A decentralized algorithm for a Mean Field Control problem of Piecewise Deterministic Markov Processes - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2024

A decentralized algorithm for a Mean Field Control problem of Piecewise Deterministic Markov Processes

Résumé

This paper provides a decentralized approach for the control of a population of $N$ agents to minimize an aggregate cost. Each agent evolves independently according to a Piecewise Deterministic Markov dynamics controlled via unbounded jumps intensities. The N-agent high dimensional stochastic control problem is approximated by the limiting mean field control problem. A Lagrangian approach is proposed. Although the mean field control problem is not convex, it is proved to achieve zero duality gap. A stochastic version of the Uzawa algorithm is shown to converge to the primal solution. At each dual iteration of the algorithm, each agent solves its own small dimensional sub problem by means of the Dynamic Programming Principal, while the dual multiplier is updated according to the aggregate response of the agents. Finally, this algorithm is used in a numerical simulation to coordinate the charging of a large fleet of electric vehicles in order to track a target consumption profile.
Fichier principal
Vignette du fichier
main.pdf (610.21 Ko) Télécharger le fichier
Soc1.png (60.86 Ko) Télécharger le fichier
Soc2.png (60.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03910622 , version 1 (22-12-2022)
hal-03910622 , version 2 (25-01-2024)

Licence

Identifiants

Citer

Adrien Séguret, Thomas Le Corre, Nadia Oudjane. A decentralized algorithm for a Mean Field Control problem of Piecewise Deterministic Markov Processes. ESAIM: Probability and Statistics, 2024, 28, pp.22-45. ⟨10.1051/ps/2023021⟩. ⟨hal-03910622v2⟩
218 Consultations
112 Téléchargements

Altmetric

Partager

More