The importance Markov Chain - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2024

The importance Markov Chain

Résumé

The Importance Markov chain is a new algorithm bridging the gap between rejection sampling and importance sampling, moving from one to the other using a tuning parameter. Based on a modified sample of an auxiliary Markov chain targeting an auxiliary target (typically with a MCMC kernel), the Importance Markov chain amounts to construct an extended Markov chain where the marginal distribution of the first component converges to the target distribution. We obtain the geometric ergodicity of this extended kernel, under mild assumptions on the auxiliary kernel. As a typical example, the auxiliary target can be chosen as a tempered version of the target, and the algorithm then allows to explore more easily multimodal distributions. A Law of Large Numbers and a Central limit theorem are also obtained. Computationally, the algorithm is easy to implement and can use preexisting librairies to simulate the auxiliary chain.
Fichier principal
Vignette du fichier
arxiv3_main.pdf (767.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03912132 , version 1 (26-02-2024)

Identifiants

Citer

Charly Andral, Randal Douc, Hugo Marival, Christian Robert. The importance Markov Chain. Stochastic Processes and their Applications, 2024, 171, pp.2-26. ⟨10.1016/j.spa.2024.104316⟩. ⟨hal-03912132⟩
82 Consultations
73 Téléchargements

Altmetric

Partager

More