e-3, LIMlogl = 1e-3,
LIMderiv = 1e-3, print.times = TRUE)

The function for the trivariate joint model comprises three formulas for each type of pro-
cess. The first two arguments are analogous to frailtyPenal, argument formula, referring
to recurrent events, is a two-sided formula for a ‘Surv’ object on the left-hand side and
covariates on the right-hand side (with indication of the variable for the terminal event
using method terminal) and argument formula.terminalEvent represents the terminal
event and is equal to a linear combination of the explanatory variables. Finally, argument
formula.LongitudinalData as in function longiPenal corresponds to the longitudinal out-
come indicating the fixed effect covariates. The rest of the arguments are detailed in the
descriptions of functions frailtyPenal and longiPenal. The function trivPenal returns
objects of class ‘trivPenal’ with print(), summary() and plot() methods available.

4.2. Prediction

The current increase of interest in the joint modeling of correlated data is often related to
the individual predictions that these models offer. Indeed, calculating the probabilities of a
terminal event given a joint model results in precise predictions that consider the past of an
individual. Moreover, there exist statistical tools that evaluate a model’s capacity for these
dynamic predictions. In the package frailtypack we provide the prediction function for
dynamic predictions of a terminal event in a finite horizon, the epoce function for evaluating
predictive accuracy of a joint model and the Diffepoce function for comparing the accuracy
of two joint models.
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Predicted probabilities with prediction function
In the package it is possible to calculate the prediction probabilities for the Cox proportional
hazard, shared frailty (for clustered data, Rondeau et al. 2012) and joint models. Among the
joint models the predictions are provided for the standard joint frailty models (recurrent events
and a terminal event), for the joint models for a longitudinal outcome and a terminal event
and for the trivariate joint models (a longitudinal outcome, recurrent events and a terminal
event). These probabilities can be calculated for a given prediction time and window or for
a vector of times, with varying prediction time or varying window. For the shared frailty
models for clustered events, marginal and conditional on a specific cluster predictions can
be calculated and for the joint models only the marginal predictions are provided. Finally,
for the joint frailty models the predictions are calculated in three settings: given the exact
history of recurrences, given the partial history of recurrences (the first J recurrences) and
ignoring the past recurrences. For the joint models with a longitudinal outcome (bivariate
and trivariate) only the predictions considering the patient’s complete history are provided.
For all the aforementioned predictions the following function is proposed:

prediction(fit, data, data.Longi, t, window, group, MC.sample = 0)

Argument fit indicates the, a ‘frailtyPenal’, ‘jointPenal’, ‘longiPenal’ or ‘trivPenal’
object. The data with individual characteristics for predictions must be provided in the data
frame data with information on the recurrent events and covariates related to recurrences
and the terminal event and in case of ‘longiPenal’ and ‘trivPenal’ objects the data frame
data.Longi needs to contain repeated measurements and covariates related to the longitudi-
nal outcome. These two datasets must refer to the same individuals for which the predictions
will be calculated. Moreover, the names and the types of variables should be equivalent to
those in the dataset used for estimation. The details on how to prepare correctly the data
are presented in appropriate examples (Section 5).
Argument t is a time or vector of times for predictions and window is a horizon or vector
of horizons. The function calculates the probability of the terminal event between a time of
prediction and a horizon (both arguments are scalars), between several times of prediction
and a horizon (t is a vector and window a scalar) and finally, between a time of prediction
and several horizons (t is a scalar and window a vector of positive values).
For all the predictions, confidence intervals can be calculated using the MC method with
MC.sample number of samples (maximum 1000). If the confidence bands are not to be calcu-
lated argument MC.sample should be equal to 0 (the default).

Predictive accuracy measure with epoce and Diffepoce functions
Predictive ability of joint models can be evaluated with function epoce that computes the
estimators of EPOCE, MPOL and CVPOLa. For a given estimation, the evaluation can be
performed on the same data and then both MPOL and CVPOLa are calculated, as well as
on a new dataset but then only MPOL is calculated as the correction for over-optimism is
not necessary. The call of the function is:

epoce(fit, pred.times, newdata = NULL, newdata.Longi = NULL)

with fit an object of class ‘jointPenal’, ‘longiPenal’ or ‘trivPenal’, pred.times a vec-
tor of time for which the calculations are performed. In case of external validation, new
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datasets newdata and newdata.Longi should be provided (newdata.Longi only in case
of ‘longiPenal’ and ‘trivPenal’ objects). However, the names and types of variables in
newdata and newdata.Longi must be the same as in the datasets used for estimation.
To compare the predictive accuracy of two joint models fit to the same data but possibly with
different covariates, the simple comparison of obtained values of EPOCE can be enhanced by
calculating the 95% tracking interval of difference between the EPOCE estimators. For this
purpose we propose the function:

Diffepoce(epoce1, epoce2)

where epoce1 and epoce2 are objects inheriting from the ‘epoce’ class.

5. Illustrating examples
The package frailtypack provides various functions for models for correlated outcomes and
survival data. The Cox proportional hazard model, the shared frailty model for recurrent
events (clustered data), the nested frailty model, the additive frailty model and the joint
frailty model for recurrent events and a terminal event have already been illustrated elsewhere
(Rondeau and Gonzalez 2005; Rondeau et al. 2012).
In this section we focus on extended models for correlated data presented in Section 2 using
three datasets: readmission, dataMultiv and colorectal. Although the joint frailty model
has already been presented in the literature, we illustrate its usage as the form of the function
has developed in the meantime.

5.1. Example on dataset readmission for joint frailty models
Dataset readmission comes from a rehospitalization study of patients after a surgery and
diagnosed with colorectal cancer (Gonzalez et al. 2005; Rondeau et al. 2012). It contains
information on times (in days) of successive hospitalizations and death (or last registered
time of follow-up for right-censored patients) counting from date of surgery, and patient
characteristics: type of treatment, sex, Dukes’ tumoral stage, comorbidity Charlson’s index
and survival status. The dataset includes 403 patients with 861 rehospitalization events in
total. Among the patients 112 (28%) died during the study.

Standard joint frailty model
We adapt the joint model for recurrent events and a terminal event using the gap timescale
from the example given in Rondeau et al. (2012). The model modJoint.gap is defined:

R> library("frailtypack")
R> data("readmission", package = "frailtypack")
R> modJoint.gap <- frailtyPenal(Surv(time, event) ~ cluster(id) + dukes +
+ charlson + sex + chemo + terminal(death),
+ formula.terminalEvent = ~ dukes + charlson + sex + chemo,
+ data = readmission, n.knots = 8, kappa = c(2.11e+08, 9.53e+11))

This model includes Dukes’ stage, Charlson’s index, sex and treatment as covariates for both
hospitalizations and death. The frailties are from the Gamma distribution (default option)
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and the baseline hazard functions are approximated by splines with 8 knots and the smoothing
parameters for the penalized log-likelihood are 2.11e+ 8 for the recurrent part and 9.53e+ 11
for the terminal part. To find the optimal number of knots, we first fitted the model with
a small number of knots (n.knots = 4) and increased the number of knots until the graph
of the baseline hazard functions was not changing importantly anymore. The smoothing
parameters are obtained from a shared frailty and Cox model with respectively recurrent and
terminal event as the outcome using the cross-validation method.
With this model, it is found that chemotherapy is a prognostic factor only on death with a
positive association (HR = 2.99, p < 0.001). Both Charlson’s index (Index ≥ 3 vs. Index 0)
and Dukes’ stage (Stage C and D vs. Stages A, B) are positively related to the recurrent and
terminal events. A detailed description of the output for the standard joint frailty models are
presented in Rondeau et al. (2012).
To verify whether the model predicts correctly the number of observed events, we represent
the martingale residuals for both events against the follow-up time. These residuals in a
well adjusted model should have a mean equal to 0 and thus a smoothing curve added to
a graph should be approximately overlapping with the horizontal line y = 0. The following
code produces the plots given in Figure 3:

R> plot(aggregate(readmission$t.stop, by = list(readmission$id),
+ FUN = max)[2][, 1], modJoint.gap$martingale.res, ylab = "",
+ xlab = "time", main = "Rehospitalizations", ylim = c(-4, 4))
R> lines(lowess(aggregate(readmission$t.stop, by = list(readmission$id),
+ FUN = max)[2][, 1], modJoint.gap$martingale.res, f = 1), lwd = 3,
+ col = "grey")
R> plot(aggregate(readmission$t.stop, by = list(readmission$id),
+ FUN = max)[2][, 1], modJoint.gap$martingaledeath.res, ylab = "",
+ xlab = "time", main = "Death", ylim = c(-2, 2))
R> lines(lowess(aggregate(readmission$t.stop, by = list(readmission$id),
+ FUN = max)[2][, 1], modJoint.gap$martingaledeath.res, f = 1), lwd = 3,
+ col = "grey")

For the rehospitalization process the mean of residuals is approximately 0 with the smooth
curve close to the line y = 0, but in case of death this tendency is deviated by relatively higher
values for short follow-up times. This may suggest, that the model may have underestimated
the number of deaths in the early follow-up period. The identified individuals of which the
residuals result in non-zero mean, have short intervals between their rehospitalization and
death (1 day). Indeed, the removal of these individuals (50 patients) results in residuals with
the mean close to 0 all along the follow-up period (plot not shown here).
The package frailtypack provides also the estimation of the random effects. The vector
frailty.pred from a ‘jointPenal’ object contains the individual empirical Bayes estimates.
They can be graphically represented for each individual with additional information on num-
ber of events (point size) to identify the outlying data.

R> plot(1:403, modJoint.gap$frailty.pred, xlab = "Id of patients",
+ ylab = "Frailty predictions for each patient", type = "p", axes = FALSE,
+ cex = as.vector(table(readmission$id)), pch = 1, ylim = c(-0.1, 7),
+ xlim = c(-2, 420))
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Figure 3: Martingale residuals for rehospitalizations and death against the follow-up time (in
days). The grey line corresponds to a smooth curve obtained with lowess.

R> axis(1, round(seq(0, 403, length = 10), digit = 0))
R> axis(2, round(seq(0, 7, length = 10), digit = 1))

Figure 4 shows the values of frailty prediction for each patient with an association to the
number of events (the bigger the point, the greater the number of rehospitalizations). The
frailties tend to have bigger values if the number of events of a given individual is high.
From the plot it can be noticed that there is an outlying frailty suggesting verification of the
follow-up of the concerned individual.

Time-varying coefficients

In the framework of standard joint frailty models, it is possible to fit the models with time-
varying effects of prognostic factors. Using function timedep in a formula of frailtyPenal,
the time-dependent coefficients can be estimated usingB-splines of order q (option betaorder)
with m interior knots (option betaknots). In the example of the readmission dataset we
are interested in verifying whether the variable sex has a time-varying effect on both recur-
rent and terminal events. Thus, we fit a model equivalent to modJoint.gap but with time
dependent effects assuming quadratic B-splines and 3 interior knots:

R> modJoint.gap.timedep <- frailtyPenal(Surv(time, event) ~ cluster(id) +
+ dukes + charlson + timedep(sex) + chemo + terminal(death),
+ formula.terminalEvent = ~ dukes + charlson + timedep(sex) + chemo,
+ data = readmission, n.knots = 8, kappa = c(2.11e+08, 9.53e+11),
+ betaorder = 3, betaknots = 3)

In the result, using the method print the estimated values of parameters with time-constant
effects and graphics of log-hazard ratios for time-dependent variables for each event are ob-
tained (Appendix B, Figure 10). For rehospitalizations, we found firstly a protective effect
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Figure 4: Individual prediction of the frailties. The size of points corresponds to number of
an individual’s recurrent events.

for females (β(t) < 0) and later an increased risk (β(t) > 0). For death, at the beginning, the
effect of sex was weakening the risk but shortly became non-influential (β(t) around 0).
The PH assumption for the variable sex can be checked using the LR test. We compare two
models: modJoint.gap (related to the null hypothesis that the effect is constant in time:
H0 : βR(t) = βR, βT (t) = βT ) and modJoint.gap.timedep (related to the alternative
hypothesis of time-varying effects: H1 : βR(t) 6= βR, βT (t) 6= βT ):

R> LR.statistic <- -2 * modJoint.gap$logLik +
+ 2 * modJoint.gap.timedep$logLik
R> p.value <- signif(1 - pchisq(LR.statistic, df = 10), 5)

Given the obtained p value = 0.049, the PH assumption for the variable sex is not sat-
isfied (at the level 0.05). Next, we check whether sex with time-dependent effects is an
influential prognostic factor. Thus, again, we use the LR test to compare two models:
modelJoint.gap.nosex without the covariate sex (model related to the null hypothesis:
H0 : βR(t) = 0, βT (t) = 0) and modelJoint.gap.timedep (related to the alternative
hypothesis: H1 : βR(t) 6= 0, βT (t) 6= 0):

R> modJoint.gap.nosex <- frailtyPenal(Surv(time, event) ~ cluster(id) +
+ dukes + charlson + chemo + terminal(death), formula.terminalEvent = ~
+ dukes + charlson + chemo, data = readmission, n.knots = 8,
+ kappa = c(2.11e+08, 9.53e+11))
R> LR.statistic <- -2 * modJoint.gap.nosex$logLik +
+ 2 * modJoint.gap.timedep$logLik
R> p.value <- signif(1 - pchisq(LR.statistic, df = 12), 5)
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The test shows that the variable sex has a significant time-varying effect (p value < 0.001).
In this example, the variable sex is found significant for both, the PH model and the non-PH
model, but we showed that this variable does not satisfy the PH assumption.

Dynamic predictions

Using the joint model modJoint.gap we can calculate predicted probabilities of death using
prediction. These predictions may serve as a tool to compare two exemplars of patients with
different histories of recurrences but the same values of the prognostic factors to study the
effect of the events on the survival (Mauguen et al. 2013). On the other hand, the influence
of some explanatory covariates can be examined for patients that are considered to have the
same history of recurrences. Here, we aim at evaluating the predictive effect of the Dukes’
stage on survival considering the history of hospitalizations. We compare the predicted risk
of death for two patients having the same characteristics (men with Charlson’s index 0 and
the chemotherapy treatment) and having two hospitalizations: 1 and 1.5 year after their
surgeries. We set the time of prediction to 2 years and calculate the probability in a time
window of 3 years (we apply a moving window with a step of 0.5 years). Patient 1 has Dukes’
stage A and patient 2, Dukes’ stage D. We focus on the predicted probabilities regarding the
complete history of recurrences (Equation 8) and compare the results with those obtained
using the incomplete history and ignoring the history.
To prepare data for the predictions, we start with an empty data frame with the variables of
interest and the covariates:

R> datapred <- data.frame(time = 0, event = 0, id = 0, dukes = 0,
+ charlson = 0, sex = 0, chemo = 0)
R> datapred[, 4:7] <- lapply(datapred[, 4:7], as.factor)
R> levels(datapred$dukes) <- c(1, 2, 3)
R> levels(datapred$charlson) <- c(1, 2, 3)
R> levels(datapred$sex) <- c(1, 2)
R> levels(datapred$chemo) <- c(1, 2)

Patient 1 with Dukes’ stage A has two observed hospitalizations at the 365th and 548th day
after the surgery:

R> datapred[1, ] <- c(365, 1, 1, 1, 1, 1, 2)
R> datapred[2, ] <- c(548, 1, 1, 1, 1, 1, 2)

Patient 2 has the hospitalizations observed in the same times as Patient 1 but is assumed to
have Dukes’ stage B:

R> datapred[3, ] <- c(365, 1, 2, 3, 1, 1, 2)
R> datapred[4, ] <- c(548, 1, 2, 3, 1, 1, 2)

We calculate the predictions for both patients:

R> pred <- prediction(modJoint.gap, datapred, t = 730,
+ window = seq(1, 1096, 183), MC.sample = 500)
R> plot(pred, conf.bands = TRUE)
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Figure 5: Predicted probabilities of death for two patients sharing the same history of re-
currences and characteristics except of the Dukes’ stage. Patient 1 has Dukes’ stage A and
patient 2, Dukes’ stage D. Dashed lines represent the MC confidence intervals.

In the result, three types of predictions are calculated for 6 time horizons. As it has been
already observed from the estimates of the model, an increased Dukes’ stage (D) is positively
associated with death. Figure 5 compares the predicted probabilities of death in the three
settings. The predictions using the exact number of recurrences (2 hospitalizations) and at
least 2 recurrences are very close to each other and are higher than the risk obtained without
the information on recurrent events. Indeed, the significant estimate of variance of the frailty
θ and significant positive estimate of α imply the positive association between the process of
recurrences and death. Finally, all the predicted probabilities are higher for the patient with
Dukes’ stage D compared to the patient with Dukes’ stage A.

Joint frailty model for clustered data

The joint models for clustered survival data can be estimated using again the frailtyPenal
function. A dataset should include information on two survival outcomes for individuals
from several groups. This model is presented using the readmission dataset with artificially
created clusters on individuals. The first survival event will be the first observed rehospital-
ization and the second event, death. The framework of semi-competing risks is used here,
thus individuals’ follow-up stops at time of the rehospitalization, death or in case when none
of these events are observed, the censoring time. We consider 6 clusters defined by a new
variable group:
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R> readmission <- transform(readmission, group = id %% 6 + 1 )
R> readm_cluster <- subset(readmission,
+ (t.start == 0 & event == 1) | event == 0)

New dataset readm_cluster includes clusters with 97 to 107 individuals per group. For
definition of a clustered joint model two inner functions are required in frailtyPenal, num.id
for the individual level and cluster for the groups:

R> joi.clus <- frailtyPenal(Surv(t.start, t.stop, event) ~ cluster(group) +
+ num.id(id) + dukes + sex + chemo + terminal(death),
+ formula.terminalEvent = ~ dukes + sex + chemo, data = readm_cluster,
+ n.knots = 8, kappa = c(1.e+10, 1.e+10), recurrentAG = TRUE,
+ Alpha = "None")

In the result, the estimates of prognostic factors for both types of events are obtained. The
estimate of the variance of the frailty term indicates whether, at the cluster level, the processes
are associated with each other and measures the heterogeneity between individuals (intra-
cluster correlation). In the given example the estimate of the variance θ is significantly
different from 0 (p value = 0.037), thus there is a positive association between the risk of
hospitalizations and death via the non-observed frailty.
In case of the joint frailty models for clustered data it should be noted that sufficient amount
of information must be provided, i.e., number of observations per cluster. Otherwise, given
the complexity of the model, convergence might not be attained. The parameter α is assumed
to be equal to 1 as these models are defined in the framework of semi-competing risks and
not of recurrent events.

General joint frailty model

To estimate the general frailty model, argument jointGeneral must be equal to TRUE in
function frailtyPenal. We applied this model to the original readmission dataset assuming
two independent frailty terms using the following code:

R> modJoint.general <- frailtyPenal(Surv(time, event) ~ cluster(id) +
+ dukes + charlson + sex + chemo + terminal(death),
+ formula.terminalEvent = ~ dukes + charlson + sex + chemo,
+ data = readmission, jointGeneral = TRUE, n.knots = 8,
+ kappa = c(2.11e+08, 9.53e+11))

In the output of the function, estimations of the variances of both random effects are given. For
the analyzed example, the estimated variance θ of the frailty ui associating recurrent events
and death indicates strong relationship between the processes (θ̂ = 0.68, p value < 0.001).
Moreover, the estimate of η implies small but significant dependence between the recurrent
event gap times explained by the frailty vi (η̂ = 0.01, p value < 0.001). This information
complements the inference from the standard joint frailty model because it separates the
correlation linked to the recurrent events with correlation between the recurrent events and
the terminal event.
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5.2. Example on dataset dataMultiv for multivariate joint frailty model

For the following example we use a generated dataset for 800 individuals from model (3) with
2 types of recurrent events and a terminal event. The random effects are assumed to follow
the normal distribution ui ∼ N (0, 0.5), vi ∼ N (0, 0.5) and the correlation coefficient ρ = 0.5.
The coefficients for the random effects are α1 = α2 = 1. The baseline hazard functions r(1)

0 (t),
r

(2)
0 (t) and λ0(t) follow the Weibull distribution and the time for right censoring is fixed at 5.
The generated data includes 1652 observations. For a detailed description of the generation
scenario see Mazroui et al. (2012).
The dataset includes the individuals’ times of events with variables indicating the type of
event: INDICREC for the recurrent event of type 1 (local recurrences), INDICMETA for the
recurrent event of type 2 (metastases) and INDICDEATH for the censoring status (death).
Additionally there are 3 binary covariates v1, v2 and v3.

Multivariate frailty model

We consider the multivariate frailty model for the exemplary dataset dataMultiv to study
jointly local recurrences, metastases and death for patients diagnosed with cancer. To de-
fine the model, three formulas must be defined in the function with additional indication on
variables including status of the second recurrent event (event2) and of the terminal event
(terminal), both included in the first formula. All the baseline hazard functions must be of
the same type (Weibull, splines or piecewise constant). We fit the model as follows (compu-
tational time 54 minutes on a personal computer with an Intel Core i7 3.40 GHz processor
and 8 GB RAM running Windows 7):

R> data("dataMultiv", package = "frailtypack")
R> modMultiv.spli <- multivPenal(Surv(TIMEGAP, INDICREC) ~ cluster(PATIENT) +
+ v1 + v2 + event2(INDICMETA) + terminal(INDICDEATH), formula.Event2 = ~
+ v1 + v2 + v3, formula.terminalEvent = ~ v1, data = dataMultiv,
+ n.knots = c(8, 8, 8), kappa = c(1, 1, 1), initialize = FALSE)

Option initialize indicates whether to initialize the parameters (including parameters for
the baseline hazard functions) using the estimates of separate models: shared frailty models
(for the two types of recurrent events) and a Cox proportional hazard model (for the terminal
event). The output of function multivPenal is presented below:

R> modMultiv.spli

Call:
multivPenal(formula = Surv(TIMEGAP, INDICREC) ~ cluster(PATIENT) +

v1 + v2 + event2(INDICMETA) + terminal(INDICDEATH), formula.Event2 = ~
v1 + v2 + v3, formula.terminalEvent = ~v1, data = dataMultiv,
initialize = FALSE, n.knots = c(8, 8, 8), kappa = c(1, 1, 1))

Multivariate joint gaussian frailty model for two survival outcomes
and a terminal event
using a Penalized Likelihood on the hazard function
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Recurrences 1:
------------

coef exp(coef) SE coef (H) SE coef (HIH) z p
v1 0.565676 1.76064 0.111603 0.111638 5.06863 4.0068e-07
v2 0.631891 1.88117 0.106534 0.106519 5.93138 3.0040e-09

Recurrences 2:
-------------

coef exp(coef) SE coef (H) SE coef (HIH) z p
v1 0.837140 2.309752 0.127631 0.127554 6.55905 5.4152e-11
v2 -0.641487 0.526509 0.127111 0.127075 -5.04668 4.4956e-07
v3 0.312774 1.367212 0.118103 0.118057 2.64832 8.0892e-03

Terminal event:
----------------

coef exp(coef) SE coef (H) SE coef (HIH) z p
v1 0.367778 1.44452 0.0987691 0.0984928 3.72362 0.00019639

Parameters associated with Frailties:
theta1 : 0.523131 (SE (H): 0.537725 ) p = 0.16531
theta2 : 0.25968 (SE (H): 0.966704 ) p = 0.39411
alpha1 : 0.54705 (SE (H): 0.111603 ) p = 9.4993e-07
alpha2 : 0.595186 (SE (H): 0.106534 ) p = 2.3125e-08
rho : 0.738084 (SE (H): 0.0987691 )

penalized marginal log-likelihood = -594.7
LCV = the approximate likelihood cross-validation criterion

in the semi parametric case = 0.477466

n= 1318
n recurrent events of type 1= 518 n subjects= 800
n recurrent events of type 2= 334
n terminal events= 636
number of iterations: 16

Exact number of knots used: 8 8 8
Value of the smoothing parameters: 1 1 1

The output presents the results for prognostic factor estimates for each type of event. The
estimates of parameters associated with the random effects are given by the variance of the
frailty related to the first type of the recurrent events and the association with the terminal
event (theta1), the variance of the frailty related to the second type of the recurrent events
and the association with the terminal event (theta2) and the correlation coefficient between
the frailties (rho). The sign and strength of the dependency between the recurrent event
of type 1 (2) and the terminal event is represented by alpha1 (alpha2). In the analyzed
example, both theta1 and theta2 are not significantly different from 0, thus there are no
dependencies between the processes explained by the non-observed factors.
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5.3. Example on dataset colorectal for models with longitudinal data

Datasets colorectal and colorectal.Longi represent a random selection of 150 patients
from the multi-center randomized phase III clinical trial FFCD 2000-05 of patients diag-
nosed with metastatic colorectal cancer not amenable to curative intent surgery. The trial
was conducted between 2002 and 2007 in France by Fédèration Francophone de Cancérologie
Digestive (FFCD; Ducreux et al. 2011). The data contains a follow-up of tumor size measure-
ments (sum of the longest diameters of target lesions) and times of apparition of new lesions
as recurrent events. Moreover, some baseline characteristics (age, WHO performance status
and previous resection), treatment arm (combination vs. sequential) and time of death (or last
observed time for a right-censored individual) are included in the data. Dataset colorectal
provides information on the recurrent event and death and dataset colorectal.Longi on the
measurements of tumor size. A total of 906 tumor size measurements and 289 of recurrences
were recorded for the patients included. Among them, 121 died during the study.
The variable tumor.size in colorectalLongi is the transformed sum of the longest diameters
(SLD∗) of an individual’s target lesions measured during a visit (SLD∗ = (SLD0.3 − 1)/0.3).
The status of new lesions occurrence is registered in new.lesions in dataset colorectal.
In this dataset start of time interval time0 (0 or time of previous recurrence) and time of
event time1 (recurrence or censoring by terminal event) represent information for times of
apparition of new lesions and for death (or right censoring).
We provide extracts of colorectal and colorectalLongi datasets to guide the users how
to prepare suitable datasets for joint models with longitudinal data using the package. These
functions require datasets in long format (one row per observation and usually several rows
per individuals) and only in case of data in longiPenal the long format is one row per
individual (as it contains information on the terminal event only). In the example of the
colorectal dataset this is represented as follows:

R> data("colorectalLongi", package = "frailtypack")
R> head(colorectalLongi, 10)

id year tumor.size treatment age who.PS prev.resection
1 1 0.0000000 5.2276794 S 60-69 years 0 No
2 1 0.2131147 4.4926205 S 60-69 years 0 No
3 1 0.4590164 4.6000876 S 60-69 years 0 No
4 1 0.6311475 4.5333227 S 60-69 years 0 No
5 2 0.0000000 3.0454011 C >69 years 0 No
6 2 0.1639344 1.3919052 C >69 years 0 No
7 2 0.2814208 1.2063562 C >69 years 0 No
8 2 0.4316940 1.2063562 C >69 years 0 No
9 2 0.5846995 0.9462067 C >69 years 0 No
10 2 0.7377049 1.9353985 C >69 years 0 No

R> data("colorectal", package = "frailtypack")
R> head(colorectal, 5)

id time0 time1 new.lesions treatment age who.PS
1 1 0.0000000 0.7095890 0 S 60-69 years 0
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2 2 0.0000000 1.2821918 0 C >69 years 0
3 3 0.0000000 0.5245902 1 S 60-69 years 1
4 3 0.5245902 0.9207650 1 S 60-69 years 1
5 3 0.9207650 0.9424658 0 S 60-69 years 1

prev.resection state gap.time
1 No 1 0.70958904
2 No 1 1.28219178
3 No 0 0.52459017
4 No 0 0.39617486
5 No 1 0.02170073

Joint model for longitudinal data and a terminal event
Firstly, we estimate the bivariate joint model for longitudinal data and a terminal event (4).
We consider a left-censored biomarker, i.e., the transformed tumor size measurements are not
observed below a threshold−3.33 (which corresponds to ‘zero’ measures in the nontransformed
data). The value of the smoothing parameter κ is chosen using a corresponding reduced model,
i.e., a Cox model for the terminal event. For a model with a random intercept and slope for
the biomarker and the link function being the random effects of the biomarker we use the
following form of the longiPenal function using the colorectalLongi dataset and a subset
of colorectal containing only the information on the terminal event (colorectalSurv):

R> colorectalSurv <- subset(colorectal, new.lesions == 0)
R> modLongi <- longiPenal(Surv(time1, state) ~ age + treatment + who.PS +
+ prev.resection, tumor.size ~ year * treatment + age + who.PS,
+ colorectalSurv, data.Longi = colorectalLongi, random = c("1", "year"),
+ id = "id", link = "Random-effects", left.censoring = -3.33,
+ n.knots = 8, kappa = 0.93, method.GH = "Pseudo-adaptive", n.nodes = 7)
R> modLongi

Call:
longiPenal(formula = Surv(time1, state) ~ age + treatment + who.PS +

prev.resection, formula.LongitudinalData = tumor.size ~ year *
treatment + age + who.PS, data = colorectalSurv,
data.Longi = colorectalLongi, random = c("1", "year"), id = "id",
link = "Random-effects", left.censoring = -3.33, n.knots = 8,
kappa = 0.93, method.GH = "Pseudo-adaptive", n.nodes = 7)

Joint Model for Longitudinal Data and a Terminal Event
Parameter estimates using a Penalized Likelihood on the hazard function
and assuming left-censored longitudinal outcome
Association function: random effects

Longitudinal outcome:
----------------

coef SE coef (H) SE coef (HIH) z p
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Intercept 3.023301 0.187402 0.187402 16.132720 <1e-16
year -0.303137 0.135874 0.135874 -2.231016 2.5680e-02
treatmentC 0.048672 0.213962 0.213962 0.227480 8.2005e-01
age60-69 years -0.017022 0.168788 0.168788 -0.100847 9.1967e-01
age>69 years -0.294602 0.131867 0.131867 -2.234076 2.5478e-02
who.PS1 0.106981 0.116945 0.116945 0.914795 3.6030e-01
who.PS2 0.739937 0.175651 0.175651 4.212532 2.5252e-05
year:treatmentC -0.634622 0.183656 0.183656 -3.455500 5.4927e-04

chisq df global p
age 6.90318 2 0.031700
who.PS 18.31983 2 0.000105

Terminal event:
-------------

coef exp(coef) SE coef (H) SE coef (HIH) z
age60-69 years -0.226278 0.797497 0.243003 0.243003 -0.931171
age>69 years -0.100919 0.904006 0.223801 0.223801 -0.450933
treatmentC -0.090393 0.913572 0.198843 0.198843 -0.454597
who.PS1 -0.116788 0.889774 0.218351 0.218351 -0.534864
who.PS2 0.802405 2.230899 0.258303 0.258303 3.106452
prev.resectionYes -0.225770 0.797902 0.193418 0.193418 -1.167264

p
age60-69 years 3.5177e-01
age>69 years 6.5204e-01
treatmentC 6.4940e-01
who.PS1 5.9274e-01
who.PS2 1.8935e-03
prev.resectionYes 2.4310e-01

chisq df global p
age 0.867823 2 0.64800
who.PS 12.897239 2 0.00158

Components of Random-effects covariance matrix B1:

Intercept 1.972036 -0.519749
year -0.519749 0.943576

Association parameters:
coef SE z p

Intercept 0.3203428 0.0848201 3.776733 0.0001589
year 0.0432225 0.1668878 0.258991 0.7956400

Residual standard error: 0.954238 (SE (H): 0.027079 )
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penalized marginal log-likelihood = -1684.01
Convergence criteria:
parameters = 7.91e-05 likelihood = 3.97e-05 gradient = 1.4e-08

LCV = the approximate likelihood cross-validation criterion
in the semi parametrical case = 1.62312

n= 150
n repeated measurements= 906
Percentage of left-censored measurements= 3.75 %
Censoring threshold s= -3.33
n events= 121
number of iterations: 17

Exact number of knots used: 8
Value of the smoothing parameter: 0.93
Gaussian quadrature method: Pseudo-adaptive with 7 nodes

On average, the tumor size significantly decreases in time in interaction with the treatment,
this effect is more important in the C arm (−0.63, p value = 0.001). However, there is no
effect of treatment arm on the risk of death (HR = 0.91, p value = 0.65). The age of patients
at baseline does not have any effect neither on the tumor size nor on the risk of death. The
performance status WHO 2 evaluated before the treatment is a prognostic factor both for
the tumor size (0.74, p value < 0.001) and overall survival (HR = 2.23, p value = 0.001).
It should be noted that the model is fitted on a subset of the original trial in which, using
the data of all patients, some of the prognostic effects were found to be different (Król et al.
2016).
The processes are linked together via the random intercept and slope of the longitudinal
trajectory. This association is significant for the random intercept implying that with the
increase of individual deviation from the population average tumor size, the risk of death
increases as well (η̂t1 = 0.32, p value < 0.001).
To verify the goodness-of-fit of the model, the estimated baseline hazard function, martingale
residuals for the terminal event and residuals for the longitudinal outcome can be plotted
using the following code (results not shown here):

R> plot(modLongi, main = "Hazard function")
R> plot(aggregate(colorectalSurv$time1, by = list(colorectalSurv$id),
+ FUN = max)[2][, 1], modLongi$martingaledeath.res, ylab = "",
+ xlab = "time", main = "Martingale Residuals - Death",
+ ylim = c(-4.2, 4.2))
R> lines(lowess(aggregate(colorectalSurv$time1, by = list(colorectalSurv$id),
+ FUN = max)[2][, 1], modLongi$martingaledeath.res, f = 1), lwd = 3,
+ col = "grey")
R> qqnorm(modLongi$marginal_chol.res, main = "Marginal Cholesky residuals",
+ xlab = "")
R> qqline(modLongi$marginal_chol.res)
R> plot(modLongi$pred.y.cond, modLongi$conditional.res, xlab = "Fitted",
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+ ylab = "Conditional residuals",
+ main = "Conditional Residuals vs. Fitted Values")

Next, we explore predictiveness of this model comparing it with a model in which the link func-
tion is represented by the current level of the biomarker mi(t). Thus, we fit a bivariate model
with the same covariates and characteristics but with the option link = "Current-level"
(model modLongi2). Then, for times of prediction between 1.2 and 2.5 years we calculate
the EPOCE estimator. We compare the models by plotting the values of CVPOLa and the
tracking intervals for the differences between the models.

R> modLongi2 <- longiPenal(Surv(time0, time1, state) ~ age + treatment +
+ who.PS + prev.resection, tumor.size ~ year * treatment + age + who.PS,
+ colorectalSurv, data.Longi = colorectalLongi, random = c("1", "year"),
+ id = "id", link = "Current-level", left.censoring = -3.33,
+ n.knots = 8, kappa = 0.93, method.GH = "Pseudo-adaptive", n.nodes = 7)
R> time <- seq(1.2, 2.4, 0.1)
R> epoce <- epoce(modLongi, time)
R> epoce2 <- epoce(modLongi2, time)
R> diff <- Diffepoce(epoce, epoce2)
R> plot(temps, epoce$cvpol, ylab = "CVPOL", xlab = "time", pch = 6,
+ col = "darkcyan", type= "b", ylim = c(0.4, 1.0))
R> points(temps, epoce2$cvpol, pch = 15, col = "brown3", type = "b",
+ lty = 2)
R> legend(1.9, 1, legend = c("modLongi", "modLongi2"), pch = c(6, 15),
+ col = c("darkcyan", "brown3"), bty = "n", cex = 0.7, lty = c(1, 2))
R> plot(diff)

The results of CVPOLa are presented in Figure 6. Model modLongi with the random effects
as the link function has better predictive abilities than model modLongi2 with the current
level of the biomarker as the link function until 1.9 year. After this time point, the tendency
inverses. However, these difference are significant only at 2.4 years of treatment. Using
method AtRisk for ‘epoce’ objects, we may verify for how many subjects at risk, CVPOLa
is calculated at this prediction time (epoce$AtRisk). The significant difference between the
models is found for the time point for which the number of subjects considered is relatively
small (25). Thus, we can conclude that the models are close to each other and the choice of
the link function does not strongly influence the predictiveness.
The comparison of the predictive abilities of bivariate models can be useful for the choice
of the appropriate trivariate model. If we are interested in the prediction of death it is
important to choose a model that provides the best predictive abilities for survival. For
this reason, we choose a model with such a structure of the link function that provides the
best predictive abilities, for both bivariate and trivariate models. First, we fit appropriate
bivariate models (without the recurrent part) with different link structures and compare their
predictive abilities. Then, we fit the trivariate model with the same link structure as in the
bivariate model with the best predictive abilities. For the colorectal dataset the differences
in CVPOLa are not of great importance, thus we apply a trivariate model with the random
effects of the biomarker as the link function, as this model is less computationally intensive.
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Figure 6: Estimated cross-validated EPOCE computed from the joint models until 2.5 years
(left plot) and differences in the estimates with 95% tracking intervals (right plot).

Joint model for longitudinal data, recurrent events and a terminal event
The package frailtypack allows the estimation of the trivariate models for a longitudinal
biomarker, recurrent events and a terminal event. In the dataset colorectal, the recurrent
events are represented by the appearance of new lesions during the treatment. Usually in
clinical trials the size of new lesions is not registered and thus, their burden cannot be simply
added to the measure of the tumor size of the target lesions. However, it is of interest to add
the information on new lesions to a model as it influences overall survival. A trivariate model
can be a solution for such a goal and can be implemented using function trivPenal.
We fit a model with the calendar timescale for recurrent events and the baseline hazard
functions approximated by splines with 8 knots. The smoothing parameter values are found
from the separate models (shared frailty model and Cox model). A random intercept and a
random slope and left-censoring (threshold s = −3.33) are assumed for the biomarker. The
pseudo-adaptive Gaussian quadrature with 9 nodes is chosen for calculation of integrals.
Firstly, we find initial values for the covariates. For the longitudinal outcome and the terminal
event we use the estimates from the bivariate model, modLongi. The covariates related to the
recurrent events are initialized using the results of a shared frailty model for the appearance
of new lesions:

R> modShared <- frailtyPenal(Surv(time0, time1, new.lesions) ~ cluster(id) +
+ age + treatment + who.PS, data = colorectal, recurrentAG = TRUE,
+ n.knots = 8, cross.validation = TRUE, kappa = 1000, RandDist = "LogN")

Then, using argument init.B we fit the trivariate model with appropriate initial values.
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In init.B, the vector of initial values must follow the order: covariates for the recurrent
events, terminal event and then biomarker (interactions at the end of each component). The
trivariate model due to its complexity is computationally intensive but using the pseudo-
adaptive quadrature method the time of estimation is reduced (40 minutes on a personal
computer with an Intel Core i7 3.40 GHz processor and 8 GB RAM running Windows 7).
The model is defined as follows:

R> modTrivariate <- trivPenal(Surv(time0, time1, new.lesions) ~ cluster(id) +
+ age + treatment + who.PS + terminal(state), formula.terminalEvent = ~
+ age + treatment + who.PS + prev.resection, tumor.size ~ year *
+ treatment + age + who.PS, data = colorectal, data.Longi =
+ colorectalLongi, random = c("1", "year"), id = "id", link =
+ "Random-effects", left.censoring = -3.33, recurrentAG = T, n.knots = 7,
+ kappa = c(0.01, 0.7), method.GH = "Pseudo-adaptive", n.nodes = 7,
+ init.B = c(-0.18, -0.22, -0.24, -0.22, 0.35, -0.23, -0.10, -0.09, -0.12,
+ 0.80, -0.23, 3.02, -0.30, 0.05, -0.02, -0.29, 0.11, 0.74, -0.63))
R> modTrivariate

Call:
trivPenal(formula = Surv(time0, time1, new.lesions) ~ cluster(id) +

age + treatment + who.PS + terminal(state), formula.terminalEvent =
~age + treatment + who.PS + prev.resection, formula.LongitudinalData =
tumor.size ~ year * treatment + age + who.PS, data = colorectal,
data.Longi = colorectalLongi, random = c("1", "year"), id = "id",
link = "Random-effects", left.censoring = -3.33, recurrentAG = TRUE,
n.knots = 7, kappa = c(0.01, 0.7), init.B = c(-0.18, -0.22, -0.24, -0.22,

0.35, -0.23, -0.1, -0.09, -0.12, 0.8, -0.23, 3.02, -0.3,
0.05, -0.02, -0.29, 0.11, 0.74, -0.63),

method.GH = "Pseudo-adaptive", n.nodes = 7)

Calendar timescale

Trivariate Joint Model for Longitudinal Data, Recurrent Events and a
Terminal Event Parameter estimates using a Penalized Likelihood on the
hazard functions and assuming left-censored longitudinal outcome
Association function: random effects

Longitudinal outcome:
----------------

coef SE coef (H) SE coef (HIH) z p
Intercept 2.958884 0.187694 0.186822 15.764364 <1e-16
year -0.282884 0.134833 0.134692 -2.098035 3.5902e-02
treatmentC 0.102857 0.215248 0.214932 0.477853 6.3275e-01
age60-69 years 0.013893 0.167638 0.167392 0.082874 9.3395e-01
age>69 years -0.272310 0.131498 0.131356 -2.070835 3.8374e-02
who.PS1 0.120872 0.116505 0.116452 1.037480 2.9951e-01
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who.PS2 0.760518 0.175385 0.175368 4.336273 1.4492e-05
year:treatmentC -0.664321 0.185322 0.185215 -3.584687 3.3748e-04

chisq df global p
age 6.49994 2 0.038800
who.PS 19.25227 2 0.000066

Recurrences:
-------------

coef exp(coef) SE coef (H) SE coef (HIH) z
age60-69 years -0.272822 0.761228 0.272202 0.268207 -1.002279
age>69 years -0.298435 0.741979 0.250761 0.249414 -1.190117
treatmentC -0.290762 0.747693 0.219868 0.216165 -1.322440
who.PS1 -0.008178 0.991856 0.263673 0.257756 -0.031015
who.PS2 0.690831 1.995374 0.284015 0.279991 2.432378

p
age60-69 years 3.1621e-01
age>69 years 2.3400e-01
treatmentC 1.8602e-01
who.PS1 9.7526e-01
who.PS2 1.5000e-02

chisq df global p
age 1.74210 2 0.419
who.PS 6.70329 2 0.035

Terminal event:
----------------

coef exp(coef) SE coef (H) SE coef (HIH) z
age60-69 years -0.251916 0.777310 0.543611 0.522412 -0.463413
age>69 years -0.320350 0.725895 0.468031 0.461305 -0.684463
treatmentC -0.104732 0.900566 0.409034 0.389566 -0.256046
who.PS1 0.521182 1.684016 0.598282 0.574802 0.871131
who.PS2 2.154820 8.626335 0.632457 0.608890 3.407060
prev.resectionYes -0.071743 0.930770 0.390296 0.379218 -0.183818

p
age60-69 years 6.4307e-01
age>69 years 4.9368e-01
treatmentC 7.9792e-01
who.PS1 3.8368e-01
who.PS2 6.5667e-04
prev.resectionYes 8.5416e-01

chisq df global p
age 0.509673 2 0.775000
who.PS 14.065163 2 0.000883
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Components of Random-effects covariance matrix B1:

Intercept 1.983247 -0.526577
year -0.526577 0.955918

Recurrent event and longitudinal outcome association:
coef SE z p

Asso:Intercept 0.1367926 0.0965283 1.417125 0.15645
Asso:year -0.0673937 0.1339954 -0.502955 0.61500

Terminal event and longitudinal outcome association:
coef SE z p

Asso:Intercept 0.8456297 0.289808 2.917896 0.003524
Asso:year -0.0574471 0.234541 -0.244934 0.806510

Residual standard error: 0.139813 (SE (H): 0.026971 )

Frailty parameter for the association between recurrent events and
terminal event:

sigma square (variance of Frailties): 0.555577 (SE (H): 0.405782)
p = 0.085476

alpha (for terminal event): 2.62514 (SE (H): 0.250761 ) p = <1e-16

penalized marginal log-likelihood = -1789.36
Convergence criteria:
parameters = 0.000107 likelihood = 0.000626 gradient = 6.33e-06

LCV = the approximate likelihood cross-validation criterion
in the semi parametric case = 1.53133

n subjects= 150
n repeated measurements= 906

Percentage of left-censored measurements= 3.75 %
Censoring threshold s= -3.33

n recurrent events= 139
n terminal events= 121

number of iterations: 20

Exact number of knots used: 7
Value of the smoothing parameters: 0.01 0.7

Gaussian quadrature method: Pseudo-adaptive with 7 nodes

In the output of the fitted model, we obtain the estimates for the covariates related to the
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three types of processes: longitudinal outcome, recurrences and terminal event. The treatment
effect is not significant neither for the risk of appearance of new lesions nor for the risk of
death. As in the bivariate model, the tumor size decreases on average more in the treatment
arm C (−0.66, p value < 0.001). We find the baseline WHO performance status 2 having a
significant effect on the average population biomarker, the risk of new lesions appearance and
death. The coefficients for the association between the biomarker and the recurrences are
found not significant and for the link between the biomarker and death only the coefficient
related to the random intercept is significantly different from 0 (0.85, p value = 0.004). The
variance of the frailty term is found to be not significant.
As for the bivariate model modLongi, goodness-of-fit of the trivariate model can be evaluated
using the martingale residuals for the recurrent and terminal events and the residuals related
to the biomarker. For this purpose, the following code can be used (Figure 11, Appendix B):

R> plot(modTrivariate, main = "Hazard functions")
R> plot(modTrivariate, type = "Survival", main = "Survival functions")
R> plot(aggregate(colorectal$time1, by = list(colorectal$id),
+ FUN = max)[2][, 1], modTrivariate$martingaledeath.res, ylab = "",
+ xlab = "time", main = "Martingale Residuals - Death",
+ ylim = c(-4.2, 4.2))
R> lines(lowess(aggregate(colorectal$time1, by = list(colorectal$id),
+ FUN = max)[2][, 1], modTrivariate$martingaledeath.res, f = 1), lwd = 3,
+ col = "grey")
R> plot(aggregate(colorectal$time1, by = list(colorectal$id),
+ FUN = max)[2][, 1], modTrivariate$martingale.res, ylab = "",
+ xlab = "time", main = "Martingale Residuals\n - Recurrences",
+ ylim = c(-4.2, 4.2))
R> lines(lowess(aggregate(colorectal$time1, by = list(colorectal$id),
+ FUN = max)[2][, 1], modTrivariate$martingale.res, f = 1), lwd = 3,
+ col = "grey")
R> qqnorm(modTrivariate$marginal_chol.res,
+ main = "Marginal Cholesky residuals" , xlab = "")
R> qqline(modTrivariate$marginal_chol.res)
R> plot(modTrivariate$pred.y.cond, modTrivariate$conditional.res,
+ xlab = "Fitted", ylab = "Conditional residuals",
+ main = "Conditional Residuals \n vs. Fitted Values")

The martingale residuals for both recurrences and death processes show slight signs of skew-
ness, their means seem to decrease in time. Using the marginal Cholesky residuals and the
conditional residuals we find that the model does not fit the longitudinal data very well.
We compare the trivariate model modTrivariate with the bivariate model modLongi in terms
of predictive accuracy for OS using the Brier score. Firstly, we define the prediction time and
horizons and calculate the predictions for the bivariate and trivariate models:

R> predtime <- 1.0
R> window <- seq(0.1, 1.5, 0.1)
R> fwindow <- predtime + window
R> pred_bivariate<- prediction(modLongi, data = colorectalSurv,
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+ data.Longi = colorectalLongi, predtime, window)
R> pred_trivariate <- prediction(modTrivariate, data = colorectal,
+ data.Longi = colorectalLongi, predtime, window)

We prepare data for the Brier score computations: data_surv including data on survival
(variables of time and state), survj_biv and survj_tri for predicted probabilities of survival
of subjects that are alive at time of prediction using the bivariate and trivariate model,
respectively:

R> data_surv <- colorectalSurv[, c(1, 3, 9)]
R> predictions_bivariate <- as.matrix(pred_bivariate$pred)
R> survj_biv <-
+ as.matrix(predictions_bivariate[data_surv$time1 >= predtime, ])
R> survj_biv <- 1 - cbind(0, survj_biv)
R> predictions_trivariate <- as.matrix(pred_trivariate$pred)
R> survj_tri <-
+ as.matrix(predictions_trivariate[data_surv$time1 >= predtime, ])
R> survj_tri <- 1 - cbind(0, survj_tri)

Prediction error curves can be obtained by calculating the Brier score for several time points.
Using the joint model estimated with frailtypack, the Brier score can be computed using
the package pec (version 2.4.9, available at https://CRAN.R-project.org/src/contrib/
Archive/pec/) and its modified function pec included in the supplementary material. The
following code is used to calculate and plot the Brier score for the bivariate and trivariate
models:

R> library("pec")
R> library("prodlim")
R> source("ipcw_2-9_modif.R")
R> source("pecMethods_2-9_modif.R")
R> BrierScore <- pec(list("Bivariate" = survj_biv, "Trivariate" = survj_tri),
+ formula = Surv(time1, state) ~ 1,
+ data = data_surv[data_surv$time1 >= predtime, ],
+ cens.model = "marginal", data.cens = data_surv, exact = FALSE,
+ times = fwindow, ptime = predtime, reference = FALSE)
R> plot(fwindow, BrierScore$AppErr$Bivariate[-1], pch = 6, main = "",
+ ylab = "Prediction error", xlab = "Years", ylim = c(0, 0.3),
+ xlim = c(0.9, 2.7), col = "black", type = "l", lwd = 2, axes = FALSE,
+ lty = 1)
R> points(fwindow, BrierScore$AppErr$Trivairate[-1], pch = 15, col = "blue",
+ type = "l", lwd = 2, lty = 2)
R> legend(2.1, 0.3, legend = c("modLongi", "modTrivariate"), bty = "n",
+ cex = 1.1, lty = c(1, 2), lwd = 2, col = c("black", "blue"))
R> axis(1, at = seq(0.9, 2.7, by = 0.3))
R> axis(2, at = seq(0, 0.3, by = 0.1))
R> abline(v = 1, lty = 2, lwd = 2, col = "gray35")

Figure 7 represents the prediction error curves for both models. In short prediction horizons,
values of the Brier score of the models are very close to each other. After around 1.6 years

https://CRAN.R-project.org/src/contrib/Archive/pec/
https://CRAN.R-project.org/src/contrib/Archive/pec/
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Figure 7: Error of prediction at t = 1 year and varying window w from 0.1 to 1.5. modLongi
– tumor size and death, modTrivariate – tumor size, occurrence of new lesions and death.

the bivariate model has better predictive accuracy than the trivariate model. However, the
results are presented for the apparent error calculated using the data from the estimation.
For verification of the models for predictions for new patients (not used in the data for the
estimation) a cross-validation procedure would be required.

Dynamic predictions

Both, for the bivariate models for longitudinal data and a terminal event and for the trivariate
models, the package provides individual predictions of the terminal event. To create patients’
profiles, two datasets must be provided, one including the history of the biomarker and the
values of covariates at measurement times (dataLongi) and a second one with the information
on covariates related to the terminal event (data). In case of the trivariate model, this dataset
should also include the history of recurrences.
For the example of the colorectal dataset, we create two profiles of patients that differ from
each other by the trajectory of the tumor size. The first patient has a progressive disease with
a tumor size increasing in time and the second patient a response to the treatment with a
diminishing tumor. Both patients have the same baseline characteristics. In the data creation
step, the types of variables must be appropriately defined and coherent with the dataset used
for estimation. Firstly, we prepare the data for the bivariate model setting:

R> datapredj_longi <- data.frame(id = 0, year = 0, tumor.size = 0,
+ treatment = 0, age = 0, who.PS = 0, prev.resection = 0)
R> datapredj_longi$treatment <- factor(datapredj_longi$treatment,
+ levels = 1:2)
R> datapredj_longi$age <- factor(datapredj_longi$age, levels = 1:3)
R> datapredj_longi$who.PS <- factor(datapredj_longi$who.PS, levels = 1:3)
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R> datapredj_longi$prev.resection <- factor(datapredj_longi$prev.resection,
+ levels = 1:2)

For Patient 1 we assume 5 measurements indicating increasing tumor burden:

R> datapredj_longi[1, ] <- c(1, 0, 1.2, 2, 1, 1, 1)
R> datapredj_longi[2, ] <- c(1, 0.3, 1.1, 2, 1, 1, 1)
R> datapredj_longi[3, ] <- c(1, 0.6, 1.4, 2, 1, 1, 1)
R> datapredj_longi[4, ] <- c(1, 0.9, 2.2, 2, 1, 1, 1)
R> datapredj_longi[5, ] <- c(1, 1.5, 3.0, 2, 1, 1, 1)

On the contrary, Patient 2 is assumed to have a decreasing size of the tumor:

R> datapredj_longi[6, ] <- c(2, 0, 1.2, 2, 1, 1, 1)
R> datapredj_longi[7, ] <- c(2, 0.3, 1.1, 2, 1, 1, 1)
R> datapredj_longi[8, ] <- c(2, 0.5, 0.7, 2, 1, 1, 1)
R> datapredj_longi[9, ] <- c(2, 0.7, 0.3, 2, 1, 1, 1)
R> datapredj_longi[10, ] <- c(2, 0.9, 0.1, 2, 1, 1, 1)

Next, for both patients we prepare the data with information on covariates included in the
survival part in the bivariate model:

R> datapredj <- data.frame(id = 0, treatment = 0, age = 0, who.PS = 0,
+ prev.resection = 0)
R> datapredj$treatment <- factor(datapredj$treatment, levels = 1:2)
R> datapredj$age <- factor(datapredj$age, levels = 1:3)
R> datapredj$who.PS <- factor(datapredj$who.PS, levels = 1:3)
R> datapredj$prev.resection <- factor(datapredj$prev.resection, levels = 1:2)
R> datapredj[1, ] <- c(1, 2, 1, 1, 1)
R> datapredj[2, ] <- c(2, 2, 1, 1, 1)

We calculate the estimated probabilities of the terminal event given that the patients are alive
at time of prediction 1 year and a horizon varying from 0.5 to 2.5 years. We compare the pre-
dicted risk of death for the patients by plotting and smoothing the estimations. Additionally,
the 95% MC confidence intervals are calculated in order to facilitate the interpretation.

R> pred.joint <- prediction(modLongi, datapredj, datapredj_longi, 1.0,
+ seq(0.5, 2.5, 0.2), MC.sample = 500)
R> plot(pred.joint, conf.bands = TRUE)

The left graph in Figure 8 presents the dynamic predictions for the patients. The patient
with a decreasing tumor size (profile 2) has lower probability of death than the patient with
the tumor size that increases during the treatment (profile 1). However, considering the MC
confidence intervals, this difference is not significant. Thus, in the analyzed example, the
biomarker itself does not influence the risk of death significantly. It is of interest if addition of
the history of the recurrent event would increase the difference between the profiles. For this
purpose, we modify the data datapredj by adding the history of recurrences and calculate
the analogous dynamic predictions using the trivariate model modTrivariate. We assume
that patient 1 experiences the occurrence of new lesions twice and patient 2 only once.
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Figure 8: Predicted probabilities of death for two patients sharing the same characteristics and
different history using information from the biomarker only (on the left) and the biomarker
and recurrent events (on the right). The prediction time is set to 1 year and the horizon
changed from 0.5 to 2.5 years. Dashed lines represent the MC confidence intervals.

R> datapredj <- data.frame(time0 = 0, time1 = 0, new.lesions = 0, id = 0,
+ treatment = 0, age = 0, who.PS = 0, prev.resection = 0)
R> datapredj$treatment <- factor(datapredj$treatment, levels = 1:2)
R> datapredj$age <- factor(datapredj$age, levels = 1:3)
R> datapredj$who.PS <- factor(datapredj$who.PS, levels = 1:3)
R> datapredj$prev.resection <- factor(datapredj$prev.resection,
+ levels = 1:2)
R> datapredj[1, ] <- c(0, 0.4, 1, 1, 2, 1, 1, 1)
R> datapredj[2, ] <- c(0.4, 1.2, 1, 1, 2, 1, 1, 1)
R> datapredj[3, ] <- c(0, 0.5, 1, 2, 2, 1, 1, 1)

Then, we calculate the predictions and plot the results with the 95% MC confidence intervals:

R> pred.joint2 <- prediction(modTrivariate, datapredj, datapredj_longi, 1.0,
+ seq(0.5, 2.5, 0.2), MC.sample = 500)
R> plot(pred.joint2, conf.bands = TRUE)
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The right graph in Figure 8 shows the dynamic predictions of death using the trivariate model.
As in the case of the bivariate model, patient 1 has an increased probability of death compared
to patient 1. Moreover, the difference between the patients is more accentuated than in the
bivariate model which is not able to include information on the history of recurrences. By
considering the information on the appearance of new lesions, the predicted probabilities are
influenced, although the differences between the patients are not significant according to the
MC confidence intervals.

6. Conclusions
Joint models are now a well recognized statistical tool for a complex analysis of correlated data.
They provide unbiased estimates compared to the univariate models. The package frailtypack
provides several functions for applications of joint models for a longitudinal outcome, recurrent
events and a terminal event. Methods of estimation applied in the package produce reliable
results proven by simulations for all the implemented models (Rondeau et al. 2007, Mazroui
et al. 2012, Król et al. 2016). Moreover, each function is furnished with several options for
better adjustment of a model and accompanied by tools helping with the diagnostic of a
model (residuals, individual predictions of random effects) and comparison with other models
(LCV, AIC).
The increasing interest in individual predictions of death in the clinical perspective motivated
the implementation of model-based dynamic predictions. Function prediction allows the
users to calculate the estimated probability of death given the history of a patient. The
history, depending on a model, can be a part of the information on observed recurrences,
complete information on observed recurrences, complete past measurements of a biomarker
or the entire available history of the recurrences and biomarker. Graphical representation of
the predictions is a useful tool for comparing probability of death of patients, e.g., with the
same characteristics but different past of recurrences and/or biomarker.
Further developments of the frailtypack package will concern the extensions of the existent
functions. These extensions will be related to the random effects (distributions, number of
random effects for the longitudinal part), association functions for models with a biomarker
(provide more forms to choose from), stratification (increase the number of strata) and dy-
namic predictions for the joint model with two types of recurrent events and a terminal
event. Moreover, in order to increase the variety of possible application, it will be of interest
to implement left truncation and interval-censoring in the proposed functions.
In the near future, we will develop dynamic predictions of a recurrent event. The conditional
probability of a new recurrence occurring in a finite time horizon given the history of the
observed events and/or the biomarker and given that an individual is alive at the prediction
time, will constitute a useful tool for clinicians, e.g., to explore the chances of developing a
new relapse given a patient’s characteristics.
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A. Summary of the package frailtypack

Figure 9: Package characteristics (version 2.12.3). Blue cross is for option available for a given
type of model in the package on CRAN, orange cross is for option included in the package
but not on CRAN yet. Empty cells mean that an option is not available for a given type of
model. RE = Recurrent event. TE = Terminal event. LO = Longitudinal outcome.
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B. Additional graphics
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Figure 10: Log-hazard ratios for sex for modJoint.gap.timedep model.
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Figure 11: Goodness-of-fit of trivariate model modTrivariate. From the top-left plot: base-
line hazard and survival functions, martingale residuals (the grey line corresponds to a smooth
curve obtained with lowess), Q-Q normal plot of the marginal Cholesky residuals of the
biomarker and the conditional residuals against the fitted values of the biomarker.
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