A numerical technique for solving variable order time fractional differential-integro equations
Résumé
In this manuscripts, we consider the coupled differential-integral equations including the variable-order Caputo fractional operator. To solve numerically these type of equations, we apply the shifted Jacobi-Gauss collocation scheme. Using this numerical method a system of algebraic equations is constructed. We solve this system with a recursive method in the nonlinear case and we solve it in linear case with algebraic formulas. Finally, for the high performance of the suggested method three Examples are illustrated.
Mots clés
Coupled differential-integral equation
Caputo fractional operator
Shifted fractional Jacobi collocation method
Variable-order
Coupled differential-integral equation Caputo fractional operator Shifted fractional Jacobi collocation method Variable-order. Mathematics Subject Classification: 26A33, 34A08
Coupled differential-integral equation
Variable-order. Mathematics Subject Classification: 26A33, 34A08
Fichier principal
Tex.pdf (398.15 Ko)
Télécharger le fichier
1p1.eps (38.46 Ko)
Télécharger le fichier
1p2.eps (37.1 Ko)
Télécharger le fichier
2p1.eps (38.75 Ko)
Télécharger le fichier
2p2.eps (35.54 Ko)
Télécharger le fichier
3p1.eps (36.74 Ko)
Télécharger le fichier
3p2.eps (37.88 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|