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A decentralized algorithm for a Mean Field Control

problem of Piecewise Deterministic Markov Processes ∗

Adrien Séguret1 Thomas Le Corre2 Nadia Oudjane3

Abstract

This paper provides a decentralized approach for the control of a population of N agents to minimize an aggre-
gate cost. Each agent evolves independently according to a Piecewise Deterministic Markov dynamics controlled
via unbounded jumps intensities. The N -agent high dimensional stochastic control problem is approximated by
the limiting mean field control problem. A Lagrangian approach is proposed. Although the mean field control
problem is not convex, it is proved to achieve zero duality gap. A stochastic version of the Uzawa algorithm is
shown to converge to the primal solution. At each dual iteration of the algorithm, each agent solves its own small
dimensional sub problem by means of the Dynamic Programming Principal, while the dual multiplier is updated
according to the aggregate response of the agents. Finally, this algorithm is used in a numerical simulation to
coordinate the charging of a large fleet of electric vehicles in order to track a target consumption profile.

1 Introduction

This paper focuses on a specific family of stochastic control problems called ”large and aggregative”. The problem
consists in optimizing the strategies of a large number of agents, in a random environment, while the decisions of
all the agents interact via the objective function because the latter depends on an ”aggregative” term as the sum of
the decisions of all the agents. This type of problem occurs naturally in several fields of application such as energy
management [19], telecommunications [23], portfolio management [21], robot coordination [6] among others.
To deal with the curse of dimensionality in such high dimensional stochastic control problems, methods based on
the value function have been developed in the convex setting. For instance, Stochastic Dual Dynamic Programming
[24] relies on polyhedral approximations of the value function providing good performances for medium sized prob-
lems with a number of agents N ≤ 30. In our case, where the number of agents is very large N ≥ 1000, we look
more specifically for decentralized solutions, allowing both to respect the privacy of each agent and to reduce the
complexity of the problem. In the particular setting, where controls are bounded and strong convexity conditions
are satisfied, [28] proposed an iterative stochastic algorithm providing a decentralized solution to such problems.
In the same spirit as the Dual Approximate Dynamic Programming [7], this approach relies on a Lagrangian de-
composition technique to obtain a decentralized solution, but it takes advantage of a mean field approximation to
ensure the validity of the approach when the number of agents is sufficiently large.
This paper aims at extending the decentralized approach developed in [28] to a non-convex framework, with un-
bounded controls, allowing for more realistic dynamics ruling the evolution of each agent state. In particular, we
are interested in the aggregative control of Piecewise Deterministic Markov Processes (PDMPs for short), where the
state of each agent is modelled by a PDMP controlled by an unbounded jump intensity. PDMPs were introduced
in [10] as a class of non-diffusion stochastic models, mixing random jumps and deterministic dynamics between
jumps. This kind of process is used to model a wide broad of phenomena or situations, such as system reliability
and maintenance [12, 32], oil production [33], biology [22, 26] etc. . . The approach proposed in this paper results
in a decentralized algorithm, where at each iteration, each agent is intended to solve its own small dimensional
optimal control problem of PDMP. This type of problem is well known and has been studied through dynamic
programming and related equations [2, 9, 11, 18, 31]. Due to the large number of agents, the problem is formulated
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as a Mean Field Control (MFC for short) problem. Relying on the law of large numbers, the MFC theory consists
in controlling a representative agent of the population, where the interaction between the agents is approximated
by the interaction of this representative agent with the probability distribution of its state or control [5].
This work is particularly motivated by demand-side management in power systems to help balancing between energy
production and consumption. This problem is indeed critical today [30], due to the increasing share of uncontrol-
lable energies (wind and solar) in the electricity generation mix, which requires to compensate the uncontrollable
character of the production by controlling the demand. Controlling the sum of the consumption of each flexible con-
sumer in order to balance the electrical system has already been investigated successfully in the specific framework
of Quadratic Kullback-Leibler control problems [4]. In [29] and [20], a mean field assumption is also considered to
control the charging of a large fleet of electrical vehicles (EVs for short), leading to the optimal control of partial
differential equation problems.

The novelty of the present paper is to extend the Lagrangian approach proposed in [28], to a particular non-
convex setting with unbounded controls by first establishing the existence of a saddle point and then ensuring the
convergence of the decentralized algorithm. The first contribution lies in the originality of the proof of a saddle
point existence which follows a completely different path than the one developed in [28]. In particular, we make
use of the existence and of the regularity results on the solutions of an optimal control problem of a continuity
equation developed in [27], to show the existence of a saddle point of our Lagrangian problem. We highlight that
while bounds assumptions on the jump intensity [2, 9] or compactness assumptions to analyse the Hamilton Jacobi
Bellman equation [18] are common in the optimal control of PDMPs literature, we obtain the existence of a solution
without assuming any a priori bounds on the controlled jump intensity. The second contribution consists in proving
that the Stochastic Uzawa Algorithm proposed in [28] is still providing a converging sequence of controls, in this
new setting involving the PDMP dynamics which violates the convexity conditions originally exploited. Finally, an
application to the smart charging of an electric vehicle fleet by an aggregator illustrates the performance and the
interest of the approach to coordinate the charge of a large number of electric vehicles in order to track a given
target power consumption profile for the whole population of electric vehicles.

The outline of this paper is as follows. In Section 2, we formulate the optimization problem, the assumptions
and the main results. Section 3 presents a dual approach of this problem. The Stochastic Uzawa algorithm is
presented in Section 4 and is proved to converge in this setting. Section 5 presents simulations of the coordination
of power consumption of a large fleet of electrical vehicles.

In the rest of this section we will list some frequently used notations.

Notation Let X be the state space defined by X := I × [0, 1], where I is a finite set, of cardinality d ∈ N∗. Let
[0, T ] be a time interval with T > 0. The space D([0, T ], I) is the space of càdlàg functions from [0, T ] to I. The
spaces C1(X ) (resp. C1([0, T ]×X )) denotes the sets of real-valued continuously differentiable functions defined on
X (resp. on [0, T ] × X ). The space C0([0, T ] × X ,Rd+) denotes the set of continuous functions from [0, T ] × X to

Rd+ and is endowed with the norm ∥f∥∞ := sup
(i,t,j,z)∈I×[0,T ]×X

|fi(t, j, z)|. We consider the spaces

A := {α ∈ C0([0, T ]×X ,Rd+) | ∀i ∈ I, αi(·, i, ·) = 0},

B := C0([0, T ]×X ,Rd+) ∩ L∞([0, T ],W 1,∞(X ,Rd+)
)
,

C := {f ∈ C0([0, T ]×X ,Rd+) | ∂zfi ∈ C0([0, T ]×X )}.

(1.1)

where ∂z is the space derivative w.r.t. the space variable z ∈ [0, 1] and W 1,∞(X ,Rd+) is a Sobolev Space [3, Section
8.2], endowed with norm ∥ · ∥W 1,∞ , defined by

W 1,∞(X ,Rd+) :=
{
f ∈ L∞(X ,Rd+) | ∂zf ∈ L∞(X ,Rd+)

}
∥f∥W 1,∞ := ∥f∥∞ + ∥∂zf∥∞,

and L∞([0, T ],W 1,∞(X ,Rd+)
)
is defined as the set of functions f in L∞([0, T ]×X ,Rd+)) such that {∥f(t, ·)∥W 1,∞}t∈[0,T ]

is bounded. The space of Borel probability measures on the space X is denoted by P(X ). We recall the definition
of the Wasserstein distance, denoted by W, on the space P(X )2:

W(µ, ρ) := sup {
∑
i∈I

∫ 1

0

φ(i, z)(µ(i, dz)− ρ(i, dz)) |φ is 1− Lipschitz from X to R},
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where the discrete set is I is endowed with the usual discrete distance function (equal to 1 for different elements).
The space C0([0, T ],P(X )) is the set of continuous functions from [0, T ] to P(X ), endowed with the distance W∥·∥∞

defined by:
W∥·∥∞(m1,m2) := sup

t∈[0,T ]

W(m1(t),m2(t)). (1.2)

Let H be an Hilbert space and F be a real valued function defined on H. The convex conjugate of F is denoted by
F ∗ and is defined, for any x ∈ H, by F ∗(x) := sup

y∈H
⟨x, y⟩H − F (y).

2 Problem formulation and main results

Motivation
We consider a population of N independent and identically distributed processes, controlled by a central planner

via a common feedback control α. The space of feedbacks, denoted by A, is defined in (1.1) and is endowed with
the norm ∥ · ∥∞. The state of an agent, controlled by the jump intensity α, is given at time t by Xα

t = (Y αt , Z
α
t )

with Y αt ∈ I and Zαt ∈ [0, 1]. In the smart charging application in Section 5, Y α represents the charging mode
of a vehicle, specifying its discrete charging rate (e.g. i = 0 for not charging, i = 1 for charging and i = −1
for discharging). The continuous variable Zα represents the state of charge (SoC for short) of an EV, that is the
ratio of energy charged into the battery w.r.t. the total capacity of the battery. We say that the process Xα is
a PDMP(b, α) with jump intensity α if Xα = (Y α, Zα), where Y α is a jump process with values in I switching
spontaneously, at jump times {Tαk }k∈N given by a Poisson process with intensity αi to switch to mode i ∈ I. The
constraint αi(·, i, 0) = 0 on the control space A in (1.1) is considered to avoid jumps of Y α from i to i. The process
Zα follows a deterministic dynamics between two consecutive jumps Zαt = ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, t) for t ∈ [Tαk , T

α
k+1). For

any (τ, t, j, z) ∈ [0, T ]× [τ, T ]×X , the flow ϕ is the unique solution of the ordinary differential equation:

∂tϕτ,z(j, t) = b(j, ϕτ,z(j, t)) with ϕτ,z(j, τ) = z , (2.1)

where b is a function that is exogenous and depends on the characteristics of the battery and of the charging station.
To be more specific, following the definition of a PDMP given in [13], knowing Tαk and Xα

Tα
k

= (Y αTα
k
, ZαTα

k
), one

obtains (Tαk+1, X
α
Tα
k+1

) as follows:

Tαk+1,j := inf

{
t ≥ Tαk : Ek+1,j <

∫ t

Tα
k

αj
(
r, ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, r)
)
dr

}
∀j ∈ I

Tαk+1 := min
j∈I

Tαk+1,j

Y αTα
k+1

= min
{
j ∈ I |Tαk+1,j = Tαk+1

}
ZαTα

k+1
:= ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, Tαk+1)

Xα
Tα
k+1

= (Y αTα
k+1

, ZαTα
k+1

) ,

(2.2)

where {Ek,j}k,j are independent random variables following an exponential distribution of parameter 1, independent
of Xα

0 . Indeed, the control process α = (αj)j∈I is such that αj(t, x) represents the intensity rate, at time t ∈ [0, T ],
of jumping into mode j ∈ I when coming from state x ∈ X . We initialize T0 = 0 and at time t = 0, the law of the
couple of random variables (Y α0 , Z

α
0 ) is given by m0 ∈ P(X ). Although the dynamics of Xα might seem specific due

to the vector valued jump intensity α, the dynamics (2.1) and (2.2) define a PDMP and the link with the definition
of a PDMP introduced in [10] is described in Section A.1 of the Appendix. Since the control space A is made of
continuous functions and that we assume below in Assumption 1 that b is in C1(X ), the PDMP(b, α) is well defined
for any α ∈ A. The cost function JN for the N -agents problem is defined for any α ∈ A by:

JN (α) := E

[∫ T

0

f

(
t,

1

N

N∑
n=1

p(t,Xn,α
t )

)
dt+

1

N

N∑
n=1

G(α,Xn,α)

]
, (2.3)

where {Xn,α}n∈{1,...,N} are supposed to be independent PDMP(b, α) driven by independent exponential variables.
Indeed, for any n ∈ {1, . . . , N}, Xn,α is supposed to be controlled by the common feedback function α ∈ A only
depending on the agent state Xn. Besides, the function G is common to every agent and defined as the the sum of
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a running and a terminal cost, such that for any x := (y, z) ∈ D([0, T ], I)× C0([0, T ], [0, 1]), by:

G(α, x) :=

∫ T

0

c(t, xt) +∑
j∈I

L(αj(t, xt))

 dt+ g(xT ).

From a practical point of view, the function f represents a coupling cost depending on the aggregate quantity

1

N

N∑
n=1

p(t,Xn,α
t ), and G the individual cost.

Problem formulation
In this paper, we focus on the mean field limit control problem, corresponding to the problem with an infinite

population. Thus, we introduce the function J defined, for any α ∈ A, by:

J(α) :=

∫ T

0

f (t,E[p(t,Xα
t )]) dt+ E [G(α,Xα)] , (2.4)

where Xα is a PDMP(b, α). This paper is dedicated to the following problem:

min
α∈A

J(α). (2.5)

As the cost function (2.4) is nonlinear w.r.t. the expectation term, E
[
p(t,Xα

t )
]
, via the coupling cost f , Problem

(2.5) goes beyond the scope of optimal control of PDMP. We propose to numerically solve Problem (2.5) by applying
the Stochastic Uzawa Algorithm (1), that is detailed in Section 4. This algorithm is introduced in [28] and relies
on the same arguments as those underlying the stochastic gradient descent algorithm [16]. The main result of this
paper, stated in Theorem 2.1, ensures the convergence of the Stochastic Uzawa Algorithm 1 to the solution of
Problem (2.5).

Throughout the paper, we assume the following:
General assumptions

Assumptions 1. The vector field b ∈ C1(X ) is assumed to vanish at the boundary: b(j, 0) = b(j, 1) = 0 for any
j ∈ I.

Assumptions 2. The function p is in C1([0, T ]×X ) and f : [0, T ]×R→ R is a Carathéodory function being lower
semi-continuous (l.s.c. for short), strictly convex and twice differentiable w.r.t. the second variable with Lipschitz
gradient uniformly in time. More precisely, for a.e. t ∈ [0, T ], we have f(t, ·) ∈ C2(R) and there exists a constant
C > 0 independent of t, such that ∥∂2zf(t, ·)∥∞ ≤ C. In addition, there exists a constant Cf > 0 such that, for any
(t, x) ∈ [0, T ]× R,

x2

2Cf
− Cf ≤ f(t, x) ≤ Cf

x2

2
+ Cf . (2.6)

Assumptions 3. It is assumed that c ∈ C1([0, T ]×X ) and g ∈ C1(X ).

Assumptions 4. The function L : R→ R̄ is defined by:

L(x) :=

 l(x) if x > 0,
0 if x = 0,
+∞ otherwise,

where l ∈ C1(R+,R+) is an increasing strongly convex function bounded from above by a quadratic function. More
explicitly, there exists C > 0 such that for any x ∈ R+:

x2

C
− C ≤ l(x) ≤ C(x2 + 1),

where the first inequality is due to the strong convexity of l. We assume that l satisfies lim
x→0

l(x) = 0. Due to the

assumptions on l, L is convex. We denote by H the convex conjugate of L, i.e. H is defined for any x ∈ R by

H(x) := sup
y∈R

xy − L(y).

4



Remark 2.1. The main role of Assumption 1 is to ensure that the flow defined in (2.1) exists and takes values in

[0, 1]. Assumption 2 ensures that
∫ T
0
f (t,E[p(t,Xα

t )]) dt in (2.4) is well defined for any α ∈ A. Also, the regularity
assumptions w.r.t. the space variable z of the function p in Assumption 2 is crucial to show the existence of a
fixed point of a function involving p in Lemma A.2. The continuity of the map α 7→ E[G(α,Xα)] is an automatic
consequence of the properties of c, g and L given in Assumptions 3 and 4. By Assumption 4, H is non-decreasing,
non-negative, and H ′ is Lipschitz continuous on R.

Remark 2.2. The boundary condition on b may seem restrictive in Assumption 1. However, if supp(m0) ⊂
I × (0, 1), any function b that is such that, for any i ∈ I, b(i, 0) ≥ 0, b(i, 1) ≤ 0 and the sign of b(i, ·) is constant,
can be approximated by a function b̃ satisfying the boundary condition. Indeed, for such a function b, there exists
ε > 0 such that P(Zαt ∈ (ε, 1− ε)) = 1 for any any α ∈ A and any t ∈ [0, T ]. Therefore, there exists an open subset
containing the boundaries, that is a.s. never attained and it is possible to approximate b by a smooth function b̃,
vanishing at the boundary without modifying the trajectory of Zn,αt .

The main results of the paper are summarized in the following theorem, and provide the convergence of both
the sequence of iterates and the sequence of function values genrated by Algorithm 1 stated in Section 4.

Theorem 2.1. Problem 2.5 has a solution. Let {αk}k∈N be a sequence in A generated by Algorithm 1 (line 5),
then the following assertions hold

(i) The sequence {αk}k∈N converges a.s. to an element of argmin
α∈A

J(α) w.r.t. the norm ∥ · ∥∞.

(ii) The sequence {J(αk)}k∈N converges a.s. to min
α∈A

J(α).

This theorem can not be obtained by a direct application of [28], which relies on additional assumptions, that
are not verified in the present framework, which involves unbounded controls and PDMP dynamics. The proof of
Theorem 2.1 is given in Section 4. Before, we introduce and analyze in the next section a dual problem proved to
be equivalent, in some sense, to Problem 2.5.

3 Dual approach

In the same vein as [28], a Lagrangian decomposition approach is adopted to obtain a decentralized algorithm.
Contrary to [28], the specific assumptions of convexity, that ensure the absence of duality gap [14, Appendix I]
and the convergence of the Stochastic Uzawa Algorithm, are not satisfied here. In Sections 3 and 4, we propose
new theoretical arguments allowing to demonstrate the validity of the approach proposed in [28] in this specific
framework of control of PDMP.

Let F be defined for any v ∈ L2(0, T ) by:

F (v) :=

∫ T

0

f(t, v(t))dt .

Owing to the properties of f in Assumption 2, one deduces that function F is strictly convex and has at least
quadratic growth. Indeed, for any v, u ∈ L2(0, T ) and γ ∈ [0, 1], by the strict convexity of f , one has

F (γv + (1− γ)u) =
∫ T

0

f(t, v(t) + (1− γ)u(t))dt <

∫ T

0

γf(t, v(t)) + (1− γ)f(t, u(t))dt

= γF (v) + (1− γ)F (u),

and by (2.6)
∥v∥22
2Cf

− TCf ≤ F (v) ≤ Cf
∥v∥22
2

+ TCf .

Lemma 3.1. The problem 
min

α∈A,v∈L2(0,T )
J̄(α, v),

J̄(α, v) := F (v) + E [G(α,Xα)] ,

s.t E[p(t,Xα
t )]− v(t) = 0 a.e on [0, T ] ,

(3.1)

is equivalent to Problem (2.5).
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Proof. The fact that p ∈ C1([0, T ] × X ,R) implies that the map t 7→ E[p(t,Xα
t )] is in L2(0, T ). The equivalence

between the two problems then follows from the definitions of J and J̄ .

Let us introduce the Lagrangian L : A× L2(0, T )× L2(0, T )→ R:

L(α, v, λ) := L1(α, λ) + L2(v, λ) , (3.2)

where

L1(α, λ) := E
[
G(α,Xα)

]
+

∫ T

0

E[p(t,Xα
t )]λ(t)dt , (3.3)

L2(v, λ) := F (v)−
∫ T

0

v(t)λ(t)dt , (3.4)

and the associated dual function W : L2(0, T )→ R:

W(λ) := inf
α∈A
L1(α, λ) + inf

v∈L2(0,T )
L2(v, λ), (3.5)

where inf
α∈A
L1(α, λ) and inf

v∈L2(0,T )
L2(v, λ) are each referred to as sub problem. The dual problem [14, Section 3

Chapter 3] associated to (3.1) consists of the following maximization problem:

max
λ∈L2(0,T )

W(λ). (3.6)

The following lemma states the existence of a unique solution of the dual problem (3.6). It is derived from the
assumptions on f in Assumption 2.

Lemma 3.2. There exists a unique λ̄ ∈ L2(0, T ) such that λ̄ = argmax
λ∈L2(0,T )

W(λ).

Proof. By Assumption 2, one has for a.e. t ∈ [0, T ], that f(t, ·) ∈ C2(R) and ∥∂2zf(t, ·)∥∞ ≤ C (C being independent
of t). Thus, by applying the dominated convergence theorem [3, Theorem 4.2], one deduces that for any v1, v2 ∈
L2(0, T ),

lim
h→0

F (v1 + hv2)− F (v1)
h

=

∫ T

0

∂zf(t, v1(t))v2(t)dt.

Therefore, the map F is Gâteaux differentiable at any v ∈ L2(0, T ) [14, Definition 5.2]. Denoting by DF (v) the
Gâteaux derivative of F at v ∈ L2(0, T ), using the previous equation and that ∥∂2zf(t, ·)∥∞ ≤ C for a.e. t ∈ [0, T ],
one has for any v1, v2, v3 ∈ L2(0, T )

|DF (v1)(v3)−DF (v2)(v3)| =

∣∣∣∣∣
∫ T

0

(
∂zf(t, v1(t))− ∂zf(t, v2(t))

)
v3(t)dt

∣∣∣∣∣
≤ C∥v3∥2∥v1 − v2∥2.

Thus, by previous inequality, F has a Lipschitz continuous gradient. Therefore, the convex conjugate F ∗ of F ,
defined by λ 7→ F ∗(λ) := sup

v∈L2(0,T )

⟨v, λ⟩ − F (v) is strongly convex (see for e.g. [28, Lemma 4.1]). By construction

of the convex conjugate, F ∗ is l.s.c. [14, Section 4 Chapter 1], and so is the function λ 7→ − inf
v∈L2(0,T )

L2(v, λ).

Similarly, for any λ ∈ L2(0, T ), the map λ 7→ − inf
α∈A
L1(α, λ) is convex and l.s.c.. One deduces that −W is strongly

convex and l.s.c. on L2(0, T ). Thus, Problem (3.6) has a unique solution [14, Chapter 2, Proposition 1.2].

The proposition below is a key result, that enables to show the convergence of a sequence {αk}k generated by
Algorithm 4 defined in the next section, to a solution of Problem (2.5) that belongs to the set B, defined in (1.1).

Theorem 3.1. For any λ ∈ L2(0, T ), argmin
α∈A

L1(α, λ) is not empty. In addition, there exists a selection

λ 7→ α[λ] ∈ argmin
α∈A

L1(α, λ) , (3.7)

such that the map L2(0, T ) ∋ λ 7→ α[λ] ∈ A is Lipschitz continuous on any bounded subset of L2(0, T ). Further, for
any λ ∈ L0(0, T ), α[λ] belongs to B.

6



Theorem 3.1 is proved in Section 3.1. This result allows to prove that the dual function W is Gâteaux differ-
entiable in L2(0, T ), that is the main argument of the proof of Theorem 3.2. Theorem 3.2 gives the existence of a
saddle point of the Lagrangian function L. This result provides a solution of Problem (2.5).

Theorem 3.2. There is no duality gap associated with Problem (3.6), i.e.,

max
λ∈L2(0,T )

W(λ) = min
α∈A,v∈L2(0,T )

J̄(α, v).

Besides, argmin
α∈A

L1(α, λ̄) and argmin
v∈L2(0,T )

L2(v, λ̄) are not empty and, there exists ᾱ ∈ argmin
α∈A

L1(α, λ̄) and v̄ ∈

argmin
v∈L2(0,T )

L2(v, λ̄), such that ((ᾱ, v̄), λ̄) is a saddle point of the Lagrangian L and ᾱ is a solution of Problem (2.5).

The proof of Theorem 3.2 is given in Section 3.2. The main argument for the proof of Theorem 3.2 is that the map
λ 7→ W(λ) is Gâteaux differentiable in L2(0, T ). We show that λ 7→ infv∈L2(0,T ) L2(v, λ) and λ 7→ infα∈A L1(α, λ)
are both differentiable. The second result is more difficult to prove. Different intermediary results are needed. First,
properties on the sub problem infv∈L2(0,T ) L2(v, λ) are given in Lemma 3.3. Then, an optimal control problem of
a continuity equation is introduced and proved to be equivalent to the sub problem infα∈A L1(α, λ) in Lemma 3.4.
This optimal control problem is solved using results obtained in [28] and provides a solution of the sub problem
infα∈A L1(α, λ) in Lemma 3.5. Theorem 3.1 is a consequence of Lemma 3.5. Finally, Lemma 3.6 shows that the
map λ 7→ infα∈A L1(α, λ) is Gâteaux differentiable in L2(0, T ). These lemmas are stated and proved below.

The next Lemma shows that, for any λ ∈ L2(0, T ), there exists a unique solution v[λ] of the sub problem
infv∈L2(0,T ) L2(v, λ) and that the map λ 7→ L2(v[λ], λ) is Gâteaux differentiable.

Lemma 3.3.

(i) For any λ ∈ L2(0, T ), there exists a unique v[λ] satisfying v[λ] = argmin
v∈L2(0,T )

L2(v, λ).

(ii) The map λ 7→ min
v∈L2(0,T )

L2(v, λ) admits a Gâteaux derivative λ 7→ DL2(v[λ], λ)(·) in L2(0, T ), which satisfies

that, for any µ ∈ L2(0, T ):

DL2(v[λ], λ)(µ) = −
∫ T

0

v[λ](τ)µ(τ)dτ. (3.8)

Proof. (i) By Assumption (2) the map v 7→ F (v) is strictly convex, continuous, proper on L2(0, T ) and by inequality
(2.6) this map is also coercive. Thus, one can deduce the existence and uniqueness of v[λ] := argmin

v∈L2(0,T )

L2(v, λ) [14,

Chapter 2, Proposition 1.2].
(ii) Since the function F is proper and strictly convex, classical results from convex analysis give that its convex

conjugate F ∗ is differentiable [17, Chapter E, Theorem 4.1.1]. Therefore, the map λ 7→ L2(v[λ], λ) is differentiable
on L2(0, T ), with derivative λ 7→ v[λ].

3.1 Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1. The following optimization problem is studied for any
λ ∈ L2(0, T ),

inf
α∈A
L1(α, λ). (Pλ)

A characterization of a solution of this optimization problem is provided in Lemma 3.5. This lemma relies on the
results obtained in [27] about the characterization of the solutions of a mean field control problem arising in smart
charging. To exploit these results, we first introduce an optimization problem, for a given λ ∈ L2(0, T ), that is
equivalent to Problem (Pλ) and that fits with the framework of [27]. To do so, for a given function α ∈ A, we
introduce the continuity equation (CEQα) on [0, T ]×X :

∂tm(t, i, z) + ∂z(b(i, z)m(t, i, z)) = −
∑
j ̸=i

(αj(t, i, z)m(t, i, z)− αi(t, j, z)m(t, j, z)) (t, i, z) ∈ (0, T )×X ,

mi(0, z) = m0
i (z) (i, z) ∈ X ,

(CEQα)
where m0 ∈ P(X ) is given. The next definition gives the characterization of weak solutions of (CEQα).
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Definition 3.1. For a given function α ∈ A, a distribution m satisfies (CEQα) in the weak sense if m is in
C0
(
[0, T ],P(X )

)
and for any test function ϕ ∈ C∞

c ([0, T ]×X ), we have:

∑
i∈I

∫ 1

0

ϕi(T, i, z)m(T, i, dz)− ϕ(0, i, z)m0
i (dz)

=

∫ T

0

∫ 1

0

∑
i∈I

(∂tϕ(t, i, z) + b(i, z)∂zϕ(t, i, z))m(t, i, dz) +
∑

j∈I,j ̸=i

(ϕ(t, j, z)− ϕ(t, i, z))αj(t, i, z)m(t, i, dz)dt.

The following proposition is a classical result and is crucial to introduce a problem that is equivalent to Problem
(Pλ).

Proposition 3.1. Let m0 ∈ P([0, 1]× I), α ∈ C0([0, T ]×X ,Rd+) and Xα be a PDMP(b, α). Then, the law mα of
the process Xα is the unique weak solution of (CEQα) in the sense of Definition 3.1.

Proof. This result is proved in [8] for controls α that are continuous in space and time independent. The extension
of this result to bounded controls that are measurable in time is straightforward.

We introduce, for any λ ∈ L2(0, T ), the objective function L̄1(·, ·, λ), defined on A× C0
(
[0, T ],P(X )

)
, by

L̄1(α,m, λ) :=

∫ T

0

∫ 1

0

∑
i∈I

(
c(t, i, z) + λ(t)p(t, i, z)

)
mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz),

(3.9)

and the optimization problem
inf

(α,m)∈A×C0([0,T ],P(X ))
L̄1(α,m, λ)

where m is a weak solution of (CEQα).
(P̄λ)

The next lemma establishes the equivalence between Problem (Pλ) and Problem (P̄λ).

Lemma 3.4. For any λ ∈ L2(0, T ), Problem (Pλ) is equivalent to Problem (P̄λ).

Proof. Let α ∈ A Xα be a PDMP(b, α) and mα be the law of Xα. By the definitions of L1 in (3.3) and L̄1 in (3.9),
one has

L1(α, λ) = L̄1(α,m
α, λ). (3.10)

Further, by Proposition 3.1, mα is the unique element of C0([0, T ],P(X )) that is a weak solution of (CEQα). Thus,
(α,mα) is admissible for Problem (P̄λ) and the problems (Pλ) and (P̄λ) are equivalent.

By the previous lemma, it is straightforward that if Problem (P̄λ) has a solution (α,mα), then α is a solution
of Problem (Pλ). For any λ ∈ L2(0, T ), we define φλ, the unique function in C (defined in (1.1)) satisfying for any
(t, i, z) ∈ [0, T ]×X ,

φλ(t, i, z) =

∫ T

t

∑
j∈I,j ̸=i

−H
(
φλ
(
τ, i, ϕt,z(i, τ)

)
− φλ

(
τ, j, ϕt,z(i, τ)

))
+ c
(
τ, i, ϕt,z(i, τ)

)
+ p
(
τ, i, ϕt,z(i, τ)

)
λ(τ)dτ

+g
(
i, ϕt,z(i, T )

)
,

(3.11)
where H is defined in Assumption 4 and the flow ϕ in (2.1). The existence and uniqueness of φλ is a proved in
Lemma A.2 in Appendix A and is closely related to [27, Proposition 4.2]. The next lemma provides a solution of
Problem (P̄λ), based on φλ.

Lemma 3.5. For any λ ∈ L2(0, T ), the control α[λ] defined for any (t, i, j, z) ∈ [0, T ]× I2 × [0, 1] by

αj [λ](t, i, z) := H ′(φλ(t, i, z)− φλ(t, j, z)) (3.12)

is a solution of Problem (Pλ).
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Proof. By Assumption 4, the map H ′ is Lipschitz continuous from R to R+ and by Lemma A.2, φλ is in C. Thus,
α[λ] belongs C0([0, T ]×X ,Rd+) and by the uniform bound of {∥∂zφλ∥∞}t∈[0,T ], there exists a constant C > 0 such
that, for any t ∈ [0, T ], we have ∥α[λ](t, ·)∥∞ + ∥∂zα[λ](t, ·)∥∞ ≤ C. Thus, the control α[λ] is in B.

By Assumption 4, one can show that H ′(0) = 0 and therefore, that αi[λ](·, i, ·) = 0. It comes that α[λ] belongs
to A. By [27, Theorem 2.1], (α[λ],mα[λ]) is a solution of Problem (P̄λ). The conclusion follows from Lemma 3.4.

Remark 3.1. The lemma 3.5 states the existence of a solution of an optimal control problem of PDMP without any
assumptions on the bounds of the set A. Although the boundedness of the space of controls is a common assumption
in the literature [2, 9], some recent results enable to relax partially this assumption [18]. Contrary to the literature
previously cited, our existence and regularity results do not rely on a dynamic programming approach but is a direct
application of the analysis of an optimal control problem of a continuity equation [27].

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.5, for any λ ∈ L2(0, T ), α[λ] defined in (3.12) is a solution of Problem (Pλ).
By the proof of Lemma 3.5, α[λ] belongs to B. Let k > 0 and λ, µ ∈ L2(0, T ) be such that ∥λ∥2 ≤ k and ∥µ∥2 ≤ k.
Then, by the same arguments as in the proof of [27, Lemma 4.5], there exists a constant K(k, T ) > 0 such that for
any (t, i, j, z) ∈ [0, T ]× I × I × [0, 1]:

|αj [λ](t, i, s)− αj [µ](t, i, s)| ≤ K(k, T )∥p∥∞∥λ− µ∥2.

The Lipschitz continuity of the map λ 7→ α[λ] follows from taking the supremum over [0, T ]×X of the l.h.s. of the
previous inequality.

Remark 3.2. Note that rewriting Problem (2.5) w.r.t. to the distribution of the states, as in Lemma 3.4 for the
Problem (Pλ), one can prove Theorem 3.2 by using a change of variable, as it has been done in [27] for a similar
problem. To avoid additional notations, we have preferred to prove Theorem 3.2 by means of Theorem 3.1.

3.2 Proof of Theorem 3.2

The main argument of the proof is that the map λ 7→ W(λ) is Gâteaux differentiable in L2(0, T ). In Lemma 3.3.(ii),
it is proved that λ 7→ inf

v∈L2(0,T )
L2(λ) admits a Gâteaux derivative in L2(0, T ). The next lemma states that the map

λ 7→ inf
α∈A
L1(α, λ) is Gâteaux differentiable in L2(0, T ).

Lemma 3.6. The map λ 7→ inf
α∈A
L1(α, λ) admits a Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in L2(0, T ), such that,

for any µ ∈ L2(0, T ):

DL1(α[λ], λ)(µ) =

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.

Proof. For any λ ∈ L2(0, T ), we recall that the definition of the Gâteaux derivative λ 7→ DL1(α[λ], λ)(·) in the
direction µ ∈ L2(0, T ), if it exists, is:

DL1(α[λ], λ)(µ) := lim
h→0

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h
.

For any h ∈ [0, T ], we have:∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
)µ(τ)dτ =

L1(α[λ+ hµ], λ+ hµ)− L1(α[λ+ hµ], λ)

h

≤ L1(α[λ+ hµ], λ+ hµ)− L1(α[λ], λ)

h

≤ L1(α[λ], λ+ hµ)− L1(α[λ], λ)

h

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
)µ(τ)dτ.

(3.13)
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Since lim
h→0

λ + hµ = λ in L2(0, T ), it turns out from Theorem 3.1 that lim
h→0

α[λ + hµ] = α[λ] ∈ B w.r.t. the norm

∥ · ∥∞. Since p ∈ C1([0, T ]×X ,R), one deduces by Lemma A.1 in Appendix A:

lim
h→0

∫ T

0

E
[
p(τ,Xα[λ+hµ]

τ )
]
µ(τ)dτ = lim

h→0

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ+hµ](τ, i, dz)µ(τ)dτ

=

∫ T

0

∑
i∈I

∫ 1

0

p(τ, i, z)mα[λ](τ, i, dz)µ(τ)dτ

=

∫ T

0

E
[
p(τ,Xα[λ]

τ )
]
µ(τ)dτ.

The conclusion follows by taking the limit h→ 0 in (3.13).

We now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.3.(ii) and Lemma 3.6, W is Gâteaux differentiable in L2(0, T ). For any λ ∈
L2(0, T ), the Gâteaux differential of W at λ is denoted by DW(λ)(·) and is given in the direction µ ∈ L2(0, T ) by:

DW(λ)(µ) =

∫ T

0

(
E
[
p(τ,Xα[λ]

τ )
]
− v[λ](τ)

)
µ(τ)dτ. (3.14)

By the definition of λ̄ given in Lemma 3.2, it results that 0 ∈ ∂(−W(λ̄)). Since −W is convex and Gâteaux
differentiable, its sub-differential is reduced to a singleton and is equal to −DW(λ̄). One has, for any µ ∈ L2(0, T ),
by the previous equality: ∫ T

0

(
E
[
p(τ,Xα[λ̄]

τ )
]
− v[λ̄](τ)

)
µ(τ)dτ = ⟨∂(−W(λ̄)), µ⟩ = 0.

Therefore, one has for a.e. t ∈ [0, T ]:

E
[
p(τ,X

α[λ̄]
t )

]
− v[λ̄](t) = 0. (3.15)

By the previous equality, for any α ∈ A and v ∈ L2(0, T ), satisfying E[p(t,Xα
t )]− v(t) = 0 a.e on [0, T ], one has:

J̄(α[λ̄], v[λ̄]) = L(α[λ̄], v[λ̄], λ̄) ≤ L(α, v, λ̄) = J̄(α, v). (3.16)

By Lemma 3.2 and the definition of W in (3.5)

max
λ∈L2(0,T )

W(λ) =W(λ̄) = L(α[λ̄], v[λ̄], λ̄) = J̄(α[λ̄], v[λ̄]).

Thus, by inequality (3.16) and the previous equality, one has

max
λ∈L2(0,T )

W(λ) = min
α∈A,v∈L2(0,T )

J̄(α, v).

By Lemma 3.3.(i), argmin
v∈L2(0,T )

L2(v, λ̄) is not empty and by Theorem 3.1 argmin
α∈A

L1(α, λ̄) is also not empty. Setting

ᾱ := α[λ̄] and v̄ := v[λ̄], using (3.15) and (3.16), one has for any (α, v, λ) ∈ A× L2(0, T )× L2(0, T )

L(ᾱ, v̄, λ) ≤ L(ᾱ, v̄, λ̄) ≤ L(α, v, λ̄),

and thus, ((ᾱ, v̄), λ̄) is a saddle point of L. Finally, by Lemma 3.1 and inequality (3.16), ᾱ is a solution of Problem
(2.5).

4 Stochastic Uzawa Algorithm

While the existence of a unique solution λ̄ of the dual problem (3.6) is established in Lemma 3.2, we propose in
this section an iterative algorithm converging to λ̄. The convergence of the algorithm relies on the same arguments
as those developed for the analysis of the gradient descent algorithm in Hilbert space [16]. This algorithm is an
adaptation of the Uzawa Algorithm [1] in stochastic optimization settings. The sub gradient of the opposite of
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Algorithm 1 Stochastic Uzawa

1: Initialization λ0 ∈ L∞(0, T ), set {ρk} and M ∈ N∗

2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v[λk] where v[λk] is defined in Lemma 3.3.
5: αk ← α[λk] where α[λk] is defined in (3.12).

6: Generate M independent states realizations (X1,αk

, . . . , XM,αk

) independent of previous iterations simula-
tions.

7: Uk+1 ← vk − 1

M

M∑
j=1

p(·, Xj,αk

· ) .

8: λk+1 ← λk + ρk U
k+1 .

the dual function W is estimated by Monte Carlo simulations. Convexity assumptions introduced in [28] are not
satisfied here.

We consider a sequence {ρk}k satisfying

∞∑
k=0

ρk = ∞ and

∞∑
k=0

ρ2k < ∞ to ensure the convergence. Typically,

consider the sequence defined by ρk =
a

b+ k
with a > 0 and b > 0 chosen empirically to accelerate the convergence.

The next Lemma shows that it is possible at any iteration k to compute α[λk] defined in line 5 of the Algorithm 1.

Lemma 4.1. For any k ∈ N, λk ∈ L∞(0, T ) a.s..

Proof. The proof is done by induction. For k = 0, λ0 is initialized as an element of L∞(0, T ). Assume now that

λk ∈ L∞(0, T ) for an integer k. Since p ∈ C1([0, T ] × X ,R), one has that a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ). We

show now that v[λk] ∈ L∞(0, T ). Since f is l.s.c., it is a normal integrand. By the exchange property [25, Theorem
14.60], one has:

inf
v∈L2(0,T )

∫ T

0

f(t, v(t))− v(t)λk(t)dt =
∫ T

0

inf
v∈R

f(t, v)− vλk(t)dt.

and for a.e. t ∈ [0, T ]:
v[λk](t) ∈ argmin

v∈R
f(t, v)− vλk(t). (4.1)

For any t ∈ [0, T ], f∗(t, ·) denotes the convex conjugate of f(t, ·). Since for any t ∈ [0, T ], f(t, ·) is strictly convex
and by inequality (2.6) has at most quadratic growth, f∗(t, ·) is diferentiable, with linear growth [28, Lemma A.1].
Then, there exists a constant C > 0, such that for any t ∈ [0, T ] one has:

|∇f∗(t, λ(t))| ≤ C
(
|λ(t)|+ 1

)
,

where ∇f∗(t, ·) is the derivative of z 7→ f∗(t, z). By (4.1), one has, for a.e. t ∈ [0, T ], that v[λk](t) = ∇f∗(t, λ(t)).
By previous inequality, one deduces that

∥v[λk]∥∞ ≤ C
(
∥λk∥∞ + 1

)
. (4.2)

The conclusion follows from the definition of λk+1 at line 8 of Algorithm 1, previous inequality and the fact that

a.s.
1

M

M∑
j=1

p(·, Xj,αk

· ) ∈ L∞(0, T ).

The next Lemma provides an estimate on the norm of the gradient ofW, that is crucial to show the convergence
of Algorithm 1.

Lemma 4.2. There exists C > 0 such that the sequence {Uk+1}k generated by Algorithm 1 (line 7) satisfies, for
any k ∈ N,

E
[
∥Uk+1∥2

]
≤ C

(
∥λk∥2 + 1

)
.
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Proof. By Assumption 2, p is in C1([0, T ] × X ,R) thus, there exists C > 0, such that, for any k ∈ N and j ∈
{1, . . . ,M}:

E
[
∥p(·, Xj,αk

· )∥2
]
≤ C.

The conclusion follows from previous inequality, inequality (4.2) in the proof of Lemma 4.1 and the definition of
Uk+1 at line 7 of Algorithm 1.

The convergence of Algorithm 1 is stated in the next lemma.

Lemma 4.3. The sequence {λk}k, generated by Algorithm 1, converges to λ̄ a.s. in L2(0, T ).

Proof. Since W is convex and Gateau differentiable (proof of Theorem 3.2), by Lemma 4.2, the proof is a simple
adaptation of the one in [16, Theorem 3.6], as it has been done in [28].

Before to give the proof of the main result of this paper, we need the following regularity result on the function
J .

Lemma 4.4. The map J defined in (2.4) is continuous on B, w.r.t. the norm ∥ · ∥∞.

Proof. Let α ∈ B, Xα be a PDMP(b, α) and mα be the law of Xα. By the definition of mα and of the map J in
(2.4), J be rewritten as:

J(α) =

∫ T

0

f
(
t,
∑
i∈I

∫ 1

0

p(t, i, z)mα(t, i, dz)
)
dt+

∫ T

0

∫ 1

0

∑
i∈I

c(t, i, z)mα(t, i, dz)dt

+

∫ T

0

∫ 1

0

∑
i,j∈I

L(αj(t, i, z))m
α(t, i, dz)dt+

∫ 1

0

∑
i∈I

g(i, z)mα(T, i, dz).

By the regularity of the functions p, c, g and L in Assumptions 2-4 and the continuity of the map α 7→ mα on B
stated in Lemma A.1 in Appendix A, one obtains the continuity of J over B w.r.t. the norm ∥ · ∥∞.

We can now prove Theorem 2.1.

Proof of Theorem2.1. The existence of a solution to Problem 2.5 is a direct consequence of Theorem 3.2. Indeed,
the control α[λ̄], where by Lemma 3.2 λ̄ is the solution of Problem (3.6), is a solution of Problem (2.5).
(i) By Lemma 4.3, the sequence {λk}k, generated by Algorithm 1, converges to λ̄ a.s. in L2(0, T ). Then, by Theorem
3.1, the sequence {α[λk]}k converges to α[λ̄] a.s. w.r.t. the norm ∥ · ∥∞. Since α[λ̄] is a solution of Problem 2.5 and
that by definition αk = α[λk] ∈ B for any k ∈ N, the conclusion follows.
(ii) Since the sequence {αk}k converges to a solution of Problem 2.5 a.s. w.r.t. the norm ∥ · ∥∞ and by Lemma 4.4
the function J is continuous on B, one deduces that the sequence {J(αk)}k∈N converges a.s. to min

α∈A
J(α).

5 Simulations

This section illustrates the results with an example of smart charging. In this use case, the discrete variable taking
values in I represents the charging mode and the continuous variable taking value in [0, 1] represents the state of
charge (SoC) of electrical vehicles relatively to the maximum energy capacity of the battery. The quantities are
dimensionless.

5.1 Definition of the use Case

We consider a large fleet of EVs controlled by a central planner during their charging period [0, T ]. The goal of the
central planner is to provide ancillary services to the transmission grid by controlling the aggregate consumption
profile of the fleet on the time horizon [0, T ]. More specifically, the central planner aims at making the consumption
profile of the fleet to be close to a given profile r = (rt)0≤t≤T , supposed to be known on the whole period [0, T ]. In
our simulation we compare two situations. In the first case known as V1G, it is assumed that the vehicle batteries
can only draw electricity from the grid, then the set of charging modes is I = {0, 1}, where 0 stands for idle mode
and 1 for charging. In the second case known as V2G, it is assumed that the batteries can either draw or inject
electricity into the grid, then the charging modes are I = {−1, 0, 1}, where −1 corresponds to injection mode. In
each situation, each mode i ∈ I is characterized by its charging rate b(i, ·) such that
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• i = −1 corresponds to a V2G mode with b(−1, z) = −a for z ≥ 0.25 and b(−1, z) = −az for z ≤ 0.25, with

a =
2

5
.

• i = 0 corresponds to a non-charging mode with b(0, z) = 0,

• i = 1 corresponds to a charging mode with b(1, z) = a for z ≤ 0.75 and b(1, z) = a(1 − z) for z ≥ 0.75, with

a =
2

5
.

The charging rate b of the batteries has been designed based on industrial data [15]. The state of each EV, controlled
by α, is represented by a PDMP Xα = (Y α, Zα) with Y αt , the charging mode and Zαt , the SoC of the vehicle at time
t. We assume that the power consumption of a vehicle at state (i, z) ∈ X is equal to its instantaneous charging rate
b(i, z). At time t = 0, Y α0 equals 0 or 1 with probability 1/2, while Zα0 = min(1, |z0|+ 0.15) where z0 ∼ N (0, 0.2).

To ensure customer satisfaction, the final cost g(i, z) := 30× (1− e5(z−0.75))+ penalizes vehicles with a final SoC
z lower than 75%. As previously stated, high values of α are penalized through the cost α2/2 in order to avoid high
frequencies of jumps damaging the batteries. For any t ∈ [0, T ],

c(t, i, z) = 0
p(t, i, z) := b(i, z)

l(a) :=
a2

2

F (v) := κ

∫ T

0

(v(t)− r(t))2dt

with κ = 1000 in order to ensure that the overall consumption is close to the profile r.
The target profile r is a slight modification of the nominal behaviour of the fleet of EVs (without control), with

the same energy consumed over the fixed time horizon [0, T ]. The nominal behaviour corresponds to the situation
where the EVs are not required to fit the target profile and seek only to satisfy their own comfort (namely F (v) = 0).
The idea is to define a realistic target profile so that it is possible for the fleet to follow this profile while satisfying
their charging needs. We consider a population of N = 105 EVs. The optimal control of Problem (2.5) is computed
using Algorithm 1.

5.2 Algorithm parameters

For the implementation of the algorithm, the line 5 is computed by discretization of the Hamilton Jacobi-Bellman-
Equation III.5 associated to α[λ] defined in III.6 with Nt = 1000 regular points of time and Ns = 400 regular points
of SoC. The Lagrangian multipliers λk are obtained after k = 1000 iterations and with M = 1000 realizations and

are displayed in Figure 4. The initial multiplier is λ0 = 0 and the stepsize sequence is such that ρk = min(30,
500

1 + k
).

For each multiplier λ, the associated optimal strategy α[λ] is computed.

5.3 Results

Four periods on Figure 3 are distinguished, depending on whether the target profile is above or below the nominal
consumption. The reference profile is displayed in green. EVs are encouraged to consume more than the nominal
consumption during periods P1 and P3, and to consume less during periods P2 and P4. First, we observe that both
V1G (blue line) and V2G (red line) consumptions are close to the profile r (green line). The main difference lies
in P4, where the possibility for the EVs to perform V2G allows the fleet consumption to stay closer to the target
profile. As expected, the profile is better tracked with the V2G mode, due to the additional degree of liberty. On
Figure 6 one can observe that V2G is used during periods P2 and P4, when the profile r is lower than the nominal
consumption. Ten trajectories of SoC, generated in the V2G use case, are represented in Figure 1. The green line
is an example of a PDMP switching from mode 0 to mode 1 around t = 0.2, from mode 1 to mode -1 around
t = 2.6 and then from mode -1 to mode 1 around t = 4. The initial and final distribution of the SoC of the fleet
are displayed on Figures 7 and 8. While the initial distribution is the same for both scenarios, one can observe that
their final distribution are very closed, and that very few EVs have a SoC lower than 0.75% in both cases. Thus,
the comfort of each agent is weakly impacted by the V2G mode.

To conclude, the interest of adding V2G is confirmed by the comparison of the optimal cost of each scenario

(Figure 2). These optimal costs are decomposed into three parts: the switching cost (
1

2

∫ T

0

∑
j ̸=I

αj(t,X
i,α
t )2dt), the
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Figure 4: Optimal Lagrangian multiplier λ obtained.

final cost (g) and the distance to profile (F ). The low value of the final cost (3.6× 10−4 in the V1G use case and
4.8× 10−2 in the V2G one) shows that, despite the tracking objective, EVs have enough battery at the end of the
period, as previously stated. Moreover, this performance is achieved without significant loss in switching costs, thus
preserving fleet batteries.

A Appendix

A.1 Equivalent definition for Piecewise Deterministic Markov Processes

This section aims at showing the connection between the definition of the PDMP in Section 2, that is based on [13],
and the standard definition of a PDMP introduced in [10].

We consider the same settings as in Section 2, i.e. the finite time horizon [0, T ] with T > 0, the state space
X := I×[0, 1], where I is finite. Considering a control α ∈ A, we define the measurable function λα : [0, T ]×X 7→ R+:

λα(t, i, z) :=
∑
j∈I

αj(t, i, z).

By the definition of A in (1.1), the function λα is non negative, continuous and bounded. Let M be the Borel
set of X . For any α ∈ A, we consider the transition measure Q : M × [0, T ] × X 7→ [0, 1] defined for any
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Figure 7: Initial and Final SoC in the V1G case Figure 8: Initial and Final SoC in the V2G case.
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(A, t, i, z) ∈M× [0, T ]×X by

Qα(A; t, i, z) :=


1

λα(t, i, z)

∑
j∈I

αj(t, i, z)δ(j,z)(A) if λα(t, i, z) > 0,

0 else.

(A.1)

The PDMP(b, α) Xα = (Y α, Y α) defined in Section 2 by (2.2) can alternatively be described as follows [13]:

• the initial state (Y α0 , Z
α
0 ) follows the law m0 ∈ P(X ) and we set Tα0 = 0.

• Knowing Tαk and Xα
Tα
k

= (Y αTα
k
, ZαTα

k
), the next inter-jump time ∆α

k+1 is a random variable, whose law P is
given, for any t ∈ R+ by:

P
[
∆α
k+1 > t] :=

 exp
(
−
∫ Tα

k +t

Tα
k

λα
(
τ, Y αTα

k
, ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, τ)
)
dτ
)

if t ∈ [0, T − Tαk ]

0 else,

where the flow ϕ is the unique solution of the ordinary differential equation (2.1).

• Once ∆α
k+1 is determined, the next jumping time Tαk+1 is given by Tαk+1 := Tαk +∆α

k+1.

• We consider a realization of the couple of variables (Ỹ αk+1, Z̃
α
k+1) with distributionQ(· ;Tαk+1, Y

α
Tα
k
, ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, Tαk+1)).

Note that due to the definition of Q in (A.1), we have Z̃αk+1 = ϕTα
k ,Z

α
Tα
k

(Y αTα
k
, Tαk+1) a.s..

• The trajectory of Xα for t ∈ [Tαk , T
α
k+1] is given by

Xα
t = (Y αt , Z

α
t ) =

{
(Y αTα

k
, ϕTα

k ,Z
α
Tα
k

(Y αTα
k
, t)) if t ∈ [Tαk , T

α
k+1)

(Ỹ αk+1, Z̃
α
k+1) if t = Tαk+1.

A.2 Continuity property of the law of a PDMP w.r.t. the jump intensity

In this section, we provide a result stating the continuity of the map α 7→ mα, where mα is the distribution of the
PDMP(b, α) Xα, from B to C0([0, T ],P(X )), where B is defined in (1.1).

Lemma A.1. The map α 7→ mα is continuous from B, endowed with the norm ∥·∥∞, to C0([0, T ],P(X )), endowed
with the distance W∥·∥∞ .

Proof. Let ψ ∈ C1(X ) and let φ ∈ C1([0, T ]×X ) be the classical solution of the PDE:

∂τφ(τ, i, z) + b(i, z)∂sφ(τ, i, z) = 0 (τ, i, z) ∈ [0, t]×X
φ(t, i, z) = ψ(i, z) (i, z) ∈ ×X . (A.2)

One has ∥φ∥∞ = ∥ψ∥∞, and denoting by γψ the Lipschitz constant of ψ, for any t ∈ [0, T ] φ(t, ·, ·) is Lipschitz

continuous with Lipschitz constant γψe
T∥b′∥∞ .

Let α, ᾱ ∈ B. Since Xα is a PDMP(b, α) and X ᾱ is a PDMP(b, ᾱ), by Proposition 3.1, mα and mᾱ are both
weak solutions of the continuity equation (CEQα) associated respectively with α and ᾱ. Then, by equality (A.2),
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one has: ∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
=
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
− αj(τ, i, z)mα(τ, i, dz) + αi(τ, j, z)m

α(t, j, dz)
)
dτ

+
∑

i∈I,j ̸=i

∫ t

0

∫ 1

0

∑
j∈I

φ(i, τ, z)
(
ᾱj(τ, i, z)m

ᾱ(τ, i, dz)− ᾱi(τ, j, z)mᾱ(τ, j, dz)
)
dτ

=
∑

i∈I,j ̸=i

∫ t

0

∫ 1

0

∑
j∈I

φ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ

+
∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ

(A.3)

Using that φ(t, ·, ·) is Lipschitz continuous with Lipschitz constant γψe
T∥b′∥∞ and that ∂zα ∈ L∞([0, T ]× X ,Rd+),

there exists L > 0 such that:∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mᾱ(τ, i, dz)−mα(τ, i, dz)

)
dτ ≤ LγψeT∥b′∥∞

∫ T

0

W(mα(τ),mᾱ(τ))dτ, (A.4)

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)αj(τ, i, z)
(
mα(τ, j, dz)−mᾱ(τ, j, dz)

)
dτ ≤ LγψeT∥b′∥∞

∫ T

0

W(mα(τ),mᾱ(τ))dτ. (A.5)

Since α, ᾱ ∈ C0([0, T ]×X ,Rd+) and that ∥φ∥∞ ≤ ∥ψ∥∞, one has:

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
ᾱj(τ, i, z)− αj(τ, i, z)

)
mᾱ(τ, i, dz)dτ ≤ |I|∥ψ∥∞∥α− ᾱ∥∞, (A.6)

∑
i∈I

∫ t

0

∫ 1

0

∑
j∈I,j ̸=i

φ(i, τ, z)
(
αi(τ, j, z))− ᾱi(τ, j, z)

)
mᾱ(τ, j, dz)dτ ≤ |I|∥ψ∥∞∥α− ᾱ∥∞. (A.7)

By inequalities (A.4)-(A.7), inequality (A.3) becomes:∫ 1

0

∑
i∈I

ψ(i, z)
(
mα(t, i, dz)−mᾱ(t, i, dz)

)
≤ 2|I|∥ψ∥∞∥α− ᾱ∥∞ + 2Lγψe

T∥b′∥∞

∫ t

0

W(mα(τ),mᾱ(τ))dτ.

Since ψ is arbitrary and in C1(X ), previous inequality becomes, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ≤ 2|I|2∥ψ∥∞∥α− ᾱ∥∞ + 2LeT∥b′∥∞

∫ t

0

W(mα(τ),mᾱ(τ))dτ.

By Gronwall inequality, one deduces that there exists a constant C > 0 such that, for any t ∈ [0, T ],

W(mα(t),mᾱ(t)) ≤ L∥α− ᾱ∥∞.

Thus, W∥·∥∞(mα,mᾱ) ≤ L∥α− ᾱ∥∞ and the continuity of α 7→ mα follows.

A.3 Characterization of an optimal control

This section aims at giving an existence and uniqueness result of the equation (3.11) for any λ ∈ L2(0, T ).

Lemma A.2. For any λ ∈ L2(0, T ), there exists a unique φλ ∈ C satisfying (3.11).
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Proof. The proof follows the path of the proof of [27, Proposition 4.1]. The main difference with the framework of
the proof of [27, Proposition 4.1] is the presence of the term λ(τ)p(τ, i, ϕt,z(i, τ)) in (3.11). Let C0, C1, κ,M > 0 be
constant defined below. We consider the space

D :=
{
f ∈ C

∣∣ ∥f∥∞ ≤M + 1 and ∥∂zf(t, ·)∥∞ ≤ C0e
C1(T−t) ∀t ∈ [0, T ]

}
.

where C is defined in (1.1) and is endowed with the norm ∥ · ∥κ0,1 defined by:

∥f∥κ0,1 := ∥f∥κ∞ + ∥∂sf∥κ∞.

The space (C, ∥ · ∥κ0,1) is a Banach space. We consider the map Γλ, defined on C, by

Γλ(ϕ)(t, i, z) :=

∫ T

t

∑
j∈I,j ̸=i

−H
(
φ
(
τ, i, ϕt,z(i, τ)

)
− φ

(
τ, j, ϕt,z(i, τ)

))
+ c(τ, i, ϕt,z(i, τ))dτ

+

∫ T

t

λ(τ)p(τ, i, ϕt,z(i, τ))dτ + g(i, ϕt,z(i, T )).

(A.8)

Then, by considering a suitable choice of the constants:

• M > 0, as in the proof of [27, Lemma 4.2] with an additional dependence on ∥λ∥2∥p∥∞,

• C0 and C1 as in the proof of [27, Lemma 4.3] with an additional dependence on ∥λ∥2∥∂zp∥∞,

• κ as in the proof of [27, Lemma 4.3],

one can show the existence of a fixed point of the map Γλ on D, following the proof of [27, Lemma 4.4]. Then,
the existence and uniqueness of a solution φλ in D of equation (3.11) is obtained by adapting the proof of [27,
Proposition 4.1].
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