Phase-field approximation for a class of cohesive fracture energies with an activation threshold - Archive ouverte HAL
Article Dans Une Revue Advances in Calculus of Variation Année : 2021

Phase-field approximation for a class of cohesive fracture energies with an activation threshold

Résumé

We study the Γ-limit of Ambrosio-Tortorelli-type functionals Dε(u, v), whose dependence on the symmetrised gradient e(u) is different in Au and in e(u) − Au, for a C-elliptic symmetric operator A, in terms of the prefactor depending on the phase-field variable v. The limit energy depends both on the opening and on the surface of the crack, and is intermediate between the Griffith brittle fracture energy and the one considered by Focardi and Iurlano in [43]. In particular we prove that G(S)BD functions with bounded A-variation are (S)BD.
Fichier principal
Vignette du fichier
PhaseFieldCohesiveRevisedBN.pdf (789.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03908450 , version 1 (20-12-2022)

Identifiants

Citer

Antonin Chambolle, Vito Crismale. Phase-field approximation for a class of cohesive fracture energies with an activation threshold. Advances in Calculus of Variation, 2021, 14 (4), pp.475-497. ⟨10.1515/acv-2019-0018⟩. ⟨hal-03908450⟩
38 Consultations
42 Téléchargements

Altmetric

Partager

More