A localized Erdős-Kac theorem for $\omega_y(p+a)$
Résumé
Let $\omega_y(n)$ denote the number of distinct prime divisors of $n$ less than $y$. Suppose $y_n$ is an increasing sequence of positive real numbers satisfying $\log y_n = o(\log\log n)$. In this paper, we prove an Erd\"{o}s-Kac theorem for the distribution of $\omega_{y_n}(p+a)$, where $p$ runs over all prime numbers and $a$ is a fixed integer. We also highlight the connection between the distribution of $\omega_y(p-1)$ and Ihara's conjectures on Euler-Kronecker constants.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|