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A localized Erdős-Kac theorem for ωy(p + a)

Anup B. Dixit and M. Ram Murty

Abstract. Let ωy(n) denote the number of distinct prime divisors of n less than y. Suppose yn is an increasing sequence of positive

real numbers satisfying log yn = o(log logn). In this paper, we prove an Erdös-Kac theorem for the distribution of ωyn(p + a),
where p runs over all prime numbers and a is a fixed integer. We also highlight the connection between the distribution of ωy(p−1)
and Ihara’s conjectures on Euler-Kronecker constants.

Keywords. Erdős-Kac Theorem, Euler-Kronecker constant

2010 Mathematics Subject Classification. 11A41, 11B50, 11Y35

1. Introduction

Let ω(n) denote the number of distinct prime divisors of n. The distribution of ω(n) as we vary n,
has been extensively studied in the last century. The average value of ω(n) for n ≤ x can be easily
computed as

1

x
∑
n≤x

ω(n) =
1

x
∑
p≤x
∑
n≤x,
p∣n

1 =
1

x
∑
p≤x

[
x

p
] = log logx +O(1)

as x→∞. In 1917, Hardy and Ramanujan [HaRa17] proved that the normal order of ω(n) is log logn.
More precisely, for any ε > 0, as x→∞, we have

#{n ≤ x ∣n satisfies ∣ω(n) − log logn∣ > ε log logn} = o(x). (1.1)

A simplified proof of the Hardy-Ramanujan result was given by Turán [Tur34] in 1934, by considering
the second moment of ω(n). After Turán’s paper appeared, M. Kac posed the question of finding the
distribution of

ω(n) − log logn
√

log logn
, (1.2)

as n varies and suggested that this distribution was perhaps Gaussian. This led to the famous Erdős-
Kac theorem [ErKa40] which states that for any real numbers a, b

lim
x→∞

1

x
#{n ≤ x ∣a ≤

ω(n) − log logn
√

log logn
≤ b} =

1
√

2π
∫

b

a
e−t

2/2 dt.

Thus, the quantity in (1.2) has the standard normal distribution. The original proof of Erdős and
Kac used Brun’s sieve and the central limit theorem. Alternate proofs of the Erdős-Kac theorem
were given using different methods by Selberg [Sel53], Halberstam [Hal55], Billingsley [Bi69](using
the method of moments which we adopt below) and Shapiro [Sha56].
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Anup B. Dixit and M. Ram Murty, A localized Erdős-Kac theorem for ωy(p + a) 75Anup B. Dixit and M. Ram Murty, A localized Erdős-Kac theorem for ωy(p + a) 75

Localized Erdös-Kac theorem studies the distribution of ωy(n), which denotes the number of
prime divisors of n less than y. This line of study was initiated by the authors in [DiMu20], where
they proved that the distribution of

ωyn(n) − log log yn
√

log log yn
(1.3)

is Gaussian as long as limn→∞
log yn
logn = 0. In this paper, we study the distribution of ωy(p+a), where p

varies over prime numbers and a is some fixed integer. The distribution of ω(p+a) has been carefully
studied in the last century. In fact, Erdős [Erd35] proved that the normal order of ω(p−1) is log log p.
Subsequently Haselgrove [Has51] showed that the normal order of ω(p+a) is log log(p+a). Following
further developments by Prachar [Pra53], Halberstam [Hal55] proved an Erdős-Kac type theorem for
the distribution of ω(p + a). Our goal is to prove a localized Erdős-Kac theorem for the distribution
of ωy(p + a).

Let Ω be the set of positive integers and Pn be the probability measure placing mass 1/π(n) for
each {2,3,5,⋯, pj}, where pj denotes the largest prime ≤ n. We prove the following version of the
Erdős-Kac theorem for ωy(p + a).

Theorem 1.1. Let yn be an increasing sequence of real numbers satisfying yn → ∞ as n → ∞ and
suppose

lim
n→∞

log yn
log log(n)

= 0.

Then, for every pair of real numbers αandβ, we have

lim
n→∞

Pn(p prime: α ≤
ωyn(p + a) − log log yn

√
log log yn

≤ β) =
1

√
2π
∫

β

α
e−t

2/2 dt.

Remark. Note that there is a discrepancy in the rate at which yn tends to infinity in (1.3) and
Theorem 1.1. The heart of the proof of these results lies in exploiting the fact that primes behave like
random variables. The closer it is to behaving like random variables, the better rate one can impose
on yn. This is captured in Lemma 2.3 of the next section. In the setting of all positive integers, one
can say that primes are closer to behaving like random variables as opposed to integers of the form
{p + a}, which is precisely the reason for this discrepancy.

2. A generalized central limit theorem

We elaborate in this section about a general method initiated in [DiMu20] that is applicable in a
wider context. The proof of Theorem 1.1 relies on this method and the method of moments, stated
below (see [Bil79, pp. 312]).

Theorem 2.1. (Method of moments) Let µ be a probability measure on the line having finite
moments

αk = ∫
∞

−∞
xk µ(dx),

for all positive integers k. If the power series

∞
∑
k=1

αkr
k

k!

has a positive radius of convergence, then µ is the only probability measure with moments α1, α2,⋯.
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The second ingredient is the central limit theorem. We state the Lyapunov central limit theorem
below (see [Bil79, pp. 342]).

Theorem 2.2. (Lyapunov central limit theorem) For i ∈ N, let Xi be independent random
variables, with mean µi and variance σ2

i respectively. Denote by s2
n = ∑ni=1 σ

2
i . If for some δ > 0,

the Lyapunov condition

lim
n→∞

1

s2+δ
n

n

∑
i=1

E[∣Xi − µi∣
2+δ] = 0 (2.4)

is satisfied, then we have
1

sn

n

∑
i=1

(Xi − µi)→ N(0,1),

where N(0,1) denotes the standard normal distribution, with mean 0 and variance 1.

The following is of independent interest and follows an idea from our earlier work [DiMu20]. We
first prove a generalized central limit theorem, which will play a crucial role in the proof of Theorem
1.1.

Let f and g be non-decreasing functions on positive integers, such that as n tends to infinity, f(n)
and g(n) tend to infinity and

log f(n) = o(log g(n)).

We prove the following.

Lemma 2.3. For i ∈ N, let Xi be independent random variables, taking bounded values and satisfying
the Lyapunov condition (2.4) with mean µi and variance σ2

i . Let Yi be random variables, not
necessarily independent such that

E[Xi1Xi2⋯Xik] = E[Yi1Yi2⋯Yik] +O (
1

g(n)
) , (2.5)

for ij ≤ f(n) for all 1 ≤ j ≤ k. Then, as n→ +∞ we have,

1

sn

f(n)
∑
i=1

(Yi − µi),

converges to the standard normal distribution N(0,1), where s2
n = ∑

f(n)
i=1 σ2

i .

Proof. Let Sn = ∑j≤f(n)Xj and Tn = ∑j≤f(n) Yj . Denote the mean and variance of Sn as cn and

s2
n respectively. As the Lyapunov condition is satisfied for Sn, by Theorem 2.2, we conclude that

as n tends to infinity, (Sn − cn)/sn converges to the standard normal distribution. Since Xn’s are
bounded, the method of moments applies here and from Theorem 2.1 we have that the r-th moment
of (Sn − cn)/sn converges to the r-th moment of the normal distribution, i.e.,

mr = lim
n→∞

E[(
Sn − cn
sn

)
r

]

for all r, where mr denotes the r-th moment of the standard normal distribution.

Let dn and r2
n denote the mean and variance of Tn respectively. By condition (2.5), we have

cn = dn +O(1) and s2
n = r

2
n +O(1)
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as n tends to infinity. Hence, to prove Theorem 2.3, it suffices to show that as n→∞

E[(
Sn − cn
sn

)
r

] −E[(
Tn − cn
sn

)
r

]→ 0 (*)

for each r. We have

E[Srn] =
r

∑
u=1
∑

′ r!

r1!⋯ru!

1

u!
∑

′′

E[Xi1⋯Xiu], (2.6)

where ∑
′

runs over tuples (r1,⋯, ru) satisfying r1 +⋯+ ru = r and ∑
′′

is over tuples (i1,⋯, iu), where
ij ’s are distinct and not exceeding f(n).

Similarly, we get

E[T rn] =
r

∑
u=1
∑

′ r!

r1!⋯ru!

1

u!
∑

′′

E[Yi1⋯Yiu], (2.7)

where ∑′ and ∑′′ are as in (2.6). By (2.5), the summands in (2.6) and (2.7) differ by O(1/g(n)).
Hence,

∣E[Srn] −E[T rn]∣ ≪
1

g(n)

⎛

⎝
∑

j≤f(n)
1
⎞

⎠

r

= O (
f(n)r

g(n)
) .

Now we have

E[(Sn − cn)
r] =

r

∑
k=0

(
r

k
)E[Skn] (−cn)

r−k.

Similarly, we obtain

E[(Tn − cn)
r] =

r

∑
k=0

(
r

k
)E[T kn ] (−cn)

r−k.

Comparing these expressions, we get

∣E[(Sn − cn)
r] −E[(Tn − cn)

r]∣ ≤
r

∑
k=0

(
r

k
)
f(n)k

g(n)
cr−kn =

(f(n) + cn)
r

g(n)
.

Since Xi’s take bounded values, we have cn = O(f(n)). Using the condition log f(n) = o(log g(n)),
we conclude that

lim
n→∞

(f(n) + cn)
r

g(n)
= 0.

Dividing by srn, we see that (*) follows.

3. A localized Erdős-Kac theorem for ωy(p + a)

Proof of Theorem 1.1. Our method of proof follows Billingsley [Bi69]. For a prime p, let

δp(m) ∶= {
1 if p ∣m
0 otherwise.

Then, we find that
ωy(m) = ∑

p≤y
δp(m).

We now invoke the Siegel-Walfisz theorem [Wal36]. Let π(x; q, a) denote the number of primes
≤ x such that q ≡ a mod p. Then, for q ≤ (logx)N

π(x, q, a) =
li(x)

φ(q)
+O (x exp (−cN

√
logx)) , (3.8)
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where cN > 0 is a constant only depending on N .

Let p1, p2,⋯, pu be a set of distinct primes ≤ y. Using (3.8), as n→ +∞

Pn[q prime, q ≤ n ∣ δp1(q + a) = ⋯ = δpu(q + a) = 1]

=
1

(p1 − 1)(p2 − 1)⋯(pu − 1)
+O (

1

logn
) .

This indicates that under Pn, δpi ’s behave like independent random variables up to a small error.
For a function f supported on primes, define

En[f] =
1

π(n)
∑
p≤n

f(p).

For all primes p, let Xp be independent random variables taking values {0,1}, satisfying

P [Xp = 1] =
1

p − 1
and P [Xp = 0] = 1 −

1

p − 1
.

If p1,⋯, pu are distinct, then we have

P[Xp1 = ⋯ =Xpu = 1] =
1

(p1 − 1)(p2 − 1)⋯(pu − 1)
.

Let Sn = ∑
p≤yn

Xp. The mean and variance of Sn are given by

cn = ∑
p≤yn

1

p − 1
= log log yn +O(1)

and

s2
n = ∑

p≤yn

1

p − 1
(1 −

1

p − 1
) = log log yn +O(1).

Since Xp’s are independent, we have

E[Xp1⋯Xpu] =
1

(p1 − 1)⋯(pu − 1)
.

We also have

En[δp1⋯δpu] =
1

(p1 − 1)⋯(pu − 1)
+O (

1

logn
) .

Hence, we have

E[Xp1⋯Xpu] −En[δp1⋯δpu] = O (
1

logn
)

for all pi ≤ yn. The proof now follows from Lemma 2.3.
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4. Ihara’s conjecture and ωy(p − 1)

There is an intricate connection between the distribution of ωy(p−1) and Ihara’s conjecture on Euler-
Kronecker constants. This was also a motivation for Theorem 1.1, which is certainly an interesting
result in its own respect. In this section, we state Ihara’s conjecture and describe its connection to
ωy(p − 1).

Let K be a number field and ζK(s) be the associated Dedekind zeta-function defined on the
half-plane R(s) > 1 as

ζK(s) ∶= ∑
a⊂OK

1

Nas
= ∏

p⊂OK
(1 −

1

Nps
)
−1

,

where a runs over all non-zero integral ideals and p runs over all non-zero prime ideals of the ring of
integers OK .

The function ζK(s) has an analytic continuation to the whole complex plane except for a simple
pole at s = 1. If the Laurent expansion of ζK(s) near s = 1 is written in the form

ζK(s) =
c−1

s − 1
+ c0 +O(s − 1),

then the Euler-Kronecker constant associated to K, introduced by Ihara [Ih06] is defined as

γK ∶=
c0

c−1
.

One could also view γK as the constant term in the Laurent expansion of the logarithmic derivative
of ζK(s) at s = 1, i.e.,

−
ζ ′K
ζK

(s) =
1

s − 1
− γK +O(s − 1). (4.9)

Note that when K = Q, the Euler-Kronecker constant γQ is nothing but the Euler-Mascheroni constant
γ. In [Ih06], Ihara proved the following bounds for γK using Weil’s explicit formula:

γK ≤ 2 log log
√

∣dK ∣ (under GRH)

γK ≥ − log
√

∣dK ∣ (unconditionally),

where dK denotes the discriminant of K over Q. In [DiMu], we indicated that there is no need to use
the Weil explicit formula method to derive the upper bound and one can deduce an analogous upper
bound directly and prove that

γK ≤ [2 log log ∣dK ∣] (1 +O (
log log log ∣dK ∣

log log ∣dK ∣
)) .

This essentially is the best known conditional upper bound for γK . However, Ihara noticed that these
bounds are much sharper when K = Q(ζm) is a cyclotomic field. Based on numerical computations for
m ≤ 8000, Ihara [Ih10] made the following conjectures. Henceforth, for a cyclotomic field K = Q(ζm),
the associated Euler-Kronecker constant will be denoted by γm.

Conjecture 1. (Ihara) For K = Q(ζm),

a. γm > 0 for all m.
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b. There exist positive constants c1, c2, both ≤ 2, such that for any ε > 0,

(c1 − ε) logm < γm < (c2 + ε) logm

for sufficiently large m. If m is a prime, one can choose c1 = 1/2 and c2 = 3/2.

In 2014, K. Ford, F. Luca and P. Moree [FLM14] showed that the prime k-tuple conjecture, as
formulated by Hardy and Littlewood, is incompatible with Ihara’s conjectures.

A set of positive integers {a1, a2,⋯, ak} is said to be admissible if collection of the form n and
ain + 1, 1 ≤ i ≤ k have no fixed prime factor. The prime k-tuple conjecture states that for such an
admissible set, the number of primes n ≤ x for which ain + 1 are all primes is ≫ x/(logx)k+1.

In fact, Ford, Luca and Moree showed that this conjecture implies γq < 0 infinitely often. By
constructing a nice admissible set, they also explicitly produced a prime, namely q = 964477901, for
which

γq = −0.18237⋯

Furthermore, under the prime k-tuple conjecture, they showed that

lim inf
q→∞

γq

log q
= −∞.

In spite of this, it would seem that Conjecture 1(b) is not very far from the truth. In support of this,
V. K. Murty [Ku11] proved that

∑
q∼Q, q prime

∣γq ∣ ≪ π∗(Q) logQ,

where q ∼ Q means Q ≤ q ≤ 2Q and π∗(Q) denotes the number of primes in this interval. E. Fouvry
[Fou13] generalized this to

1

Q
∑
m∼Q

γm = logQ +O(log logQ),

where m runs over all positive integers in the interval and Q ≥ 3. Both these results are quite deep
and show that Conjecture 1(b) holds on average. In fact, assuming the Elliott-Halberstam conjecture,
in [DiMu], we prove that

∑
q∼Q, q prime

∣γq − log q∣ = o(Q).

A similar result under the Elliot-Halberstam conjecture was also recently obtained by Hong, Ono and
Zhang [HOZ], i.e.,

1

Q
∑
q∼Q

∣γq − log q∣ = o(logQ).

All the above results indicate that Conjecture 1(b) should fail very rarely, but perhaps infinitely often.
However, it is still not known unconditionally whether γm < 0 for infinitely many positive integers m.
In attempting to tackle this problem, we noticed that it is intricately connected to understanding the
distribution of ωy(p − 1). We discuss this connection below.

In [DiMu, Lemma 9.1], we prove that for any fixed δ > 0, there is an x0(δ) > 0 such that for any
x > x0(δ) and any prime q satisfying logx > qδ,

γq = −(q − 1) ∑
n≡1 mod q

n≤x

Λ(n)

n
+ logx −

log q

q − 1
+O ((logx)

1
2
+ 1
δ exp (−c

√
logx)) . (4.10)
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Note that the summation on the right hand side is bounded over higher prime powers. Indeed, for
any x > 1 not a prime power, and noting that fp is the order of p (mod q), we have

S(q, x) ∶= (q − 1) ∑
n≡1 mod q

n≤x

Λ(n)

n
− ∑
p≡1 mod q

p≤x

(q − 1) log p

p

= ∑
p≡1 mod q

∑
l≥2
pl≤x

(q − 1) log p

pl
+ ∑
p≢1 mod q

∑
l≥1
pl≤x

(q − 1) log p

plfp

≤ ∑
p≡1 mod q

p≤x

(q − 1) log p

p(p − 1)
+ ∑
p≢1 mod q

p≤x

(q − 1) log p

(pfp − 1)
+O (

log q

q
) .

Let us note that in the last sum, fp ≥ 2 because p ≢ 1 mod q. Since

∑
p≡1 mod q

p≤x

log p

p(p − 1)
≤

∞
∑
t=1

log qt

(qt + 1)qt
≪

log q

q2
,

the first term on the right hand side is O((log q)/q), where the implied constant is independent of q.
For fp > 1, we have q ∣ (pfp−1) = (p−1)(pfp−1+pfp−2+⋯+1). Since q ∤ (p−1), we get q ∣ (pfp−1)/(p−1)
and hence q ≤ pfp/(p − 1) ≤ 2pfp−1. Thus, the third term on the right hand side is

∑
p≢1 mod q

p≤x

(q − 1) log p

pfp−1 (pfp − 1)
≪

∞
∑
n=1

logn

n2
≪ 1.

Hence, we have
S(q, x) = O(1).

With this observation, applying (4.10) and summing over primes q up to y, we obtain

∑
q≤y

γq

q − 1
= logx∑

q≤y

1

q − 1
−∑
q≤y

∑
p≤x

p≡1 mod q

log p

p
+O(log log y)

= logx∑
q≤y

1

q − 1
−∑
p≤x

log p

p
ωy(p − 1) +O(log log y). (4.11)

Recall that,

∑
q≤y

1

q − 1
= log log y +O(1),

with the error term ≤ 2. Now, using Chebychev’s theorem

∑
p≤x

log p

p
= logx +O(1),

in equation (4.11), we obtain for any x > 1 not a prime power,

∑
q≤y

γq

q − 1
= −∑

p≤x

log p

p
(ωy(p − 1) − log log y) + c logx +O(log log y),

where c < 2. Hence, it is clear that the oscillation in ωy(p−1)−log log y holds the key to the distribution
of γq. For instance, to show that γq < 0 infinitely often, it suffices to prove that ωy(p − 1) − log log y
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oscillates in such a way that the first summand in the above sum is < −2 logx, infinitely often. On
the other hand, if γq > 0 for all q sufficiently large, above sum should tally with [DiMu, Theorem 1.4].

Remark. This idea can also be used in the study of γm, when m is not a prime. In this regard,
Ihara’s Conjecture 1(a) asserts that γm > 0. Thus, to show that Ihara’s conjecture fails infinitely
often, one would like to show that there are infinitely many integers m such that γm < 0. Using the
explicit formula obtained by Gun, Murty and Rath in [GMR18], we obtain

∑
m≤y

γm
φ(m)

= logx ∑
m≤y

1

φ(m)
− ∑
m≤y

∑
p≤x

p≡1 mod m

log p

p
+O(log y)

= logx ∑
m≤y

1

φ(m)
−∑
p≤x

log p

p
dy(p − 1) +O(log y),

where dy(n) counts the number of divisors of n less than y. We hope that this treatment would
provide an alternate approach towards this problem.

5. Concluding Remarks

The above method can be used to establish a localized Erdős-Kac theorem for more general functions
of the form ωy(f(p)). In the proof above, a key role was played by the Siegel-Walfisz theorem. In
fact, for a function f , if we can write

∑
p≤n

f(p)≡0 mod q1⋯qu

1 = (main term) + (error term) ,

for all primes q1,⋯, qu sufficiently smaller than n, we can get a localized Erdős-Kac theorem for
ωy(f(p)), provided the error term is sufficiently small.

Acknowledgement. We thank the referee for helpful comments on an earlier version of this paper.
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