Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains
Résumé
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existence of positive critical points of the Trudinger-Moser embedding for arbitrary Dirichlet energies. This is done via degree theory, sharp compactness estimates and a topological argument relying on the Poincar\'e-Hopf theorem.
Origine | Fichiers produits par l'(les) auteur(s) |
---|