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Abstract

The Importance Markov chain is a novel algorithm bridging the gap between re-
jection sampling and importance sampling, moving from one to the other through a
tuning parameter. Based on a modified sample of an instrumental Markov chain tar-
geting an instrumental distribution (typically via a MCMC kernel), the Importance
Markov chain produces an extended Markov chain where the marginal distribution of
the first component converges to the target distribution. For example, when targeting
a multimodal distribution, the instrumental distribution can be chosen as a tempered
version of the target which allows the algorithm to explore its modes more efficiently.
We obtain a Law of Large Numbers and a Central Limit Theorem as well as geometric
ergodicity for this extended kernel under mild assumptions on the instrumental kernel.
Computationally, the algorithm is easy to implement and preexisting libraries can be
used to sample from the instrumental distribution.

Keywords— Markov chain Monte Carlo,importance sampling, Monte Carlo methods, ergod-
icity, regeneration

1 Introduction
In Monte Carlo methods [1] and in particular in computational Bayesian statistics, sampling is
used to construct estimates for quantities depending on problem-specific distributions. As a first
approach, one can simulate independently according to another distribution, called the instru-
mental distribution, and use this sample to build an estimate of the quantity of interest (see,
e.g., [2] for a general introduction to Monte Carlo methods). The most well-known example is
the importance sampling (IS) technique [3], which produces a weighted sample to approximate
π(f) =

∫
f(x)π(x)dx where π is a given distribution (by an abuse of notation, we also denote π its

density with respect to a dominating measure dx). Importance sampling is based on rewriting the
quantity of interest as π(f) =

∫
f(x)π(x)π̃(x) π̃(x)dx for any density π̃ that dominates π. Then, π(f)

can be estimated by sampling independently X1, X2, · · · from the instrumental distribution π̃ and
by returning the estimate Ĩ = n−1

∑n
i=1

π(Xi)
π̃(Xi)

f(Xi). It is fundamental to recall here that impor-
tance sampling does not deliver a sample distributed from π. In contrast, rejection sampling allows
to construct a perfect sample according to π but at the cost that a portion of the sampled points
are rejected. To be more specific, if we assume that π ⩽Mπ̃ for some constant M , then we sample
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independently X1, X2, · · · ∼iid π̃ and U1, U2, · · · ∼iid U(0, 1) until the condition Ui <
π(Xi)
Mπ̃(Xi)

is
met. For the exit index i, setting Y = Xi, it turns out that the law of the accepted candidate Y
is then exactly π (see [4]).

Another approach is proposed by Markov Chain Monte Carlo (MCMC) methods: instead of
constructing an independent and identically distributed (iid) sample, an MCMC algorithm provides
a Markov chain (thus a dependent sample), that converges to the distribution of interest. The most
common MCMC algorithm is the Metropolis-Hastings algorithm [5, 6]. Note that MCMC and IS
are not incompatible, and the idea of using a Markov chain for the instrumental distribution
appeared as soon as 1963 [7], and is mentioned by Hasting in [6]. More recently, many algorithms
combine IS and MCMC [8, 9, 10].

The Importance Markov Chain (IMC) algorithm uses those ideas in a novel way. Indeed, while
most MCMC algorithms try to adjust the proposals to explore the support of the target distribution
efficiently, the IMC algorithm allows to target a more friendly instrumental distribution which is
then transformed into the initial target with IS. More specifically, the instrumental Markov chain
is transformed into an augmented Markov chain targetting the distribution of interest on its first
marginal. This is different from classic subsampling or thinning of the chain that preserve the
distribution [11, 12, 13]. The instrumental distribution is considered as a given. Indeed, our
aim in this paper is to establish properties that are preserved by our transformation for a given
instrumental distribution—namely a law of large numbers (LLN), a Central Limit Theorem (CLT)
and geometric ergodicity.

Of course, adding a resampling step to a classical importance sampling based on a π̃-sample
(X̃1, . . . , X̃n) may lead to a random variable with distribution π̂n close to the target distribution π.
But the total variation norm between the two distributions π̂n and π is typically of order O(1/n)
whereas our Importance Markov chain, under mild assumptions, is geometrically ergodic, showing
that the decrease in the total variation norm may be geometrically fast with respect to n.

The Importance Markov chain, in the specific setting with independent proposals, is related to
previous works on Self Regenerative Markov chains [14, 15] and on Dynamic Weighting Monte Carlo
[16, 17]. It was developed in the dependent case in [18] but the framework there was restrained to
a semi-Markov formulation.

The article is organized as follows:

1. We first define the Rejection Markov chain, a generalization of the rejection sampling in a
context of MCMC sampling. This part allows us to define the rejection kernel used further
on, and provides some intuition for the algorithm in the specific case where there exists a
known constant M such that the density ratio π

Mπ̃ is upper-bounded by 1.

2. We then generalize the Rejection Markov chain using repetitions to allow the density ratio
π
Mπ̃ to be greater than 1, thereby relieving the constraint of the first part. The idea is similar
to IS as the number of repetitions is proportional to the density ratio, to the exceptions
that: (1) the number of repetitions is a random integer and the constraint is simply that its
expectation is proportional to the density ratio; (2) the output is a true random sample and
not a weighted one as in classical IS. We use an extended space to construct an augmented
Markov chain composed of repetitions of the instrumental chain as its first component and
an integer as its second, keeping track of the remaining number of remaining repetitions.
We then proceed to establish some theoretical properties, under mild assumptions, notably
a law of large numbers, a Central Limit Theorem, a geometric ergodicity property and some
uniqueness results.

3. Finally, we illustrate the IMC on two synthetic examples. The first is a multidimensional
mixture of Gaussian distributions, using as instrumental distribution a tempered version of
the target, and a NUTS kernel. The second focuses on an i.i.d. sample from the instrumental
distribution, defined by a normalizing flow trained to approximate a multimodal target up
to dimension 25.
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2 Notations
Let us denote R+ = [0,∞), N = {1, 2, ...} and N0 = N ∪ {0}. We use the standard convention
that

∏n
k=m = 1 if m > n. For integers k ⩽ ℓ, the notation [k : ℓ] stands for the set {k, . . . , ℓ}

and in case where k > ℓ, [k : ℓ] is the empty set. Moreover, uk:ℓ = (uk, uk+1, . . . , uℓ) for all k ⩽ ℓ
and uk:∞ = (uℓ)ℓ⩾k. If a space X is equipped with a σ-field X , we denote by F+(X) the set of all
nonnegative measurable functions with respect to X , that is, we make implicit the dependence on
the σ-field X in the notation F+(X). Similarly Fb(X) is the set of all bounded measurable functions
on X and Fb+(X) = Fb(X)∩ F+(X). Moreover, we denote by M1(X) the set of probability measures
on (X,X ). For a non-negative real number x, we denote the floor function by ⌊x⌋ and the fractional
part by ⟨x⟩ and hence x = ⌊x⌋+ ⟨x⟩. The positive part of x is written (x)+.

If P,Q are Markov kernels on X×X , h a measurable function on X, ν a measure on (X,X ) we
define:

• Ph(x) :=
∫
X
P (x, dy)h(y), for x ∈ X,

• νP (A) :=
∫
X
ν(dx)P (x,A) for A ∈ X ,

• PQ(x,A) :=
∫
X
P (x, dy)Q(y,A) for x ∈ X and A ∈ X ,

• ν(h) :=
∫
X
h(x)ν(dx), also denoted νh if the context is clear.

Furthermore, we simply denote P 0 := I and for k ∈ N, P k := PP k−1 = P k−1P . Last, a kernel
P is said sub-Markovian if for all x ∈ X, P (x,X) ⩽ 1.

3 The Rejection Markov chain
Rejection sampling is a standard in Monte Carlo simulation. In this algorithm, we create samples
distributed according to the target π by subsampling among a batch of iid random variables
distributed according to the instrumental π̃.

Our Markov rejection algorithm closely resembles the rejection algorithm except that we no
longer need to subsample from an i.i.d. batch of random variables exactly distributed according
to π̃, which can be restrictive. Instead, we rely on a Markov chain targeting π̃, i.e. generated by
a Markov kernel with invariant probability π̃, which can be achieved for example via a Metropolis
Hastings algorithm. Note that it is sufficient to know π̃ up to a normalizing constant. Subsampling
is done by accepting each candidate sample X with probability ρ(X) where ρ : X→ [0, 1] is a well-
chosen function.

3.1 Formal definition
Let (X,X ) be a measurable space. For a given Markov kernel Q on X × X , we denote by PQξ the
probability measure induced on (XN0 ,X⊗N0) by the Markov kernel Q and the initial distribution ξ,
and by EQξ the associated expectation operator. If ξ = δx for some x ∈ X, we simply use EQx := EQδx .
On (XN0 ,X⊗N0), we define Xℓ as the projection on ℓth-component, i.e., for any w = (wℓ)ℓ∈N0

∈ XN0 ,
Xℓ(w) = wℓ, and θ the shift operator on XN0 such that θ : (w0, w1, ...) 7→ (w1, w2, ...). For any
measurable function ρ : X→ [0, 1], the rejection kernel S is defined as follows:

Sh(x) =

∞∑
k=1

EQx

[
h(Xk)ρ(Xk)

k−1∏
i=1

(1− ρ(Xi))

]
, (1)

where x ∈ X and h is any nonnegative measurable function on (X,X ). A transition according to
S is obtained by generating a Markov chain {Xk : k ∈ N0} according to the kernel Q and by
selecting the first accepted candidate among {Xk : k ∈ N0} with the success probability sequence
{ρ(Xk) : k ∈ N0}. More precisely, define Y = X × [0, 1] and Y = X ⊗ B([0, 1]) and let G be the
Markov kernel on Y × Y such that for all y = (x, u) ∈ Y and all A ∈ Y,

G(y,A) =

∫
Y

1A(x
′, u′)Q(x, dx′)du′ . (2)
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Therefore if Y ′ = (X ′, U ′) ∼ G(y, ·), then X ′ and U ′ are independent and marginally, X ′ ∼ Q(x, ·)
and U ′ ∼ U(0, 1). For the Markov chain {Yk = (Xk, Uk) : k ∈ N0} with Markov kernel G, define
the first return time to the set D = {y = (x, u) ∈ Y : u ⩽ ρ(x)} by

σD = inf {k ⩾ 1 : Yk ∈ D} . (3)

Then, Sh(x) = EGδx⊗γ [1{σD<∞}h(XσD
)] where γ is any probability measure on [0, 1], showing on

the side that S1X(x) = PGδx⊗γ(σD <∞) ⩽ 1, which implies that the kernel S is sub-Markovian.

Proposition 1. Let Q be a Markov kernel on X×X with invariant probability measure µ ∈ M1(X)
and let ρ : X → [0, 1] be a measurable function. Provided that µ(ρ) > 0, the probability measure ν
defined by

ν(A) =

∫
A
ρ(x)µ(dx)∫

X
ρ(x)µ(dx)

, A ∈ X , (4)

is invariant with respect to S, i.e. νS = ν.

Proof. Define ρ̄ := 1− ρ. For any bounded function h ∈ F+(X) and any x ∈ X,

Sh(x) = EQx

[ ∞∑
k=1

ρ(Xk)h(Xk)

k−1∏
i=1

ρ̄(Xi)

]

= EQx [ρ(X1)h(X1)] + EQx

ρ̄(X1)

∞∑
ℓ=1

ρ(Xℓ+1)h(Xℓ+1)

ℓ−1∏
j=1

ρ̄(Xj+1)


= Q(ρh)(x) +Q(ρ̄Sh)(x) . (5)

Integrating with respect to µ yields

µSh = µQ(ρh) + µQ(ρ̄Sh) = µ(ρh) + µ(ρ̄Sh) ,

where we used µQ = µ in the last equality. Since h is bounded, µSh < ∞. Retrieving µSh on
both sides, we finally obtain µ(ρSh) = µ(ρh). Hence ν(Sh) = ν(h).

3.2 Application to sampling
Let π ∈ M1(X) be the target distribution and denote by π̃ ∈ M1(X) an instrumental distribution.
As for rejection or importance sampling, the goal is to produce a sample targeting π using a sample
of π̃, here obtained by using a Markov kernel Q. We denote {X̃i : i ∈ N0} a Markov chain with
transition kernel Q and make the following hypothesis on Q :

(H1) The Markov kernel Q admits π̃ as invariant probability measure.

We also need the following domination assumption, which is compulsory for rejection sampling.

(Hrej) There exists M > 0 such that π ⩽Mπ̃.

Then, we can use (4) to define ρ such that π is the invariant probability measure for the Markov
kernel S. Indeed, if µ = π̃, we get ν = π in (4) by defining

ρ ∝ dπ

dπ̃
.

If in addition, we want ρ to take values in [0, 1], we may pick

ρ(x) =
1

M

dπ

dπ̃
(x) , (6)

for π̃-almost all x ∈ X. From Proposition 1, we deduce immediately:

Theorem 2. Assume (H1) and (Hrej) and take ρ as defined in (6). Then S is π-invariant.

Note that standard rejection sampling consists in applying a transition according to S to the
particular case where Q(x, ·) = π̃(·), µ = π̃, ρ as in (6) and hence ν = π.
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4 The Importance Markov chain
As for classical rejection sampling, the Markov chain rejection sampling suffers from the drawback
that (Hrej) may be satisfied only with a prohibitively large M (or worse, (Hrej) may not even be
satisfied). The sampling is in that case inefficient since the average acceptance ratio is equal to
1/M . Actually, ρ can be interpreted in the following way: given X̃k−1, we draw a new point
X̃k ∈ X according to Q and insert Ñk ∼ Ber(ρ(X̃k)) replica in current sample. Therefore ρ(X̃k) =
E[Ñk|X̃k]. This can be viewed as the equivalent of the weight of X̃k in a importance sampling
context.

The idea with ϱ : X → R+ is similar but we now offer to replicate X̃k a random number of
times Ñk where the conditional expectation of the random integer Ñk ∈ N0 w.r.t. X̃k is equal to
ϱ(X̃k), as sketched in Algorithm 1. This relates to [15] where the author conditions the weights of
his estimate to be nonnegative integers.

4.1 The extended Markov chain
Let π and π̃ be two probability measures on (X,X ) and let κ be a positive real number. Assume
that π is dominated by π̃ and let ϱκ : X→ R+ be a measurable function such that

ϱκ(x) = κ
dπ

dπ̃
(x) , (7)

for π̃-almost all x ∈ X. For κ = 1 let us simply denote

ϱ := ϱ1. (8)

Let R̃ be a Markov kernel on X×P(N0) and by an abuse of notation, let us write R̃(x, n) = R̃(x, {n})
for any (x, n) ∈ X×N0. The distribution R̃(X̃k, ·) will be used to draw the number Ñk of replications
of X̃k under the unbiasedness assumption:

(H2) For all x ∈ X,
∞∑
n=0

R̃(x, n)n = ϱκ(x) .

In this paper, we will face two cases : (1) R̃ and ϱκ are available in closed form up to a normalizing
constant, (2) R̃ can be generated under (H2) without the explicit knowledge of ϱκ. Furthermore,
κ can be chosen arbitrarily even though we will discuss some interesting choices later on (see
Section 4.6.2 and Section 6.1.2).

Algorithm 1
1: X = [ ]
2: Set an arbitrary X̃0.
3: for k ← 1 to n do
4: Draw X̃k ∼ Q(X̃k−1, ·) and Ñk ∼ R̃(X̃k, ·)
5: Append Ñk replicas of X̃k to X
6: end for
7: output: X

As seen below, if the Markov kernel Q is π̃-invariant, then the output sequence X = (X0, X1, . . .)
of Algorithm 1 targets π. However, X is not a Markov chain per se, and in order to study its er-
godic properties, we need add a second component N to the sequence X so that the augmented
sequence (X,N) becomes a Markov chain. This is done by rewriting Algorithm 1 as Algorithm 2.

Let us describe the transition of the extended Markov chain {(Xℓ, Nℓ) : ℓ ∈ N0}. From
Algorithm 2, we can see that (Xℓ, Nℓ) is updated according to two different moves. Either we are
already inside the while loop described in lines 6-9 of Algorithm 2, in which case, Nℓ ⩾ 1 and the
update is simply (Xℓ+1, Nℓ+1) = (Xℓ, Nℓ − 1), or we are outside the while loop, in which case,
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Algorithm 2 Importance Markov chain (IMC)
1: ℓ← 0
2: Set an arbitrary X̃0.
3: for k ← 1 to n do
4: Draw X̃k ∼ Q(X̃k−1, ·) and Ñk ∼ R̃(X̃k, ·)
5: Set Nℓ = Ñk

6: while Nℓ ⩾ 1 do
7: Set (Xℓ, Nℓ)← (X̃k, Nℓ − 1)
8: Set ℓ← ℓ+ 1
9: end while

10: end for

Nℓ = 0 and Xℓ = X̃k for some k ∈ N0. Then, the update of (Xℓ, Nℓ) happens when we enter again
the while loop, in which case (Xℓ+1, Nℓ+1) = (X̃T , ÑT − 1) where T = inf

{
n > k : Ñn ̸= 0

}
.

The associated Markov kernel P on (X × N0) × (X ⊗ P(N0)) is then defined by: for all h ∈
F+(X× N0),

Ph(x, n) = 1{n⩾1}h(x, n− 1) + 1{n=0} ·
∞∑

k,ℓ=1

EQx

[
h(Xk, ℓ− 1)R̃(Xk, ℓ)

k−1∏
i=1

R̃(Xi, 0)

]
. (9)

To simplify this expression, let us introduce additional notation. Write ρR̃(x) = R̃(x, [1 :∞)) and
let S be the Markov kernel on X×X defined by

Sf(x) =

∞∑
k=1

EQx

[
f(Xk)ρR̃(Xk)

k−1∏
i=1

(1− ρR̃(Xi))

]
, (10)

for f ∈ F+(X).
The kernel S is of the same form as in (1) except that ρ is now replaced by ρR̃. Note that

by construction, ρR̃ is [0, 1]-valued and ρR̃(x) can be interpreted as the probability for an X̃i = x

drawn from Q to be accepted for the chain (Xℓ), in which case, we keep at least one replica of X̃i.
Then, the extended Markov kernel P writes, for h ∈ F+(X× N0):

Ph(x, n) = 1{n⩾1}h(x, n− 1) + 1{n=0}

∞∑
n′=0

∫
X

S(x, dx′)R(x′, n′)h(x′, n′) , (11)

where R is the Markov kernel on X× P(N0) defined by

R(x, n) := R̃(x, n+ 1)/ρR̃(x) , (x, n) ∈ X× N0 , (12)

and where we, again, make the abuse of notation R(x, n) := R(x, {n}).
Note that (9) and (11) give two different but equivalent decompositions of P , for the sampling

step (when n = 0). In (9), we sample X̃i according to Q and then use R̃(X̃i, ·) to draw a number
of replicas Ñi, until it is larger than 1, in which case we retain X̃i and Ñi − 1, the number of
remaining replicas. In (11), we bypass the rejection step by drawing directly a new accepted point
Xi using S and then the number of remaining replicas from R(Xi, ·), which corresponds to the law
of Ñ − 1 conditionnally on {Ñ ⩾ 1} when Ñ ∼ R̃(Xi, ·).

Remark 1. The unbiasedness assumption (H2) is closely related to the notion of correctly weighted
density developed in [16, 17]. Write π̂(dxdn) = π̃(dx)R̃(x,dn) a joint distribution on X×N0. Then,
under (H2),

∑
n∈N π̃(dx)R̃(x, n)n = κπ(dx) so π̂ is correctly weighted. And by construction, the

kernel Q(x, dy)R̃(y, dn) that generates the samples (X̃i, Ñi)i∈N of Algorithm 1 admits π̂ as an
invariant probability distribution (see Lemma 6).

6



Remark 2. While importance sampling requires exact simulations from π̃, the IMC method only
relies on a Markov kernel Q targetting π̃. This allows us to extend the set of usable instrumental
distributions.

Remark 3. Perhaps surprisingly, Metropolis-Hastings (MH) algorithms can be cast into the frame-
work of importance Markov chains. Indeed, take a MH algorithm with proposition kernel A(x, dy)
and acceptance rate α(x, y), targeting π. Following the framework of [19], the accepted points {X̃i :
i ∈ N0} form a Markov chain with Markov kernel Q(x, dy) proportional to α(x, y)A(x, dy). Before
moving to a new accepted point, X̃i = x is repeated a random number of times Ñi that follows (con-
ditionally on X̃i = x) a geometric distribution with success probability p(x) :=

∫
X
α(x, y)A(x, dy).

Then it can be shown that Q is π̃-invariant where π̃(dx) ∝ p(x)π(dx), hence (H1) holds. Define
R̃(x, ·) as the geometric distribution with parameter p(x). Choosing κ = 1/

∫
X
p(x)π(dx), ϱκ defined

in (7) writes ϱκ(x) = 1/p(x), hence (H2) holds. Then, with these choices of Q and R̃, (X̃i, Ñi)
corresponds to the output of the IMC algorithm defined in Algorithm 1.

4.2 Invariant probability measure

4.2.1 Existence

Let π̄ be the measure on X× N0 defined by: for any h ∈ F+(X× N0),

π̄(h) = κ−1
∞∑
n=1

∫
X

π̃(dx)R̃(x, n)

n−1∑
k=0

h(x, k)

= κ−1
∞∑
ℓ=0

∫
X

π̃(dx)ρR̃(x)R(x, ℓ)

ℓ∑
k=0

h(x, k) , (13)

where the last equality follows from (12) and the change of variable ℓ = n− 1.

Proposition 3. Assume (H1) and (H2). Let P be the Markov kernel defined in (11) and let π̄ be
the probability measure on X× N0 defined in (13). Then,

(i) the Markov kernel P is π̄-invariant,

(ii) the marginal of π̄ on the first component is π.

Proof. We start with (i). Let h ∈ F+(X × N0). Interchanging the sum in ℓ and the sum in k in
(13) yields

π̄(h) = κ−1
∞∑
k=0

∫
X

π̃(dx)ρR̃(x)R(x, [k :∞))h(x, k) . (14)

We now replace h by Ph and combine with the expression of Ph given in (11), we then obtain

π̄(Ph) = κ−1
∞∑
k=1

∫
X

π̃(dx)ρR̃(x)R(x, [k :∞))h(x, k − 1) + κ−1
∞∑
n′=0

∫
X

π̃(dx)ρR̃(x)

∫
X

S(x,dx′)R(x′, n′)h(x′, n′)

= κ−1
∞∑
n′=0

∫
X

π̃(dx)ρR̃(x)R(x, [n′ + 1 :∞))h(x, n′) + κ−1
∞∑
n′=0

∫
X

π̃(dx)ρR̃(x)R(x, n′)h(x, n′) ,

where the last equality follows (a) from the change of variable n′ = k − 1 for the first term of the
rhs and (b) from Proposition 1 applied, under (H1), to ρ = ρR̃ and µ = π̃ for the second term.
Noting that R(x, [n′ + 1 :∞)) +R(x, n′) = R(x, [n′ :∞)), we finally get

π̄(Ph) = κ−1
∞∑
n′=0

∫
X

π̃(dx)ρR̃(x)R(x, [n′ :∞))h(x, n′) = π̄(h) , (15)

where (14) is used to obtain the last equality.
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We now turn to (ii). For any A ∈ X , applying (13) with h(x, k) = 1A(x) yields under (H2)

π̄(A× N0) = κ−1

∫
X

π̃(dx)

( ∞∑
n=1

R̃(x, n)n

)
1A(x) = κ−1π̃(ϱκ1A) = π(A) . (16)

4.3 Uniqueness
Proposition 4. Assume (H1) and (H2). If any invariant measure for Q is proportional to π̃
(defined in (H1)), then π̄ defined in (13) is the unique invariant probability measure for P .

Proof. See A.

The uniqueness of the invariant probability measure π̄ for P , as stated in Theorem 4 allows
to obtain the Birkhoff ergodic theorem ([20, Theorem 5.2.9]): for any measurable function g :
X× N0 → R such that π̄(|g|) <∞,

lim
n→∞

n−1
n−1∑
k=0

g(Xk, Nk) = π̄(g), PPπ̄ − a.s. (17)

Although reassuring, the law of large numbers holds PPπ̄ − a.s., i.e. the initial distribution is
set to be the invariant probability measure π̄, which is not realistic from a practical point of
view. Consequently, we will now turn to conditions under which the law of large numbers holds,
irrespective to the initial distribution.

4.4 Law of large numbers
To establish a strong law of large numbers for the kernel P , we rely on the single hypothesis that
the instrumental kernel Q satisfies a law of large numbers. More precisely if the instrumental kernel
Q satisfies a law of large numbers for any initial distribution ξ ∈ M1(X), Theorem 5 will show that
it is also the case for the importance Markov kernel P .

(Hlln) For every ξ ∈ M1(X) and measurable function g : X→ R such that π̃(|g|) <∞,

lim
n→∞

n−1
n−1∑
k=0

g(X̃k) = π̃(g), PQξ − a.s.

Theorem 5. Assume (H1) and (Hlln). Then, for every ξ ∈ M1(X × N0) and measurable function
g : X× N0 → R such that π̄(|g|) <∞,

lim
n→∞

n−1
n−1∑
k=0

g(Xk, Nk) = π̄(g), PPξ − a.s. (18)

Proof. The proof relies on [21, Proposition 3.5], which relates (Hlln) to a property on the harmonic
functions for Q (i.e. measurable functions h such that Qh = h). More precisely, it states that for
any Markov kernel Q satisfying π̃Q = π̃ for some π̃ ∈ M1(X), (Hlln) is equivalent to (Hhrm) defined
as follows:

(Hhrm) Any bounded harmonic function h : X→ R for Q is constant.

Hence, proving Theorem 5 is equivalent to showing that any bounded harmonic function for P is
constant.

Let h̄ : X× N0 → R be a bounded harmonic function for P . Then for n > 0,

h̄(x, n) = Ph̄(x, n) = h̄(x, n− 1), (19)
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where the last equality comes from (11). Thus h̄ does not depend on its second argument and we
can define a measurable function h : X→ R such that

h(x) = h̄(x, n) (20)

for all (x, n) ∈ X× N0. Now,

h(x) = h̄(x, 0) = Ph̄(x, 0) =

∫
X×N0

S(x, dx′)R(x′, dn)h̄(x, n) = Sh(x)

using the expression of P in (11) as well as (20). From the recursive expression for S in (5) we
have:

h(x) = Sh(x)

= Q(ρh)(x) +Q((1− ρ)Sh)(x)

= Q(ρh)(x) +Q((1− ρ)h)(x)

= Qh(x).

Therefore h is harmonic for Q, and since it is also bounded, (Hlln) implies that it is constant. Then
(20) shows that h̄ is constant which concludes the proof.

4.5 Central Limit Theorem
Let us now establish a Central Limit Theorem (CLT) associated to the Importance Markov chain
for a particular function h, based on a similar hypothesis on the instrumental kernel Q with the
function ϱh. More precisely, the Central Limit Theorem for Q stems from the existence of a solution
to the Poisson equation for this kernel. This is a quite common sufficient condition for a CLT, and
although other conditions exist (references are given for example in [20, Chap 21]), we choose this
one for its simplicity in the proofs. To be more specific, we are interested in measurable functions
h : X→ R such that if we define

h0 := h− πh, (21)

the following condition holds:

(HPoiss) The Poisson equation associated to ϱh0 for the kernel Q on X admits a π̃-square integrable
solution H, i.e. for all x ∈ X,

H(x)−QH(x) = ϱh0(x) and π̃H2 <∞.

In addition,
∫
X×N0

n2h(x)2π̃(dx)R̃(x, dn) <∞.

Remark 4. Note that π̃(ϱh0) = 0 since ϱ = dπ
dπ̃ , hence this term does not appear in the Poisson

equation.

Under (HPoiss), [20, Theorem 21.2.5] ensures that the Markov chain (X̃i) generated by the kernel
Q satisfies a Central Limit Theorem for the function ϱh0 :

1√
n

n∑
i=1

ϱ(X̃i)h0(X̃i)
PQ
π̃ −law
⇝ N (0, σ̃2(ϱh0)), (22)

where σ̃2(ϱh0) = 2π̃ (ϱh0H) − π̃((ϱh0)
2). Lemma 11 of A.3 combined with (Hlln) then extends

the weak convergence under PQπ̃ in the equation above to a weak convergence under PQξ for any
ξ ∈ M1(X). We can now state the CLT for the Importance Markov chain in a formal manner.

Theorem 6. Assume (H1), (H2), (Hlln) and let h : X→ R be a measurable function that satisfies
(HPoiss). Then there exists a constant σ2(h) > 0 such that

1√
n

n∑
i=1

(h(Xi)− πh)
PP
χ−law
⇝ N (0, σ2(h)),

9



where the distribution χ is defined by χ(f) =
∫
ξ(dx)S(x, dx′)R(x′,dn′)f(x′, n′). Moreover, we

have the following expression of σ2(h):

σ2(h) = κσ̃2(ϱh0) + κ−1σ̂2(h0, κ), (23)

where

- σ̃2(ϱh0) is the variance obtained in (22),

- σ̂2(h0, κ) :=
∫
X
h2
0(x)VarR̃x [N ]π̃(dx),

- VarR̃x [N ] :=
∫
N0

R̃(x, dn)n2 −
(∫

N0
R̃(x, dn)n

)2
.

Proof. See A.3.

Remark 5. Note that the variance σ2(h) can be decomposed into two terms: (1) σ̃2(ϱh) is the
variance coming from the instrumental chain, while (2) σ̂2(h, κ) is the variance brought by the
random number of repetitions of the instrumental chain.

4.6 Minimizing the asymptotic variance

4.6.1 Optimal choice of the kernel R̃

Following Remark 5, one can notice that the expression σ̂2(h, κ) =
∫
X
h2(x)VarR̃x [N ]π̃(dx) directly

depends on the variance of N under R̃(x, ·). Therefore, minimizing the variance associated to
R̃(x, ·), for x ∈ X, leads to minimization of the asymptotic variance of the chain as defined in
Theorem 6. To help tuning R̃, we state the following lemma:

Lemma 1. Let N be an integer-value random variable on some probability space (Ω,F ,P) such
that E[N ] = ρ for a fixed ρ ∈ R+. Then,

Var(N) ⩾ ⟨ρ⟩ (1− ⟨ρ⟩). (24)

This bound is reached for N = ⌊ρ⌋+ S, where S ∼ Ber(⟨ρ⟩)

Proof. Using 0 = E[N ] − ρ = E[(N − ρ)+] − E[(N − ρ)−] and (N − ρ)2 ⩾ (1 − ⟨ρ⟩)(N − ρ)+ +
⟨ρ⟩ (N − ρ)−, we get

E[(N − ρ)2] ⩾ E[(N − ρ)+] = E[(N − ρ)−].

• If P(N > ρ) ⩾ ⟨ρ⟩, then

E[(N − ρ)2] ⩾ E[(N − ρ)+] ⩾ (1− ⟨ρ⟩)P (N > ρ) ⩾ ⟨ρ⟩ (1− ⟨ρ⟩).

• If P(N > ρ) < ⟨ρ⟩ ⇔ P(N ⩽ ρ) > 1− ⟨ρ⟩, then

E[(N − ρ)2] ⩾ E[(N − ρ)−] ⩾ ⟨ρ⟩P (N ⩽ ρ) ⩾ ⟨ρ⟩ (1− ⟨ρ⟩).

In the case where ϱκ can be computed, we can use Lemma 1 to define R̃ as:

R̃opt = (1− ⟨ϱκ(x)⟩)δ⌊ϱκ(x)⌋ + ⟨ϱκ(x)⟩ δ⌊ϱκ(x)⌋+1. (25)

This R̃opt implies the following expression for Ropt:

Ropt = (1− ⟨ϱκ(x)⟩)δ(⌊ϱκ(x)⌋−1)+ + ⟨ϱκ(x)⟩ δ⌊ϱκ(x)⌋.
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4.6.2 Optimal upper bound

With the optimal choice of R̃ given in (25), we have VarR̃opt
x [N ] = ⟨ϱκ(x)⟩ (1 − ⟨ϱκ(x)⟩) ⩽ 1/4.

Hence,

σ2(h) = κσ̃2(ϱh0) + κ−1σ̂2(h0, κ)

⩽ κσ̃2(ϱh0) + κ−1π̃(h2
0)/4.

Therefore, for a given function h, optimizing the rhs of the above inequality yields:

κ =
1

2

√
π̃(h2

0)

σ̃2(ϱh0)
(26)

from which we deduce the upper bound

σ2(h) ⩽
√

π̃(h2
0)σ̃

2(ϱh0) .

Note that the choice of κ in (26) depends on the function h which is usually not given beforehand
in practice. We propose another way of choosing κ in Section 6.1.2, more adapted to practical
concerns.

4.7 Geometric ergodicity
For any set A ∈ X , we use the notation Ā = X \ A to denote its complement. Define the set
Cη := {x ∈ X : ρR̃(x) ⩾ η} for η ∈ [0, 1] and note that

x ∈ Cη ⇐⇒ 1− ρR̃(x) ⩽ 1− η . (27)

Finally we denote by σC = inf {k ⩾ 1 : Xk ∈ C} the first return time of the set C.

Lemma 2. Assume that for some η ∈ (0, 1), Cη is a (1, εν)-small set for the kernel Q. Then,
there exists a probability measure ν̃ on X× N0 satisfying

(i) Cη × {0} is a (1, εν̃)-small set for the kernel P .

(ii) if ν(Cη ∩ {R̃(., 1) > 0}) > 0, then

ν̃(Cη × {0}) > 0.

Proof. See A.4.1.

We now introduce the following assumption:

(H3) There exists β0 > 1 such that

sup
x∈X

∫
N0

βn0 R̃(x, dn) <∞.

(H3) is a relatively weak condition, and it is in fact necessary for geometric ergodicity of a
Metropolis-Hastings algorithm, seen as an instance of the IMC algorithm (see Remark 3). Indeed,
in this case, R̃(x, ·) is a geometric distribution with success parameter p(x) and therefore (H3) is
equivalent to p being lower bounded away from zero. [22, Proposition 5.1] proves that this last
condition is a necessary condition for geometric ergodicity of a Metropolis-Hastings algorithm .

Also, (H3) holds whenever the support of R̃(x, ·) is uniformly bounded on X and in particular
when dπ

dπ̃ is upper-bounded, and R̃(x, ·) is the distribution of ⌊ϱκ(x)⌋+ U with U ∼ Ber(⟨ϱκ(x)⟩).

Remark 6. Actually, although condition (ii) of Lemma 2 is not verified for any kernel R̃, it is
always possible to transform it slightly into a new kernel R̃′ satisfying this condition while keeping
its other properties untouched, namely assumptions (H2) and (H3). Indeed, define C−

η = {x ∈ Cη :

R̃(x, 0) > 0} and observe that ν(Cη ∩ {R̃(., 1) > 0}) > ν(C−
η ∩ {R̃(., 1) > 0}) since C−

η ⊂ Cη. We
will now construct a kernel R̃′ such that for all x ∈ C−

η , R̃′(x, 1) > 0, which satisfies the desired
condition as ν(C−

η ∩ {R̃′(., 1) > 0}) = ν(C−
η ) > 0. Let x ∈ C−

η , implying that R̃(x, 0) > 0. Due to
the unbiasedness assumption, there exists k ∈ N0, k > 1 such that R̃(x, k) > 0. Now define R̃′ such
that:
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• R̃′(x, n) = R̃(x, n) if n /∈ {0, 1, k},

• R̃′(x, 1) = ϵR̃(x, 0),

• R̃′(x, 0) = R̃(x, 0)− (k−1)ϵ
k R̃(x, 0),

• R̃′(x, k) = R̃(x, k)− ϵ
k R̃(x, 0).

Note that ϵ can be chosen small enough to guarantee R̃′(x, k) > 0. One can easily check that

•
∑
n⩾0 R̃

′(x, n) =
∑
n⩾0 R̃(x, n) = 1,

•
∑
n⩾0 R̃

′(x, n)n =
∑
n⩾0 R̃(x, n)n = ϱκ(x).

Hence (H2) and (H3) hold for R̃′.

Recall that A ∈ X is accessible for the kernel Q if and only if for all x ∈ X, there exists n ∈ N0

such that Qn(x,A) > 0 (see for example Lemma 3.5.2 of [20]). We then have the following lemma:

Lemma 3. Assume (H3). Let A ∈ X be an accessible set for Q such that infx∈A ρR̃(x) > 0. Then
A is accessible for S and A× {0} is accessible for P .

Proof. See A.4.1.

Let us now assume a drift condition on Q in order to deduce an upper bound for supx∈Cη
ESx [βσCη ].

(Hdft) There exist constants (η0, λ) ∈ (0, 1)2 and a measurable function V : X→ [1,∞) such that

(a) for any x /∈ Cη0 , we have QV (x) ⩽ λV (x),

(b) b∞ = supx∈Cη0

QV
V (x) <∞,

(c) supx∈Cη0
V (x) <∞.

Remark 7. Under (Hdft), we have QV (x) ⩽ (b∞ ∨ λ)V (x) for any x ∈ X. A straightforward
induction yields for any n ∈ N0, 1 ⩽ QnV (x) ⩽ (b∞ ∨ λ)nV (x). This implies that b∞ ∨ λ ⩾
V (x)−1/n. Since n is arbitrary, b∞ ∨ λ ⩾ 1. Finally, b∞ ⩾ 1 > λ and for all x ∈ X,

QV (x) ⩽ b∞V (x). (28)

Lemma 4. Assume (H3) and (Hdft). Then there exist constants (η, βr, β⋆) ∈ (0, η0)×(1,∞)×(0,∞)
such that for all (x, n) ∈ X× N0 :

EP(x,n)
[
β
σCη×{0}
r

]
⩽ β⋆β

n
r V (x) . (29)

Proof. See A.4.2.

Before stating the main theorem, let us introduce a smallness assumption:

(Hsml) For any η ∈ (0, 1) there exist a probability measure ν ∈ M1(X) and a constant ϵ > 0 such that,
Cη is a (1, ϵν)-small set and ν(Cη ∩ {R̃( · , 1) > 0}) > 0.

Theorem 7. Assume (H1), (H2), (H3), (Hsml) and (Hdft). Then P has a unique invariant proba-
bility measure π̄ and there exist constants δ, βr > 1, ζ <∞, such that for all ξ ∈ M1(X× N0),

∞∑
k=1

δkdTV (ξP
k, π̄) ⩽ ζ

∫
X×N0

βnr V (x) ξ(dxdn). (30)

Proof. According to Theorem 11.4.2 of [20], there exists ζ0 <∞ such that:

∞∑
k=1

δkdTV (ξP
k, π̄) ⩽ ζ0EPξ [β

σCη×{0}
r ], (31)

provided that:

12



(i) Cη × {0} is an accessible (1, εν̃)-small set for P satisfying

ν̃(Cη × {0}) > 0,

(ii) supx∈Cη
EP(x,0)[β

σCη×{0}
r ] <∞ for some βr > 1.

Let us start by proving (i). By Lemma 2, there exists ν̃ ∈ M1(X) such that Cη × {0} is a (1, εν̃)-
small set for P satisfying ν̃(Cη × {0}) > 0. Moreover it is accessible for P , by Lemma 3 since Cη
is accessible for Q and infx∈Cη

ρR̃(x) ⩾ η > 0. Hence (i).
It remains to show (ii). We can apply Lemma 4 to get, for β > 1 :

sup
x∈Cη

EP(x,0)[β
σCη×{0}
r ] ⩽ β⋆ sup

x∈Cη

V (x) <∞,

which shows (31). Then (30) is obtained from (31) by noting that

EPξ [β
σCη×{0}
r ] =

∫
X×N0

EP(x,n)[β
σCη×{0}
r ] ξ(dxdn)

and applying Lemma 4.

5 Pseudo-marginal IMC
We develop in this section two different frameworks for pseudo-marginal Importance Markov chain
[23]. The first, simplest one is valid if we want to replace π(x) by an unbiased estimate π̂(x). This
can be written as a specific kernel R̃ using the same space as classic IMC.

The second framework tackles the issue of having the intrumental chain (X̃i) being itself
a pseudo-marginal chain, i.e. in this case, both π and π̃ are computed through two unbiased
estimates.

5.1 Pseudo-marginal within IMC

5.1.1 Adaptation of the kernel R̃ in the pseudo-marginal setting

The first pseudo-marginal approach of the Importance Markov chain can be directly implemented
and fits within the framework we develop in this article. Indeed, knowledge of the density of π
is never assumed, only the unbiasedness assumption (H2) is needed (and the geometric control of
hypothesis (H3) for geometric ergodicity).

Assume that for x ∈ X, the density π(x) (with respect to some measure µ) is not directly
computable but a nonnegative estimate π̂(x) is available, drawn from a kernel Tπ(x, ·) such that∫
R+ Tπ(x, dw)w = π(x) Then, one can replace ϱκ(x) in (25) by ϱ̂κ(x) = κ π̂(x)π̃(x) to get a plug-in

kernel R̃pm that satisfies (H2).
This can be formalized as follows. First, define an extended kernel R̃ψ on X×R+ ×P(N0) by

R̃ψ(x,w,dn) = (1− ⟨κw/π̃(x)⟩)δ⌊κw/π̃(x)⌋(dn) + ⟨κw/π̃(x)⟩ δ⌊κw/π̃(x)⌋+1(dn).

Therefore, R̃ψ(x, π̂(x), ·) corresponds to the plug-in random kernel of R̃opt of (25) using the estimate
π̂(x). By construction,

∫
N0

nR̃ψ(x,w,dn) = κw/π̃(x). We can now define the integrated kernel
R̃pm by

R̃pm(x,dn) =

∫
R+

R̃ψ(x,w,dn)Tπ(x,dw),

and Rpm using (12).

Lemma 5. R̃pm satisfies (H2).
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Proof. Let x ∈ X,∫
N0

nR̃pm(x,dn) =

∫
N0

∫
R+

nR̃ψ(x,w,dx)Tπ(x,dx) =

∫
R+

(∫
N0

nR̃ψ(x,w,dn)

)
Tπ(x, dw)

=

∫
R+

κw

π̃(x)
Tπ(x, dw) = ϱκ(x).

As R̃pm satisfies (H2), the whole methodology developed in the paper applies to the pseudo
marginal case. In particular, the geometric ergodicity result (see next section) still holds if the
estimator π̂ is bounded and under (Hrej), as (H3) will be satisfied.

5.1.2 Variance of R̃pm

The variance of R̃pm can be expressed as a function of the variance of R̃. We have the following
setup: W ∼ Tπ(X, ·) and N ∼ R̃ψ(X,W, ·). Then

Var(N |X) = Var (E[N |X,W ]|X) + E [Var(N |X,W )|X]

= Var
(

κW

π̃(X)

∣∣∣∣X)+ E[Var(N |X,W )|X]

=
κ2

π̃2(X)
Var(W |X) + E

[〈
κW

π̃(X)

〉(
1−

〈
κW

π̃(X)

〉)∣∣∣∣X] .
The variance can be decomposed into two terms: while the second one is similar to the variance

obtained from R̃ and can also be upper-bounded by 1/4, the first one is the direct contribution
of the variance of the kernel T that generates the estimate. In particular, if Tπ(X, ·) = δπ(X), we
recover the same expression as in the previous case.

5.2 Fully pseudo-marginal IMC
In this section, we will write that π(dx) = π(x)µ(dx) and π̃(dx) = π̃(x)µ(dx) for a common
measure µ.

We suppose here that (X̃k) is itself a pseudo-marginal chain where the estimates of π̃ are
drawn from a kernel Tπ̃(x, ·) such that for all x ∈ X,

∫
R+ Tπ̃(x, du)u = π̃(x). This construct a

two-component Markov chain (X̃k, Ũk) on X× R+ that targets µ(dx)Tπ̃(x, du)u [24].
In order to extend the Importance Markov chain to this case, we need once again to increase

the dimension of the chain. The space X×R+ is replaced by X×R+×R+. In that case, the second
(resp. third) marginal corresponds to the nonnegative estimates of respectively π̃ (resp. π). The
third component Ṽk is drawn from a kernel Tπ(X̃k, ·) such that for all x ∈ X,

∫
R+ Tπ(x, dv)v = π(x).

This constructs a Markov chain (X̃k, Ũk, Ṽk) that targets the probability measure Π̃ defined by

Π̃(dx dudv) = µ(dx)Tπ̃(x, du)uTπ(x,dv).

The distribution Π̃ is the instrumental distribution for the extended space. Its first marginal
is π̃ as Π̃(A × R+ × R+) = π̃(A) for any A ∈ X . We can define our target distribution Π on the
same extended space by

Π(dx dudv) = µ(dx) T̃π̃(x,du)Tπ(x,dv)v.

We can perform an Importance Markov chain using the instrumental chain (X̃k, Ũk, Ṽk) tar-
geting the instrumental density Π̃ and the target distribution Π. In this setting, ϱκ becomes:

ϱκ(x, u, v) = κ
dΠ

dΠ̃
(x, u, v) = κ

v

u
.

It remains to draw some random integer Ñk with conditional expectation:

ϱκ(X̃k, Ũk, Ṽk) = κ
Ṽk

Ũk
,

using for instance R̃opt.
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6 Numerical experiments

6.1 Toy example: mixture of Gaussians

6.1.1 Setting

For starters, we apply Algorithm 2 on an multidimensional Gaussian mixture. The target distri-
bution π writes

π(x) ∝
n∑
i=1

ϕd(x;µi, Id),

where ϕd(x;µ,Σ) is the density of a Gaussian distribution in dimension d with mean µ and co-
variance matrix Σ. The means of these distributions are random, i.i.d., µi ∼ N (0, 102Id). The
instrumental distribution π̃ is chosen to be π̃(x) ∝ π(x)β for a fixed β ∈ (0, 1). The kernel Q
targeting π̃ is a No-U-turn Sampler (NUTS) [25].

The parameter β flattens the instrumental distribution, thus easy out the way for the instru-
mental chain to move from one mode to another, when compared with the original targetted π.
Conversely, extremely small values of β lead to a very flat instrumental distribution from which it
is hard to reconstruct the original target π. Therefore, we test different values of β towards finding
an optimal tradeoff. The kernel R̃ used to draw the number of replicas is set to be the same as in
(25), i.e. a shifted Bernoulli.

Note that with such a choice for π̃, the ratio π
π̃ becomes proportional to π1−β so that the

computation of ϱκ is just a pointwise evaluation of π plus basic float operations. As the choice
of R also requires basic float operations (floor, fractional part and multiplication) and a Bernoulli
draw, the complexity of Algorithm 2 is close to the complexity of directly running Q targeting π.

To assess the influence of β we estimate the mean squared error in approximating the expec-
tation of π by running 200 chains for each β ∈ {0.004, 0.01, 0.04, 0.1, 1}. The results are presented
in Table 1. As expected, for an untempered instrumental distribution, i.e. β = 1, the MSE is high
due to a low exploration of the space, and is minimal for β = 0.04.

β 0.004 0.010 0.040 0.100 1.000
MSE 16.150 6.123 0.544 17.863 33.982

Table 1: MSE for different values of β for the Gaussian mixture

6.1.2 Choice of κ and analysis of the Effective Sample Size

The parameter κ that appears in (7) is somewhat more arbitrary as the other parameters as its
value is directly impacted by the normalizing constants of π and π̃. Indeed, assume πU = πZ (resp.
π̃U ) is an unnormalized density and write Z (resp. Z̃ ) the unknown normalization constant. We
can then compute the ratio ϱκ,U := κπU

π̃U
= κZ

Z̃
π
π̃ = ϱκZ

Z̃
. Thus, ignoring the normalizing constants

leads to a multiplier term κ compared to the case where both densities are normalized.
However it proves possible to overcome this issue by noticing that E[

∑n
i Ñi] = κn, i.e. that, for

an instrumental chain of length n, the (expected) length final chain (Xi) is proportional to κ. So,
one way to deal with this issue is to tune κ such that the length of the final chain is approximately
αn, where α is fixed. This is easily solved by taking κ = αn∑n

i=1 ϱU (X̃i)
, for ϱU = πU

π̃U
.

Remark 8. The diagnosis of the choice of κ can be easily done for a fixed instrumental chain via
the computation of the number of replicas for different values of κ in parallel is cheap once the
vector of the values taken by ϱ is stored.

The problem of tuning α remains. We define a metric that may help to this effect, namely,
the effective sample size (denoted ESSκ, as it depends on κ). The ESS for an importance Markov
chain is similar to the ESS defined for importance sampling, at the difference that here the weights
are discretized. Formally,

15



ESSκ :=
(
∑n
i=1 Ñi)

2∑n
i=1 Ñ

2
i

and we also define the usual importance sampling ESS:

ESSIS :=
(
∑n
i=1 ϱ(X̃i))

2∑n
i=1 ϱ(X̃i)2

.

Remark 9. Note that the new definition of ESSκ only considers the replication step of the IMC
algorithm, and does not take into account the convergence of the instrumental chain to the instru-
mental target. See [9] for a recent work on the effective sample size for IS with dependent proposals.
The authors add a term to the ESS to take into account the correlation of the sample.

Writing wi =
ϱ(X̃i)∑n
i=1 ϱ(X̃i)

for the self-normalized ϱ , we have that E[Ñi|X̃i] = κwi, so condition-

ally on X̃1:n,
ESSκ −→

κ→∞
ESSIS, P− a.s. (32)

As expected by the definition of kernel R, as κ increases, the stochastic part of the number of
replicas vanishes and estimates built with the chain will behave as with importance sampling, in
the sense that, for Mn :=

∑n
i=1 Ñi :

M−1
n

Mn∑
i=1

h(Xi) =

n∑
i=1

Ñi

Mn
h(X̃i) −→

κ→∞

n∑
i=1

wih(X̃i).
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Figure 1: Analysis of the effect of κ on the ESS and the length of the chain.

Following Remark 8, we plot the effect of κ on ESSκ in Figure 1. For a fixed instrumental
chain of length n and a fixed β = 0.04, we computed the ESSκ for 103 values of κ varying on log
scale from 10−1 to 104. The plot on the right confirms a linear dependence between the length of
the final chain and κ. Both other plots (ESSκ/n as a function of Mn/n and ESSκ as a function of
κ) have the same shape. Overall, the ESS is increasing with κ and reaches a stationary regime for
κ large enough: it converges to ESSIS. Therefore, taking κ too large will not increase the quality
of the estimate. In that specific case, this diagnosis leads us to choose α ≃ 1.
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6.2 Independent IMC with normalizing flows

6.2.1 Settings

In this section, we compare the Metropolis - Hastings algorithm with independent proposals with
the Importance Markov chain algorithm in the specific case where Q(x, ·) = π̃(·) for all x ∈ X.

The target π in dimension d is defined, for x = (x1, . . . , xd) ∈ Rd, by

π(x) ∝ exp

{
− 1

2

(
∥x∥ − 2

0.1

)2

+

d∑
i=1

log
(
e−

1
2 (

xi+3

0.6 )2 + e−
1
2 (

xi−3

0.6 )2
)}

.

This distribution suffers from multimodality as it has 2 modes per marginal, for a total of 2d modes.
The instrumental distribution π̃ is obtained by training a normalizing flow targeting π. We

recall that a normalizing flow is an invertible map T from Rd to Rd. Taking a base distribution µ
on Rd (chosen in that case to be the standard Gaussian), the map T should be chosen such that
the pushforward measure of µ through T denoted T♯µ := µ(T−1(.)) is close to π. This can be done
by optimizing T in a family of maps, for instance rational quadratic splines (RQSplines) using
neural networks [26]. The training is done by minimizing the forward Kullback-Leibler divergence
between T♯µ and π. See [27] for further details on the training. To get a sample from the flow, one
can generate x ∼ µ and derive T (x). The density ρ of T♯µ is given by, for x ∈ Rd:

ρ(x) = µ
(
T−1(x)

)
|det JT−1(x)| .

The flows are designed such that T−1 and JT−1(x) are easily computable.
We used the Python package FlowMC [28] with a RQSpline model to train the flow. Every

training of a flow yields a different π̃ = T♯µ as the training is stochastic. For details of implemen-
tation, see B.1.

The Self Regenerative Markov Chain Monte Carlo (with no adaptation) [14, 15] is close to
the Independent IMC, for the special case where the distribution of the number of replicas Ñi is
written as

P(Ñi = n|X̃i = x) = P(V S = n),

where V is a Bernoulli random variable with parameter q(x) and S is geometric with parameter
α(x). In [15], the author suggests q(x) = min(1, ϱκ(x)) and α(x) = min(1, 1/(ϱκ(x))). This
method, called optimal self-regenerative chain (OSR), is the one we use as a comparison benchmark,
with the same tuning of κ. We compare three methods: the independent Metropolis-Hastings (see
[2] for details), the independent importance Markov chain with kernel R̃opt of (25) and the OSR
chain defined above. In this case, the IMC algorithm is close to the rejection sampling chain of
[29].

The parameter κ is tuned such that the length of the final chain is equal to the length of the
instrumental chain. The computational cost (and running time) of all three algorithms is similar.

6.2.2 Results

Comparison with Metropolis Hastings and OSR For each dimension d ∈ {5, 10, 15, 20, 25},
we trained 10 different flows on the same target. For each flow, 30 i.i.d. samples of size n = 3 · 104
were generated. We display in Figure 2 the boxplot of the effective sample size (ESS) of the first
marginal for each algorithm, computed using the bulk method.

While the ESS of the OSR is a bit higher than the one obtained with IMH, both are out-
performed by the importance Markov chain. Regardless of the dimension, the ESS of the IMC is
approximately twice that of MH. Performances across dimensions are quite similar, even if it is
worth noting that the ESS is slightly lower for the dimension 5, probably due to the training of
the flow and the fact that the hyperparameters of the flow are not optimized for each dimension.

Comparison with importance sampling We compare in Table 2 the mean squared error
(MSE) of the first four odd moments of the first marginal obtained by either the importance
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Figure 2: Comparison of the effective sample size between MH, OSR and IMC.

Markov chain or with the importance sampling (IS) estimate defined by

ÎIS(h) =

∑n
i=1 ϱκ(X̃i)h(X̃i)∑n

i=1 ϱκ(X̃i)

against the independent IMC estimate defined by

ÎIMC(h) =
1

k

k∑
i=1

h(Xi) =
1

k

n∑
i=1

Ñih(X̃i),

where we denote k =
∑n
i=1 Ñi the length of the final chain. The performances of the IMC are

very close to the ones of IS, while the gap increases with the dimension. The last column shows
the mean number points that are replicated once or more by the IMC, which is the length of the
chain in the case of importance sampling. This has a strong implication: by storing the importance
chain under the representation (X̃i, Ñi), only (around) 16400 points (and their associated number
of replicas) are needed to be stored for the dimension 25, instead of 30000 for importance sampling.
If the dimension and the number of points are large, this can be useful to reduce the memory usage.
In some contexts, the slight loss in the MSE can be compensated by the gain in memory usage.
Moreover, the IMC outputs an actual sample and not a weighted one, sample that approaches the
target distribution at mostly a geometric rate.
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Dimension Method Mean Third Fifth Seventh # positive copies

5 IMC 9.955e-05 2.057e-04 8.372e-04 4.638e-03 1.388e+04
IS 9.822e-05 2.024e-04 8.220e-04 4.552e-03 3.000e+04

10 IMC 5.176e-05 4.146e-05 6.799e-05 1.653e-04 1.512e+04
IS 4.890e-05 3.976e-05 6.571e-05 1.607e-04 3.000e+04

15 IMC 3.449e-05 1.403e-05 1.279e-05 1.830e-05 1.595e+04
IS 3.229e-05 1.341e-05 1.254e-05 1.804e-05 3.000e+04

20 IMC 2.560e-05 7.580e-06 5.402e-06 5.940e-06 1.609e+04
IS 2.486e-05 7.218e-06 5.068e-06 5.425e-06 3.000e+04

25 IMC 2.356e-05 5.585e-06 2.962e-06 2.483e-06 1.646e+04
IS 2.273e-05 5.180e-06 2.631e-06 2.112e-06 3.000e+04

Table 2: Mean square error for the first four odd moments of the first marginal for both
the IMC chain and the importance sampling estimate

7 Conclusion
The Importance Markov Chain is a meta-algorithm, in the sense that the produced Markov chain
{Xk : k ∈ N0} is built upon another one, namely {X̃k : k ∈ N0}. This allows the practitioner to
change the target of the MCMC kernel used for the sampling: instead of targeting the distribution
of interest directly, our algorithm targets another distribution that may have better properties, and
then transforms - with relatively low cost - the obtained sample into an output sample following
the distribution of interest.

A range of applications obviously includes the different instances of Bayesian sensitivity analysis
and robustness, such as a switch of prior distributions in Bayesian robustness [30, 31], the inclusion
or exclusion of a particular data point for detecting influential observations [32], delayed acceptance
MCMC [33], safe Bayes modifications of the likelihood [34, 35]. A practical illustration is found
in the statistical analysis of the standard cosmological model [36], where accounting for further
satellite observation experiments proves very costly in computing the modified likelihoods.
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A Postponed proofs
The following appendix contains supplementary information that either does not constitute an
essential part of the paper, but is helpful in providing a more comprehensive understanding of the
research problem, or is too cumbersome to be included in the body of the paper.

A.1 Uniqueness of the invariant probability measure
(Proof of Theorem 4). Let π0 be an invariant probability measure for P and denote by πk0 the
measure defined by πk0 (A) = π0(A × {k}) for any A ∈ X . To obtain that π0 = π̄, we will first
express π0 using the measure π0

0 only. Let f ∈ Fb+(X). Applying (11) with hk(x, n) = f(x)1{n ̸=k}
and integrating with respect to π0 yields for any k ⩾ 0,

πk0f = π0hk = π0Phk = πk+1
0 f +

∫
X

π0
0S(dx)R(x, k)f(x). (33)
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To simplify this equation, we first show that π0
0 = π0

0S. Indeed, using again π0 = π0P and (11)
with the function h(x, n) = f(x),∫
X×N0

π0(dxdn)f(x) = EPπ0
[f(X0)] = EPπ0

[f(X1)] =

∫
X×N0

π0(dxdn)1{n⩾1}f(x) +

∫
X×N0

π0(dxdn)1{n=0}Sf(x),

which can be equivalently written as π0
0f = π0

0Sf . Plugging π0
0 = π0

0S into (33), we get πk0f =
πk+1
0 f +

∫
X
π0
0(dx)R(x, k)f(x) and by straightforward induction,

πk0f = π0
0f−

k−1∑
ℓ=0

∫
X

π0
0(dx)R(x, ℓ)f(x) =

∫
X

π0
0(dx)f(x)

[
1−

k−1∑
ℓ=0

R(x, ℓ)

]
=

∫
X

π0
0(dx)f(x)

∞∑
ℓ=k

R(x, ℓ).

Hence, for any h ∈ Fb+(X× N0),

π0h =

∫
X×N0

π0(dxdn)h(x, n) =

∞∑
k=0

∫
X

πk0 (dx)h(x, k)

=

∞∑
k=0

∫
X

π0
0(dx)h(x, k)

∞∑
ℓ=k

R(x, ℓ) =

∞∑
ℓ=0

∫
X

π0
0(dx)R(x, ℓ)

ℓ∑
k=0

h(x, k). (34)

Combining with (13), we can conclude the proof of Theorem 4 (ie π0 = π̄) provided that

π0
0(dx) = κ−1π̃(dx)ρR̃(x). (35)

All that follows consists in proving this identity. Denote by π1 the measure on (X × [0, 1],X ⊗
B([0, 1])) defined by: for any function h ∈ Fb+(X× [0, 1]),

π1h =

∫
X×[0,1]

π0
0(dx)du1[0,ρR̃(x)](u)ρR̃(x)

−1EG(x,u)

[
σD−1∑
k=0

h(Xk, Uk)

]
, (36)

where D = {(x, u) ∈ X× [0, 1] : u ⩽ ρR̃(x)} and G is defined in (2). We first show that π1 = π1G.

π1Gh =

∫
X×[0,1]

π0
0(dx)du 1[0,ρR̃(x)](u)ρR̃(x)

−1EG(x,u)

[
σD−1∑
k=0

Gh(Xk, Uk)

]

=

∞∑
k=0

∫
X×[0,1]

π0
0(dx)du 1[0,ρR̃(x)](u)ρR̃(x)

−1EG(x,u)
[
h(Xk+1, Uk+1)1{k+1⩽σD}

]
=

∫
X×[0,1]

π0
0(dx)du 1[0,ρR̃(x)](u)ρR̃(x)

−1EG(x,u)

[
σD∑
ℓ=1

h(Xℓ, Uℓ)

]
.

This implies

π1Gh = π1(h) +

∫
X×[0,1]

π0
0(dx)du 1[0,ρR̃(x)](u)ρR̃(x)

−1EG(x,u)
[
h(XσD

, UσD
)1{σD<∞}

]
−
∫
X×[0,1]

π0
0(dx)

(∫ ρR̃(x)

0

h(x, u)du

)
ρR̃(x)

−1.

(37)
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Now, write

EG(x,u)
[
h(XσD

, UσD
)1{σD<∞}

]
=

∞∑
ℓ=1

EG(x,u)
[
h(Xℓ, Uℓ)1{Uℓ⩽ρR̃(Xℓ)}1{σD⩾ℓ}

]
=

∞∑
ℓ=1

EG(x,u)

[(∫ ρR̃(Xℓ)

0

h(Xℓ, u
′)du′

)
1{σD⩾ℓ}

]

=

∞∑
ℓ=1

EG(x,u)

[(∫ ρR̃(Xℓ)

0

h(Xℓ, u
′)du′

)
ρR̃(Xℓ)

−11{Uℓ⩽ρR̃(Xℓ)}1{σD⩾ℓ}

]

= EG(x,u)

[(∫ ρR̃(XσD
)

0

h(XσD
, u′)du′

)
ρR̃(XσD

)−1

]

=

∫
X

S(x, dx′)

(∫ ρR̃(x′)

0

h(x′, u′)du′

)
ρR̃(x

′)−1.

Plugging this expression into (37) yields:

π1Gh = π1(h)+

∫
X

π0
0S(dx

′)

(∫ ρR̃(x′)

0

h(x′, u′)du′

)
ρR̃(x

′)−1−
∫
X

π0
0(dx)

(∫ ρR̃(x)

0

h(x, u)du

)
ρR̃(x)

−1 = π1h,

where we have used that π0
0S = π0

0 . Hence π1 is an invariant measure for G. Since any invariant
measure for Q is proportional to π̃, we deduce from (2) that G admits a unique invariant measure
(up to a multiplicative constant) proportional to π̃(dx)1[0,1](u)du and hence, π̃(dx)1[0,1](u)du ∝ π1.
Now, taking h(x, n) = 1D(x, u)f(x) for any arbitrary f ∈ Fb+(X), we get, using (36),∫

X

π̃(dx)ρR̃(x)f(x) =

∫
X×[0,1]

π̃(dx)1[0,1](u)du h(x, u)

∝ π1h =

∫
X×[0,1]

π0
0(dx)du 1[0,ρR̃(x)](u)ρR̃(x)

−11D(x, u)f(x) = π0
0f.

Finally, there exists a constant γ such that for any f ∈ Fb+(X),

π0
0f = γ

∫
X

π̃(dx)ρR̃(x)f(x). (38)

Applying (34) with h = 1 and using sucessively (12), (H2) and the identity above, we get

1 =

∞∑
ℓ=0

∫
X

π0
0(dx)R(x, ℓ)(ℓ+1) =

∞∑
k=1

∫
X

π0
0(dx)

R̃(x, k)k

ρR̃(x)
=

∫
X

π0
0(dx)

ϱκ(x)

ρR̃(x)
= γ

∫
X

π̃(dx)ϱκ(x) = γκ.

Combined with (38) we finally obtain π0
0f = κ−1

∫
X
π̃(dx)ρR̃(x)f(x) which proves (35) and con-

cludes the proof.

A.2 A martingale weak convergence result with random indexes.
Theorem 8. Let (Ω,F ,P) be a probability space and let (Fn) be a filtration on Ω such that Fn ⊂ F
for any n ∈ N0. Let (Mn) be a square-integrable (Fn)-martingale such that

Mn√
n

P−law
⇝ G and

E
[
M2
n

]
n

→ σ2

and let (kn) be a sequence of random integers such that kn
n

P−prob−→ λ ∈ (0,∞). Then

(nλ)−1/2Mkn
P−law
⇝ G.
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Proof. Let α, λ−, λ+ be positive constants such that λ− < λ < λ+. Define

Bn = (nλ)−1/2Mkn ,

Cn = (nλ)−1/2M⌊nλ−⌋,

and note that Cn
P
⇝ (λ−/λ)1/2G. Then we have for any u ∈ R,

|E[eiuBn ]− E[eiuG]| ⩽ |E[eiuBn ]− E[eiuCn ]|+ |E[eiuCn ]− E[eiuG]|
⩽ 2P (|Bn − Cn| > α) + |E[|eiuBn − eiuCn |1{|Bn−Cn|⩽α}]|+ |E[e

iuCn ]− EeiuG|
⩽ 2P (|Bn − Cn| > α) + sup

|β|⩽α
|eiuβ − 1|+ |E[eiuCn ]− E[eiuG]|. (39)

Since (Mi −M⌊nλ−⌋)i⩾⌊nλ−⌋ is a martingale and x→ x2 is convex,
(
(Mi −M⌊nλ−⌋)

2
)
i⩾⌊nλ−⌋ is a

non-negative submartingale. Then, the first term of the right hand side in (39) may be bounded by
applying Doob’s maximal inequality to the non-negative submartingale

(
(Mi −M⌊nλ−⌋)

2
)
i⩾⌊nλ−⌋,

P(|Bn − Cn| > α) ⩽ P
(
kn /∈ [nλ−, nλ+]

)
+ P

(
|Bn − Cn| > α, kn ∈ [nλ−, nλ+]

)
⩽ P(kn /∈ [nλ−, nλ+]) + P

(
sup

i∈[nλ−:nλ+]

|Mi −M⌊nλ−⌋| > (nλ)1/2α

)

⩽ P(kn /∈ [nλ−, nλ+]) +
E
[(
M⌊nλ+⌋ −M⌊nλ−⌋

)2]
nλα2

= P(kn /∈ [nλ−, nλ+]) +

∑⌊nλ+⌋−1

k=⌊nλ−⌋ E
[
(Mk+1 −Mk)

2
]

nλα2
.

Note that since (Mn)n∈N is a square-integrable martingale, we have

Dn =
E[M2

n]

n
=

E[M2
0 ] +

∑n−1
k=0 E[(Mk+1 −Mk)

2]

n
,

and the previous bound writes:

P (|Bn − Cn| > α) ⩽ P(kn /∈ [nλ−, nλ+]) +
⌊nλ+⌋D⌊nλ+⌋ − ⌊nλ−⌋D⌊nλ−⌋

nλα2
.

Finally letting n go to infinity and using successively that kn
n

P−prob−→ λ, Dn −→
n→∞

σ2 and Cn
P
⇝

(λ
−

λ )1/2G, we obtain

lim sup
n→∞

|E[eiuBn ]− E[eiuG]| ⩽ 2σ2λ
+ − λ−

λα2
+ sup

|β|⩽α
|eiuβ − 1|+ |E[eiu(λ

−/λ)1/2G]− E[eiuG]|.

Letting λ+ ↘ λ and λ− ↗ λ, we get

lim sup
n→∞

|E[eiuBn ]− E[eiuG]| ⩽ sup
|β|⩽α

|eiuβ − 1|,

and letting α → 0, we finally obtain lim supn→∞|E[eiuBn ] − E[eiuG]| = 0. Therefore Bn
P−law
⇝ G

which concludes the proof.

A.3 Central Limit Theorem

A.3.1 Preliminary results

Let Q̄ be the Markov kernel on (X× N0)× (X ⊗ P(N0)) defined by

Q̄(x, n; dx′dn′) = Q(x,dx′)R̃(x′,dn′),
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and π̂ be the probability measure on X× N defined by

π̂(dxdn) = π̃(dx)R̃(x,dn).

Let Sn =
∑n
i=1 Ñi and define kn = max {k ∈ N∗ : Sk ⩽ n} ensuring that Skn ⩽ n < Skn+1.

Lemma 6. Assume (H1). Then Q̄ admits π̂ as invariant probability measure.

Proof. Let A ∈ X ⊗ P(N0). Then

π̂Q̄(A) =

∫
(X×N0)2

π̃(dx)R̃(x, dn)Q(x, dx′)R̃(x′,dn′)1A(x
′, n′)

=

∫
X×N0

π̃(dx′)R̃(x′,dn′)1A(x
′, n′)

= π̂(A).

Lemma 7. Assume (H1) and (Hlln). Then, for every ξ′ ∈ M1(X × N0) and measurable function
g : X× N0 → R such that π̂(|g|) <∞,

lim
n→∞

n−1
n−1∑
k=0

g(X̃k, Ñk) = π̂(g), PQ̄ξ′ − a.s. (40)

Proof. The proof follows that of Theorem 5 and also relies on [21, Proposition 3.5]. Let h̄ be a
harmonic function for the kernel Q̄, i.e. for all (x, n) ∈ X× N,

Q̄h̄(x, n) = h̄(x, n),

and let us prove that h̄ is constant. For all (x, n) ∈ X× N,

h̄(x, n) = Q̄h̄(x, n) =

∫
X×N0

Q(x, dx′)R̃(x′,dn′)h̄(x′, n′). (41)

The integral on the right hand side of the equation above does not depend on n, therefore h̄ is also
independant of n and we can write for all (x, n) ∈ X× N,

h̄(x, n) = h̄(x, 0) =: h0(x).

Then from (41) we have for all x ∈ X,

h0(x) =

∫
X

Q(x, dx′)h0(x
′) = Qh0(x). (42)

which proves that h0 is harmonic for Q. Using [21, Proposition 3.5], we get that h0 is constant.
Therefore so is h̄ and using [21, Proposition 3.5] again, we have completed the proof of the lemma.

Lemma 8. For all ζ ∈ M1(X× N0), kn
n

PQ̄
ζ −prob
−→ κ−1.

Proof. Let β > κ−1, we will prove that PQ̄ζ
(
kn
n ⩾ β

)
−→
n→∞

0. From the definition of kn we have

that {kn ⩾ βn} =
{∑⌊βn⌋

i=1 Ñi ⩽ n
}

, hence

PQ̄ζ

(
kn
n
⩾ β

)
= PQ̄ζ

 1

⌊βn⌋

⌊βn⌋∑
i=1

Ñi ⩽
n

⌊βn⌋

 ,
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which converges to 0 as n goes to infinity since by applying Lemma 7 with g(x, ℓ) = ℓ we have

1

⌊βn⌋

⌊βn⌋∑
i=1

Ñi

PQ̄
ζ −a.s.
−→

∫
X×N0

π̃(dx)R̃(x, dℓ)ℓ =

∫
X

π̃(dx)ϱκ(x) = κ > β−1.

Similarly we prove that for any β < κ−1,

PQ̄ζ

(
kn
n

< β

)
−→
n→∞

0,

by using that {kn < βn} =
{∑⌊βn⌋

i=1 Ñi > n
}

, which completes the proof.

Lemma 9. Assume (H1) and (Hlln). Let ζ ∈ M1(X×N0), f : X×N −→ R be a measurable function,

and (kn)n ∈ NN be a sequence of random variables such that kn
n

PQ̄
ζ −prob
−→ κ−1 and π̂f2 <∞. Then,

f(X̃kn , Ñkn)√
n

PQ̄
ζ −prob
−→ 0.

Proof. Let ϵ > 0, we will prove that

PQ̄ζ
(
g(X̃kn , Ñkn) > ϵ2n

)
−→
n→∞

0,

where g = f2. Let α, β ∈ R+ be two nonnegative numbers such that α < κ−1 < β and β−α < ϵ2

π̂(g) .

PQ̄ζ
(
g(X̃kn , Ñkn) > ϵ2n

)
⩽ PQ̄ζ

(
kn
n

/∈ [α, β]

)
+ PQ̄ζ

(
g(X̃kn , Ñkn) > ϵ2n,

kn
n
∈ [α, β]

)
.

From kn
n

PQ̄
ζ −prob
−→ κ−1 we get lim supn P

Q̄
ζ

(
kn
n /∈ [α, β]

)
= 0 and therefore,

lim sup
n

PQ̄ζ
(
g(X̃kn , Ñkn) > ϵ2n

)
⩽ lim sup

n
PQ̄ζ

(
g(X̃kn , Ñkn) > ϵ2n,

kn
n
∈ [α, β]

)
.

Defining An = 1
n

∑n
i=1 g(X̃i, Ñi), we have

PQ̄ζ

(
g(X̃kn , Ñkn) > ϵ2n,

kn
n
∈ [α, β]

)
⩽ PQ̄ζ

 ⌊nβ⌋∑
i=⌊nα⌋

g(X̃i, Ñi) > ϵ2n


= PQ̄ζ

(
⌊nβ⌋
n

A⌊nβ⌋ −
⌊nα⌋
n

A⌊nα⌋ > ϵ2
)
−→
n→∞

0,

since An
PQ̄
ζ −a.s.
−→ π̂g by Lemma 7 and π̂(g)(β − α) < ϵ2. This concludes the proof.

Lemma 10. Let (Yk)k be a Markov chain on Y generated by a kernel T on Y × Y with invariant
measure µ. Assume that there exists a measurable function j : Y → R such that the Poisson
equation on Y for the kernel T associated to the function j admits a solution J , i.e. for all y ∈ Y

J(y)− TJ(y) = j(y)− µ(j).

Then, considering the filtration Fn = σ(Y0:n),

n−1∑
i=0

j(Yi)− µ(j) = Mn − J(Yn) + J(Y0),

where Mn :=
∑n
i=1 J(Yi)− TJ(Yi−1) is a Fn-martingale.
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Proof. A simple index shift gives that

n−1∑
i=0

j(Yi)−µ(j) =
n−1∑
i=1

J(Yi)−TJ(Yi) =
n∑
i=1

J(Yi)−TJ(Yi−1)−J(Yn)+J(Y1) = Mn−J(Yn)+J(Y1).

Let us state as a reminder the following theorem from [37] around which the proof of the
following lemma will revolve.

Theorem 9 (Theorem A.3. of [38]). Let (Ω,F ,P) be a probability space and let (Fn,i)i⩽n be a
filtration on Ω. Assume E

[
U2
n,i

∣∣Fn,i−1

]
<∞ for any n ∈ N0 and any i = 1, . . . , n, and

n∑
i=1

(
E
[
U2
n,i

∣∣Fn,i−1

]
− E [Un,i|Fn,i−1]

2
)
−→ σ2 for some σ > 0 (H3)

n∑
i=1

E
[
U2
n,i1{|Un,i|⩾ε}

∣∣Fn,i−1

]
−→ 0 for any ε > 0 (H4)

Then, for any real u,

E

[
exp

(
iu

n∑
i=1

(Un,i − E [Un,i|Fn,i−1])

)∣∣∣∣∣Fn,0
]
−→ exp(−(u2/2)σ2).

Lemma 11. Let (Yk)k be a Markov chain on Y with kernel T on Y × Y admitting an invariant
probability measure µ. Assume that for every ν ∈ M1(Y) and any measurable function g : Y → R
such that µ(|g|) <∞,

lim
n→∞

n−1
n−1∑
k=0

g(Yk) = µ(g), PTν − a.s. (43)

Let J : Y → R be a measurable function such that µ(J2) <∞. Consider the filtration Fn = σ(Y0:n)
and the Fn-martingale Mn =

∑n
i=1 J(Yi)− TJ(Yi−1) =

∑n
i=1 ∆Mi. Then,

n−1/2Mn
PM
ν −law
⇝ N (0, σ2

J(h)),

with σ2
J(h) = ETµ

[
∆M2

1

]
.

Proof. Define Un,i =
∆Mi√
n

for any n ⩾ i ⩾ 1 and Fn,i = Fi = σ(Y0:i) for any i, n ∈ N. Let us
verify the hypotheses of Theorem 9 :

• For (H3), we have

n∑
i=1

(
ETν
[
U2
n,i

∣∣Fn,i−1

]
− ETν [Un,i|Fn,i−1]

2
)
=

1

n

n∑
i=1

ETν
[
∆M2

i

∣∣Fi−1

]
=

1

n

n∑
i=1

ETYi−1

[
∆M2

1

]
−→
n→∞

ETµ
[
∆M2

1

]
,

where the limit is obtained from (43) with the function g : y 7→ ETy
[
∆M2

1

]
.

• For (H4), let A > 0 be a positive integer,

n∑
i=1

ETν
[
U2
n,i1{|Un,i|⩾ε}

∣∣Fn,i−1

]
=

1

n

n∑
i=1

ETν
[
∆M2

i 1{|∆Mi|⩾ε
√
n}
∣∣∣Fi−1

]
⩽

1

n

n∑
i=1

ETν
[
∆M2

i 1{|∆Mi|⩾A}
∣∣Fi−1

]
,
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for large enough values of n. Then, the Markov property gives us that

1

n

n∑
i=1

ETν
[
∆M2

i 1{|∆Mi|⩾A}
∣∣Fi−1

]
=

1

n

n∑
i=1

ETYi−1
[∆M2

11{|∆M1|⩾A}].

Applying (43) on the right hand side with g : y 7→ ETy [∆M2
11{|∆M1|⩾A}] gives that

1

n

n∑
i=1

ETYi−1
[∆M2

11{|∆M1|⩾A}]
PQ̄

ξ′−a.s.−→ µg = ETµ [∆M2
11{|∆M1|⩾A}].

Now let A −→∞, (ETµ [∆M2
11{|∆M1|⩾A}])A converges to 0 by monotone convergence. Hence

Mn√
n

PT
ν −law
⇝ N (0, σ2

J(h)) with σ2
J(h) = ETµ

[
∆M2

1

]
.

A.3.2 Proof of Theorem 6

Let h be a bounded measurable function and denote h0 := h− πh. We want to prove that :

1√
n

n−1∑
i=0

h0(Xi)
PP
χ−law
⇝ N (0, σ2(h)).

Let Un = 1√
n

∑n−1
i=0 h0(Xi). Let ξ′ = ξ ⊗ µ where µ is any probability measure on N. The

probability measure associated to the trajectories (Xi)i obtained from the Markov chains (X̃i, Ñi)i
generated by Q̄ starting from ξ′ is the same as the one associated to the sequence (Xi)i produced
as the first component of the Markov chain (Xi, Ni)i with kernel P starting from χ defined by
χ(f) =

∫
ξ(dx)S(x, dx′)R(x′, n′)f(x′, n′). We will work with the former probability distribution

(i.e. under PQ̄ξ′) as it is best suited for our proof. Denote Vn = 1√
n

∑kn−1
i=1 Ñih0(X̃i) and let us

start by proving that Un−Vn
PQ̄

ξ′−prob

−→ 0. By definition of kn, h0(X̃kn) appears less than Ñkn times
in Un and therefore,

|Un − Vn| = (n− Skn)

∣∣∣h0(X̃kn)
∣∣∣

√
n

⩽ Ñkn

∣∣∣h0(X̃kn)
∣∣∣

√
n

.

From Lemma 8, knn
PQ̄

ξ′−prob

−→ κ−1 and we can apply Lemma 9 to the function (x, n) 7→ n |h0(x)| to

obtain Ñkn
|h0(X̃kn )|√

n

PQ̄

ξ′−prob

−→ 0. Let us write Vn = 1√
n

∑kn−1
i=1 f(X̃i, Ñi) where f : (x, n) 7→ nh0(x).

It now suffices to prove that Vn
PQ̄

ξ′−law
⇝ N (0, σ2(h)). We will procede in two steps :

(i) rewrite Vn = 1√
n
Mkn + δn using a solution to the Poisson equation associated to f , where

(Mn)n∈N is a martingale and δn
PQ̄

ξ′−prob

−→ 0 ;

(ii) prove that 1√
n
Mn

PQ̄

ξ′−law
⇝ N (0, σ2

M (h)) and apply Theorem 8 to obtain 1√
n
Mkn

PQ̄

ξ′−law
⇝

N (0, κ−1σ2
F (h)).

Starting with (i), let H be the solution to the Poisson equation associated to ϱh0 for the kernel Q
on X given by (HPoiss), i.e. for all x ∈ X,

H(x)−QH(x) = ϱ(x)h0(x).
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Then, Hκ := κH is a solution to the Poisson equation associated to ϱκh0 for the kernel Q on X,
and

F (x, n) := Hκ(x) + nh0(x)− ϱκ(x)h0(x) (44)

is a solution to the Poisson equation associated to f for the Markov kernel Q̄ such that π̂F 2 <∞.
Indeed, for (x, n) ∈ X× N we have

Q̄F (x, n) =

∫
X×N0

Q(x, dx′)R̃(x′,dn′)H(x′) +

∫
X×N0

Q(x, dx′)R̃(x′,dn′)n′h(x′)

−
∫
X×N0

Q(x, dx′)R̃(x′,dn′)ϱκ(x
′)h(x′)

= QHκ(x)

since
∫
N0

R̃(x′,dn′)n′ = ϱκ(x
′), and therefore

F (x, n)− Q̄F (x, n) = Hκ(x) + nh0(x)− ϱκ(x)h0(x)−QHκ(x) = nh0(x) = f(x, n).

Moreover, π̂F 2 ⩽ 4
(
κ2π̂H2 + π̂f2 + π̂(ϱκh0)

2
)
< ∞ since π̂H2 = π̃H2 < ∞ and π̂f2 < ∞ from

(HPoiss). Then,

π̂f2 =

∫
X

(∫
N0

n2R̃(x,dn)

)
h0(x)

2π̃(dx) ⩾
∫
X

(∫
N0

nR̃(x, dn)

)2

h0(x)
2π̃(dx) =

∫
X

ϱκ(x)
2h0(x)

2π̃(dx),

proving that π̂ (ϱκh0)
2
= π̃ (ϱκh0)

2
< ∞. Now let Mn =

∑n
i=2 F (X̃i, Ñi) − Q̄F (X̃i−1, Ñi−1) and

consider the filtration Fn = σ(X̃1:n, Ñ1:n). From Lemma 10, (Mn)n is a Fn-martingale, and

n−1∑
i=1

f(X̃i, Ñi) = Mn − F (X̃n, Ñn) + F (X̃1, Ñ1). (45)

Therefore, Vn = 1√
n
Mkn + δn with δn =

F (X̃kn ,Ñkn )√
n

+ F (X̃1,Ñ1)√
n

. Note that F (X̃1,Ñ1)√
n

PQ̄

ξ′−prob

−→ 0

trivially, and F (X̃kn ,Ñkn )√
n

PQ̄

ξ′−prob

−→ 0 as a consequence of Lemma 9. Using Lemma 11 combined to
Lemma 7 with Yi = (X̃i, Ñi),

Mn√
n

PQ̄

ξ′−law
⇝ N (0, σ2

F (h)) with σ2
F (h) = EQ̄π̂

[
∆M2

1

]
.

which proves (ii) and concludes the first part of the proof. Let us now turn our attention to the
expression of the variance claimed by the theorem :

σ2(h) = κσ̃2(ϱh0) + κ−1σ̂2(h0, κ),

with σ̃2(ϱh0) = 2π̃ (ϱh0H) − π̃
(
(ϱh0)

2
)

and σ̂2(h0, κ) =
∫
X
h0(x)

2VarR̃(x,·)[N ]π̃(dx). From the
expression of F in (44) and denoting ∆H1 = H(X̃1)−QH(X̃0) we have

σ2(h) = κ−1EQ̄π̂

[(
κ∆H1 + (Ñ1 − ϱκ(X̃1))h(X̃1)

)2]
= κEQ̄π̂

[
∆H2

1

]
+ κ−1EQ̄π̂

[
(Ñ1 − ϱκ(X̃1))

2h(X̃1)
2
]
+ 2EQ̄π̂

[
∆H1(Ñ1 − ϱκ(X̃1))h(X̃1)

]
. (46)

Let us take a look at the first term of the rhs :

EQ̄π̂
[
∆H2

1

]
= EQ̄π̂

[
H(X̃1)

2
]
+ EQ̄π̂

[
QH(X̃0)

2
]
− 2EQ̄π̂

[
H(X̃1)QH(X̃0)

]
= EQ̄π̂

[
H(X̃0)

2
]
− EQ̄π̂

[
QH(X̃0)

2
]
,
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where we used that π̂ is a stationary probability measure. Noting that H2−QH2 = (H−QH)(H+
QH) = ϱh0(2H − ϱh0), we finally obtain using (HPoiss)

EQ̄π̂
[
∆H2

1

]
= 2π̃ (ϱh0H)− π̃

(
(ϱh0)

2
)
. (47)

Let us now rewrite the second term of (46) :

EQ̄π̂
[
(Ñ1 − ϱκ(X̃1))

2h0(X̃1)
2
]
=

∫
X

(∫
N0

(n− ϱκ(x))
2R̃(x, dn)

)
h0(x)

2π̃(dx)

=

∫
X

h0(x)
2VarR̃(x,·)[N ]π̃(dx),

where VarR̃(x,·)[N ] =
∫
(n − ϱκ(x))

2R̃(x, dn) due to (H2). For the last term of 46, the same
hypothesis gives that

EQ̄π̂
[
∆H1(Ñ1 − ϱκ(X̃1))h0(X̃1)

]
= EQ̄π̂

[
EQ̄π̂
[
Ñ1 − ϱκ(X̃1)|X̃1, X̃0

]
∆H1h0(X̃1)

]
= 0,

which concludes the second part of the proof.

A.4 Geometric ergodicity

A.4.1 Proof of Lemma 2 and Lemma 3

Proof of Lemma 2. We start with the first point (i). From the definition of S in (10) and noting
that Cη is a (1, εν)-small set for Q, we have for all x ∈ Cη and A ∈ X ,

S(x,A) =
∞∑
k=1

EQx

[
ρR̃(Xk)1A(Xk)

k−1∏
i=1

(1− ρR̃(Xi))

]
⩾ Q(x, ρR̃1A) ⩾ εν(ρR̃1A).

Applying (11) with n = 0, we deduce that for all x ∈ Cη and all B ∈ X ⊗ P(N0),

P (x, 0;B) =

∫
B

S(x, dx′)R(x′,du′)

⩾ ε

∫
B

ν(dx′)ρR̃(x
′)R(x′,du′)

=: εν̃(B),

which shows (i). Let us now turn to (ii). Noting that C+
η := Cη∩{R̃(., 1) > 0} = Cη∩{R(., 0) > 0}

we have,

ν̃(Cη × {0}) =
∫
Cη

ν(dx)ρR̃(x)R(x, 0)

⩾ η

∫
Cη

ν(dx)R(x, 0)

= η

∫
C+
η

ν(dx)R(x, 0) > 0,

where the last inequality stems from ν(C+
η ) > 0 and R(x, 0) > 0 for all x ∈ C+

η . Hence (ii).

Proof of Lemma 3. Let A be accessible for Q such that ϵA := infx∈A ρR̃(x) > 0. We first show
that A is accessible for S. Let x ∈ X and n ∈ N0 such that Qn(x,A) > 0. Let us consider the
representation of S using the kernel G defined in (2). Define D := {(x, u) ∈ X× [0, 1] : u ⩽ ρR̃(x)}
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and σ
(m)
D the m-th return time to the set D. Then, for any probability measure µ on [0, 1],∫

X

Qn(x,dy)ρR̃(y)1A(y) = PGδx⊗µ((Xn, Un) ∈ D, Xn ∈ A)

= PGδx⊗µ(∃m ∈ [1 : n], n = σ
(m)
D , X

σ
(m)
D

∈ A)

⩽ PGδx⊗µ(∃m ∈ [1 : n], X
σ
(m)
D

∈ A)

= PSx (∃m ∈ [1 : n], Xm ∈ A)

⩽
n∑

m=1

PSx (Xm ∈ A).

Hence,
∑n
m=1 S

m(x,A) ⩾ ϵAQ
n(x,A) > 0 and there exists an integer m ⩽ n such that Sm(x,A) >

0. Thus, A is an accessible set for S.
We now show that A × {0} is accessible for P . Let (x, k) ∈ X × N0. From the first part of

the proof, there exists m ∈ N0 such that Sm(x,A) > 0. Indeed, let B := A × {0}, F := X × {0}
and (Yn = (Xn, Nn))n∈N0 be a Markov chain of kernel P . Start by noting that if x ∈ X and
N ∼ R(x, ·),

PP(x,0) (σF <∞) = P (N <∞) = 1

since (H3) ensures that E [N ] < ∞. Then, using the strong Markov inequality, we obtain by
induction that

PP(x,0)
(
σ
(m)
F <∞

)
= 1.

Hence,

PP(x,0)(Yσ(m)
F

∈ B) = PP(x,0)(Yσ(m)
F

∈ B, σ
(m)
F <∞)

=

∞∑
ℓ=1

PP(x,0)(Yσ(m)
F

∈ B, σ
(m)
F = ℓ)

=

∞∑
ℓ=1

PP(x,0)(Yℓ ∈ B, σ
(m)
F = ℓ)

⩽
∞∑
ℓ=1

PP(x,0)(Yℓ ∈ B)

=

∞∑
ℓ=1

P ℓ(x, 0;B).

Since by definition of P in (11) we have

PP(x,0)(Yσ(m)
F

∈ B) = PSx (Xm ∈ A) > 0,

at least one of the terms in the sum above is positive and therefore there exists ℓ ∈ N0 such that

P ℓ(x, 0 ;A× {0}) > 0.

Using the definition of P in (11) once more, we have that P k(x, k; {(x, 0)}) = 1 and so

P k+ℓ(x, k;A× {0}) > 0,

which concludes the proof.

A.4.2 Proof of Lemma 4

(Proof of Lemma 4). Let B := Cη × {0} and F := X×{0}. Let β ∈ (1,∞) be an arbitrary constant
and let D <∞ be any positive constant (assuming it exists) such that

sup
x∈X

∫
N0

βn+1R(x, dn) ⩽ D.
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We first show that for all (x, n) ∈ X× N0 and β > 1 we have:

EP(x,n) [β
σB ] ⩽ βnESx [DσCη ] . (48)

Let us start with the case n = 0 :

EP(x,0) [β
σB ] =

∞∑
ℓ=1

g(ℓ)(x), (49)

where g(ℓ)(x) := EP(x,0)
[
βσ

(ℓ)
F 1{σ(ℓ)

F =σB}

]
.

• For ℓ = 1,

g(1)(x) = EP(x,0)
[
βN1+11Cη

(XN1+1)
]
=

∫
X

(∫
N0

βn+1R(x, dn)

)
1Cη

(x′)S(x, dx′) ⩽ D×PSx
(
σCη

= 1
)
,

(50)
where the second equality holds from the definition of P in (11) ensuring that XN1+1 = X1

PP(x,0)-a.s.

• For ℓ > 1, let us note that
{
σ
(ℓ)
F = σB

}
=
{
σ
(ℓ−1)
F ◦ θσF = σB ◦ θσF , XσF

/∈ Cη
}

as PP(x,0)-a.s.

we have σ
(ℓ)
F = σ

(ℓ−1)
F ◦ θσF + σF, and σB = σB ◦ θσF + σF under the event {σB > σF} ⊃

{σ(ℓ)
F = σB} for ℓ > 1. Hence,

g(ℓ)(x) = EP(x,0)
[
βσ

(ℓ)
F 1{σ(ℓ)

F =σB}

]
⩽ EP(x,0)

[
βσF1C̄η

(XσF
)EP(x,0)

[
βσ

(ℓ−1)
F ◦θσF

1{σ(ℓ−1)
F ◦θσF=σB◦θσF}|FσF

]]
= EP(x,0)

[
βσF1C̄η

(XσF
)EP(XσF

,0)

[
βσ

(ℓ−1)
F 1{σ(ℓ−1)

F =σB}

]]
(51)

= EP(x,0)
[
βN1+11C̄η

(X1)EP(X1,0)

[
βσ

(ℓ−1)
F 1{σ(ℓ−1)

F =σB}

]]
, (52)

where (51) comes from the strong Markov property applied to the Markov chain (Xi, Ni)i∈N0
with

the stopping time σF and (52) comes from the definition of the kernel P since X1 is repeated
N1 + 1 times while the second component decreases by one at each iteration until reaching zero.
The definition of P in (11) gives

EP(x,0)
[
βN1+11C̄η

(X1)EP(X1,0)

[
βσ

(ℓ−1)
F 1{σ(ℓ−1)

F =σB}

]]
=

∫
X

(∫
N0

βn+1R(x, dn)

)
1C̄η

(x′)g(ℓ−1)(x′)S(x,dx′)

⩽ D

∫
X

1C̄η
(x′)g(ℓ−1)(x′)S(x, dx′)

= D × EP(x,0)
[
1C̄η

(X1)g
(ℓ−1)(X1)

]
.

Hence,
g(ℓ)(x) = EP(x,0)

[
βσ

(ℓ)
F 1{σ(ℓ)

F =σB}

]
⩽ D × EP(x,0)

[
1C̄η

(XσF
)g(ℓ−1) (XσF

)
]
,

which used in conjunction with (50) gives

g(ℓ)(x) ⩽ Dℓ × EP(x,0)
[
1C̄η

(XσF
)...1C̄η

(X
σ
(ℓ−1)
F

)PSX
σF

(ℓ−1)

(
σCη

= 1
)]

= Dℓ × ESx
[
1C̄η

(X1)...1C̄η
(Xℓ−1)ESXℓ−1

[
1Cη

(X1)
]]

(53)

= Dℓ × ESx
[
1C̄η

(X1)...1C̄η
(Xℓ−1)ESx

[
1Cη

(Xℓ)|Fℓ−1

]]
= Dℓ × ESx

[
1C̄η

(X1)...1C̄η
(Xℓ−1)1Cη

(Xℓ)
]

= Dℓ × PSx
(
σCη

= ℓ
)
,
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where (53) comes from the definition of S and P in (10) and (11). Plugging the above into (49)
leads to the following upper bound,

EP(x,0) [β
σB ] ⩽

∞∑
ℓ=1

DℓPSx
(
σCη

= ℓ
)
= ESx [DσCη ] .

If x ∈ Cη, then EP(x,n) [β
σB ] = βn, showing (48) for x ∈ Cη. If x /∈ Cη, then we have σB =

σB ◦ θn + n, P(x,n)-a.s. Thus,

EP(x,n) [β
σB ] = βnEP(x,n)

[
βσB◦θn

]
= βnEP(x,0) [β

σB ] ⩽ βnESx [DσCη ] ,

which completes the proof of the inequality (48).
For any η ∈ (0, η0),

PSx
(
σCη

> k
)
=

∞∑
ℓ1,...,ℓk=1

EQx

 k∏
j=1

 sj−1∏
i=sj−1+1

(1− ρR̃(Xi))

 ρR̃(Xsj )1C̄η
(Xsj )

 ,

where we have set sj =
∑j
i=1 ℓi for j ⩾ 1 and s0 = 0. Using that ρR̃1C̄η

⩽ η1C̄η
and 1 − ρR̃ ⩽

(1− η0)
1Cη0 ,

PSx
(
σCη

> k
)
⩽

∞∑
ℓ1,...,ℓk=1

ηkEQx

(1− η0)
∑k

j=1

∑sj−1

i=sj−1+1 1Cη0
(Xi)

k∏
j=1

1C̄η
(Xsj )


⩽

∞∑
ℓ1,...,ℓk=1

ηkEQx

(1− η0)
M[1:sk−1]\{s1,...,sk−1}

k−1∏
j=1

1C̄η
(Xsj )

 , (54)

where MI :=
∑
i∈I 1Cη0

(Xi) for any I ⊂ N0. Moreover, since η < η0, we have Cη0 ⊂ Cη, hence

1C̄η
(x) = (1− η0)

1Cη0
(x)1C̄η

(x) ⩽ (1− η0)
1Cη0

(x). (55)

Finally, setting for any arbitrary α ∈ (0, 1),

Nℓ =

ℓ−1∑
i=1

1Cη0
(Xi),

Rℓ := EQx
[
(1− η0)

Nℓ
]
,

Rℓ,1 = EQx
[
(1− η0)

Nℓ1{Nℓ>α(ℓ−k)}
]
,

Rℓ,2 = EQx
[
(1− η0)

NℓV (Xℓ)1{Nℓ⩽α(ℓ−k)}
]
,

and plugging (55) into (54) combined with V ⩾ 1, we get

PSx
(
σCη > k

)
⩽

∞∑
ℓ1,...,ℓk=1

ηkRsk ⩽
∞∑

ℓ1,...,ℓk=1

ηk {Rsk,1 +Rsk,2} ⩽
∞∑

ℓ1,...,ℓk=1

ηk
[
(1− η0)

α(sk−k) +Rsk,2

]
.

(56)
We now give an explicit upper bound for Rℓ,2 for ℓ ⩾ k. Under (Hdft), QV (x) ⩽ λV (x) for x /∈ Cη0
and QV (x) ⩽ b∞V (x) for x ∈ Cη0 . Therefore, for any x ∈ X,

(1− η0)
1Cη0

(x)QV (x) ⩽ (b∞(1− η0)λ
−1)1Cη0

(x)λV (x) ⩽ A1Cη0
(x)λV (x),

where A := 1 ∨ b∞(1 − η0)λ
−1. This implies by applying the tower rule conditionally on X1:ℓ−1,

then X1:ℓ−2 and so on,

EQx
[
V (Xℓ)

(1− η0)
Nℓ

ANℓλℓ−1

]
= EQx

[
V (X1)

ℓ−1∏
i=1

(1− η0)
1Cη0

(Xi)V (Xi+1)

A1Cη0
(Xi)λV (Xi)

]
⩽ EQx [V (X1)] = QV (x) ⩽ b∞V (x),

(57)
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where the last inequality follows from (28). Since A ⩾ 1, we have 1 ⩽ Aα(ℓ−k)/ANℓ on {Nℓ ⩽
α(ℓ− k)} and hence

Rℓ,2 ⩽ Aα(ℓ−k)λℓ−1EQx
[
V (Xℓ)

(1− η0)
Nℓ

ANℓλℓ−1

]
⩽ Aα(ℓ−k)λℓ−1b∞V (x),

where the last inequality follows from (57). Pick α small enough so that λAα < 1. Plugging the
inequality above (with ℓ replaced by sk = ℓ1 + · · ·+ ℓk) into (56) yields

PSx
(
σCη

> k
)
⩽

∞∑
ℓ1,...,ℓk=1

ηk
[
(1− η0)

α(ℓ1+···+ℓk−k) + [λAα]
ℓ1+···+ℓk A−αkλ−1b∞V (x)

]

= ηk

[(
(1− η0)

α

1− (1− η0)α

)k
1

(1− η0)αk
+

(
λAα

1− λAα

)k
1

Aαk
λ−1b∞V (x)

]

= ηk

[(
1

1− (1− η0)α

)k
+

(
λ

1− λAα

)k
λ−1b∞V (x)

]
.

Now set γ := max
(

1
1−(1−η0)α ,

λ
1−λAα

)
and choose η < η0 sufficiently small so that ηγ < 1. Then,

PSx
(
σCη

> k
)
⩽ ηkγk(1 + λ−1b∞V (x)),

and if D ∈ (1, η−1γ−1),

ESx
[
DσCη − 1

D − 1

]
= ESx

[ ∞∑
k=0

Dk1{k<σCη}

]
=

∞∑
k=0

DkPSx
(
σCη

> k
)

⩽
∞∑
k=0

Dkγkηk(1 + λ−1b∞V (x)) =
1 + λ−1b∞V (x)

1−Dγη
.

From (H3) there exists β0 ∈ (1,∞) and D0 <∞ such that

sup
x∈X

∫
N0

βn+1
0 R(x,dn) ⩽ D0.

Let r ∈ (0, 1) and consider βr = βr0 . From Hölder’s inequality,∫
N0

βn+1
r R(x, dn) ⩽

(∫
N0

βn+1
0 R(x, dn)

)r
⩽ Dr

0. (58)

Choose r such that Dr := Dr
0 ∈ (1, η−1γ−1). We can now apply the above inequality in combination

with (48) using the couple (βr, Dr) instead of (β,D) and obtain for all (x, n) ∈ X× N0,

EP(x,n) [β
σB
r ] ⩽ βnr ESx

[
D
σCη
r

]
⩽ βnr

[
1 + (Dr − 1)

1 + λ−1b∞V (x)

1−Drγη

]
⩽ β⋆β

n
r V (x)

since V ⩾ 1, and where

β⋆ = 1 + (Dr − 1)
1 + λ−1b∞
1−Drγη

.

The proof is completed.

B Numerical experiments

B.1 Details of the hyperparameters for the normalizing flows
The normalizing flow is a RQSpline with 10 layers, 8 bins, and a (128, 128) hidden size. The local
sampler is a MALA algorithm with step size 0.1. Training consists of a total of 30 loops with a
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unique epoch each time. 10 global steps are implemented with a further 10 local steps between
each, and the optimizer (Adam) has a learning rate of 8 · 10−4 and a momentum of 0.9. The
seed is 1250. The code generating the figures is available at https://github.com/charlyandral/
importance_markov_chain.
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