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CRITICAL POINTS OF ARBITRARY ENERGY FOR THE

TRUDINGER-MOSER EMBEDDING IN PLANAR DOMAINS

ANDREA MALCHIODI, LUCA MARTINAZZI, AND PIERRE-DAMIEN THIZY

Abstract. Given a smoothly bounded non-contractible domain Ω ⊂ R2, we
prove the existence of positive critical points of the Trudinger-Moser embed-
ding for arbitrary Dirichlet energies. This is done via degree theory, sharp
compactness estimates and a topological argument relying on the Poincaré-
Hopf theorem.

1. Introduction

Given a smoothly bounded domain Ω ⊂ R2, i.e. a bounded domain with smooth
boundary, let H1

0 = H1
0 (Ω) be the usual Sobolev space of functions with zero trace

on ∂Ω endowed with the norm ‖ · ‖H1
0
given by

‖u‖2H1
0

=

∫
Ω

|∇u|2dx.

Given any positive real number β > 0, our main purpose is to discuss the existence
of a nonnegative function, critical point of the classical [5, 19, 20, 24, 32, 34, 37, 39]
Moser-Trudinger functional

F (u) :=

∫
Ω

(
eu

2

− 1
)
dx , (1.1)

constrained to the submanifold

Mβ :=
{
v ∈ H1

0 : ‖v‖2H1
0

= β
}

(1.2)

of H1
0 . This is equivalent to �nding a solution of the following elliptic problem

∆u = 2λueu
2

, u > 0 in Ω ,

u = 0 on ∂Ω ,∫
Ω
|∇u|2dx = β ,

(Eβ)

for some real number λ, where ∆ = −∂xx − ∂yy is the (nonnegative) Laplacian.
Our main result reads as follows (see also Remark 2.5 below):

Theorem 1.1. Let Ω ⊂ R2 be a smoothly bounded non-contractible domain. Then,
given any positive real number β > 0, there exists a nonnegative function u, critical
point of F constrained toMβ ⊂ H1

0 . In particular, u is smooth and solves (Eβ).

Theorem 1.1 eventually gives a fairly complete answer to a long-standing open
problem. Indeed the existence of critical points of F |Mβ

in the supercritical regime
β > 4π is quite subtle, due to the critical nature of the nonlinearity which, in
addition to the failure of the Palais-Smale condition, makes the blow-up estimates
very delicate. For β ≤ 4π maximizers are known to exist thanks to the celebrated
results of Carleson-Chang [5], Struwe [37] and Flucher [19]. Moreover, still in [37],

1



2 A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

Struwe proved the existence of ε0 > 0 such that F |Mβ
has a positive local maximizer

for every β ∈ (4π, 4π+ε0) and a mountain pass-type positive critical point for almost
every β ∈ (4π, 4π + ε0). The existence of a second positive critical point for every
β ∈ (4π, 4π + ε0) was proven by Lamm-Robert-Struwe [25] using a �ow approach.
In these results, there is no condition on the smoothly bounded domain Ω, but on
the other hand, the requirement that β is close to 4π is essential. More recently,
via a Lyapunov-Schmidt construction, Del Pino-Musso-Ruf [13] studied the case in
which Ω is not simply connected and β is close to 8π. That the topology of Ω plays
an important role in the existence of critical points of F |Mβ

is also suggested by
the result of the �rst and second authors [28], showing that when Ω is a disk F |Mβ

has no positive critical point for β su�ciently large.

The case in which the domain Ω is replaced by a two-dimensional closed surface
was recently studied in [11] using the barycenter technique of Djadli-Malchiodi [16]
(see also Bahri [2]) taking advantage of the variational structure, a minmax argu-
ment together with Struwe's monotonicity trick to obtain solutions of a subcritical
approximate problem for almost every β > 0, and blow-up analysis together with
energy estimates at critical energy levels to conclude. Here instead, in order to
prove Theorem 1.1, we will use the Leray-Schauder degree, together with a de-
formation argument based on compactness to link our problem to the Mean-Field
equation {

∆u = β 2eu∫
Ω
eudx

,

u = 0 on ∂Ω ,
(EMF
β )

studied e.g. in Ding-Jost-Li-Wang [15], and for which a degree theory approach has
been proposed by Chen and Lin [7, 8]. In particular, the purpose of Section 3 is to
give an argument to get a degree formula for a gradient vector �eld, proven by [8]
to encode the so-called �nite dimensional reduction of (EMF

β ) (see Proposition 2.3

below).

In order to deform Problem (Eβ) into a mean-�eld type equation, given β > 0,
we consider the following p-dependent family of problems:

∆u = pλup−1eu
p

, u > 0 in Ω ,

u = 0 on ∂Ω ,

λp2

2

(∫
Ω

(
eu

p − 1
)
dx
) 2−p

p
(∫

Ω
upeu

p

dx
) 2(p−1)

p = β ,

(Ep,β)

parametrized by p ∈ [1, 2]. First, as seen when integrating by parts, solving (Ep,β)
for p = 2 is equivalent to solving (Eβ). Moreover, (Ep,β) still has a nice variational
structure for p ∈ [1, 2) and β > 0 (see [11]). At last, any nonnegative nontrivial
weak H1

0 -solution of the PDE in (Ep,β) is eventually smooth and positive in Ω, as
proven from Trudinger [39] with standard elliptic theory (see for instance Gilbarg-
Trudinger [21]).

Let N? be the set of the positive integers and N the set of the nonnegative ones.
The Leray-Schauder degree computation, which is a by-product of our strategy to
solve (Eβ), is given in the following result:

Theorem 1.2. Let Ω ⊂ R2 be a smoothly bounded domain. Let p ∈ (1, 2], N ∈ N
and β ∈ (4πN, 4π(N + 1)] be given. Then the total Leray-Schauder degree dp,β(Ω)

of the solutions of (Ep,β) is well-de�ned and equals the binomial number
(
N−χ(Ω)

N

)
,
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where χ(Ω) stands for the Euler characteristic of Ω. In particular, if either Ω is
not simply connected or if N = 0, we have dp,β(Ω) 6= 0, so that the set Cp,β(Ω) of
the solutions of (Ep,β) is not empty.

We adopt here the usual convention that
(−1

0

)
= 1 and

(
N−1
N

)
= 0 for N ∈ N?. We

recall that the genus g(Ω) := 1− χ(Ω) is basically the �number of holes� inside Ω,
so that Ω is simply connected if and only if χ(Ω) = 1.

Interestingly enough, given p ∈ [1, 2), our topological assumption on Ω is sharp
in the following sense: (Ep,β) does not have any solution for β su�ciently large, as
soon as Ω is simply connected (see [3, 4]). Yet, for p = 2, we state the following
delicate question which looks open, except in the aforementioned case of the disk:

Open problem. Let Ω ⊂ R2 be a simply connected domain. Does there exists
β] > 4π such that (Eβ) does not have any solution for β > β]?

To conclude this introductory part, we mention that the degree formula in Theorem
1.2 also implies the existence of blowing-up solutions for (Ep,β) (see Remark 2.4).

2. Proof of Theorems 1.1 and 1.2

As a �rst ingredient, since the nonlinearities in the right-hand of the PDE in
(Ep,β) are autonomous, we may use the following by-product of the moving plane
technique, already used for instance by Adimurthi and Druet [1] in a similar context:

Proposition 2.1. Let Ω ⊂ R2 be a smoothly bounded domain. Then there exists
δ, δ′ > 0 depending only on Ω such that, for any nonnegative, nondecreasing C1-
function f : [0,+∞)→ R, for all v solving{

∆v = f(v), v > 0 in Ω ,

v = 0 on ∂Ω ,

and all x ∈ ∂Ω, the function t 7→ u(x− tν(x)) has positive derivative in [0, δ], where
ν(x) is the unit outward normal to ∂Ω at x, and we have

∇v(x) = 0 =⇒ d(x, ∂Ω) ≥ δ′ > 0 . (2.1)

Proof of Proposition 2.1 (completed). The existence of δ > 0 as in the statement of
the proposition is a direct consequence of the classical moving plane argument in
de Figueiredo-Lions-Nussbaum [10] if Ω is convex, while it has to be combined with
Kelvin's transform in our general two-dimensional case, as observed by Han [22].
Then, since the map (t, x) 7→ x− tν(x) is a di�eomorphism from [0, δ]× ∂Ω onto a
neighborhood of ∂Ω inside Ω̄, up to reducing δ > 0, (2.1) follows by compactness
of ∂Ω. �

Proposition 2.1 is an important ingredient to take advantage of the blow-up
analysis developed to get [11, Theorem 4.1] on a closed surface in our present
setting of a bounded domain Ω, ensuring that no new phenomena arise close to the
boundary. Hence we have the following theorem:

Theorem 2.1. Let (λε)ε be any sequence of positive real numbers and (pε)ε be any
sequence of numbers in [1, 2]. Let (uε)ε be a sequence of smooth functions solving{

∆uε = pελεu
pε−1
ε eu

pε
ε , uε > 0 in Ω ,

uε = 0 on ∂Ω ,
(2.2)
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for all ε. Let βε be given by

βε =
λεp

2
ε

2

(∫
Ω

(
eu

pε
ε − 1

)
dx

) 2−pε
pε
(∫

Ω

upεε e
upεε dx

) 2(pε−1)
pε

for all ε. If we assume the energy bound

lim
ε→0

βε = β ∈ [0,+∞) ,

but the pointwise blow-up of the uε's, namely limε→0 maxΩ uε = +∞ , then λε → 0+

and there exists an integer N ∈ N? such that β = 4πN .

Independently, multiplying the equation in (Ep,β) by a �rst Dirichlet eigenfunction

v1 of the Laplacian, integrating by parts and using ptp−1et
p ≥ 2t for all t ≥ 0 and

p ∈ [1, 2], we get

0 < 2λ ≤ λ1 (2.3)

as soon as a (nontrivial) solution u of (Ep,β) exists.

Outline of the proof of Theorem 2.1. Overall, the proof follows closely [11, Sections
2-4]. It is even simpler in the present framework where Dirichlet boundary condi-
tions are imposed, since we no longer need to handle the additional coercivity term
huε in the left-hand ∆guε + huε of the equation in [11, equation (4.1)] analogue
to (2.2) here: indeed, all along the argument of [11], this additional term is just
estimated by error terms which can be taken now to be zero.

More precisely, as pioneered by Druet [17, Sections 3-4] when pε = 2 for all ε (see
also [18, Section 3]), we start with the following proposition giving a �rst pointwise
exhaustion of the concentration points, as well as weak gradient estimates under
the assumptions of Theorem 2.1:

Proposition 2.2. Up to a subsequence, there exist an integer n ∈ N? and sequences
(xi,ε)ε of points in Ω such that ∇uε(xi,ε) = 0, such that, setting γi,ε := uε(xi,ε),

µi,ε :=

(
8

λεp2
εγ

2(pε−1)
i,ε eγ

pε
i,ε

) 1
2

→ 0 , (2.4)

and such that
pε
2
γpε−1
i,ε (γi,ε − uε(xi,ε + µi,ε·))→ T0 := ln

(
1 + | · |2

)
in C1

loc(R2) , (2.5)

as ε→ 0, for all i ∈ {1, ..., n}. Moreover, there exist C > 0 such that we have

min
i∈{1,...,n}

upε−1
ε |xi,ε − ·||∇uε| ≤ C in Ω

for all ε. We also have that limε→0 xi,ε = xi for all i, and that there exists u0 ∈
C2(Ω̄\S) such that

lim
ε→0

uε = u0 in C1
loc(Ω̄\S) ,

where S ⊂ Ω consists of all the xi's.

About the concentration points xi,ε of this proposition, being critical points of
the uε's by construction, (2.1) yields that they cannot collapse to the boundary so
that proving Proposition 2.2 does not require new arguments with respect to the
ones to get [11, Proposition 4.1]. In addition, (2.3) and (2.4) yield that γi,ε → +∞,
so that (2.5) really points out a concentration pro�le at �rst order for the uε's.
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But at that stage, as in [11, Section 2], the strategy is to consider a radially
symmetric much more precise ansatz solving the same equation (i.e. set now h0 ≡ 0
in [11, (2.6)]), whose relevance in the non-radial setting can be quanti�ed (see [11,
Section 3] picking now h ≡ 0 in [11, (3.8)]). Thus assumption [11, (2.5)] and the
related [11, (3.6), (3.17)-(3.19), second requirement in (3.21), (4.26), Lemma 4.1]
can be now ignored. The terms wl,ε in [11, (4.47)] and w̃ε in [11, (4.85)] used
to control this additional linear term are also now useless and we eventually do
get Theorem 2.1 by following the lines of [11, Sections 2-4], since no speci�c new
di�culty may arise close to the boundary thanks to Propositions 2.1 and 2.2. As a
last important remark, the lower bound on d(xi,ε, ∂Ω) from Proposition 2.2 is also
used to get the key property λε → 0+, arguing as in [11, Step 4.2]. �

Remark 2.1. As pointed out in [31], the positivity of the uε's is essential to have
energy quantization (i.e. β ∈ 4πN?) in Theorem 2.1. Moreover, even restricting
to nonnegative functions, we stress that there exist Palais-Smale sequences asso-
ciated to (Eβ) with arbitrary limiting energy β > 4π and converging weakly to 0
in H1

0 (see Costa-Tintarev [9]), so that not only the quantization, but even the
quanti�cation proved for solutions by Druet [17] fail for general Palais-Smale se-
quences (see also [30] for examples with non-zero weak limit entering in the frame-
work of [17], but where quantization fails). This is in striking constrast with a
large class of otherwise closely related critical problems for which quanti�cation al-
ready holds for Palais-Smale sequences (see for instance the pioneering work [36]
by Struwe). This is maybe the clearest evidence of the huge di�culty to run directly
standard variational techniques generating Palais-Smale sequences to solve (Eβ),
and motivates our compactness techniques considering only exact solutions instead
of Palais-Smale sequences.

In the speci�c case of the mean-�eld equation, i.e. when pε = 1 for all ε, with
the same notation and assumptions as in Theorem 2.1, we obviously get

βMF
ε :=

λε
2

∫
Ω

eudx = βε +
λε|Ω|

2
→ β = 4πN ∈ 4πN? (2.6)

as ε→ 0. At that stage, another additional ingredient for our proof is the following
result stated here with the same notation and conventions as in Theorem 1.2:

Theorem 2.2. Let Ω ⊂ R2 be a smoothly bounded domain and h ∈ C1(Ω̄) be
positive. Let N ∈ N and β ∈ (4πN, 4π(N + 1)) be given. Then the total Leray-
Schauder degree dMF

β,h (Ω) of all the solutions of the mean-�eld equation{
∆u = β 2heu∫

Ω
heudx

,

u = 0 on ∂Ω ,
(EMF
β,h )

is well-de�ned and equals
(
N−χ(Ω)

N

)
.

As an obvious remark, a solution of (EMF
β,h ) has to be positive in Ω. Theorem

2.2, which is only needed here for a constant function h > 0, has been stated �rst
in Chen-Lin [8]. Indeed, these authors show in their beautiful work:

Proposition 2.3 (Chen-Lin [8]). For all N ∈ N and all β ∈ (4πN, 4π(N + 1)),
dMF
β,h (Ω) is equal to a constant dMF

N (Ω), which is 1 for N = 0. Moreover, we have
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the following degree jump formula:

dMF
N+1(Ω)− dMF

N (Ω) =
(−1)N

N !
deg(∇ΦN,h,Ω

N \DN , 0), (2.7)

where

ΦN,h(x1, . . . , xN ) = 8π
∑
i 6=j

G(xi, xj) + 4π
∑

1≤i≤N

H(xi, xi) +
∑

1≤i≤N

lnh(xi) (2.8)

is de�ned in ΩN \DN with DN := {(x1, . . . , xN ) ∈ ΩN : ∃i 6= j , xi = xj}, where
G is the Green's function of ∆ with zero Dirichlet boundary conditions on Ω, where
H is the regular part of G normalized here as

G(x, y) =
1

2π
ln

1

|x− y|
+H(x, y), (2.9)

and where deg(∇ΦN,h,Ω
N \ DN , 0) is the Brouwer degree (or total index) of the

vector �eld ∇ΦN,h.

Contrary to what occurs on a closed manifold, it turns out that, in order to
compute the degree of ∇ΦN,h, the classical Poincaré-Hopf formula does not directly
apply in the present setting of a bounded domain since ∇ΦN,h points outwards
only on a strict subset of the boundary of its domain, non-empty as soon as N > 1.
Another goal of this paper is to provide an argument showing that, for topological
reasons relying strongly on the fact that every connected component of ∂Ω has zero
Euler characteristic in our two-dimensional case (crucial point in Lemma 3.5, see
also Remark 2.2 just below), the following formula for the degree of ∇ΦN,h holds
in the present setting of a smoothly bounded domain Ω, so that the degree formula
in Theorem 2.2 follows from Propositions 2.3 and 2.4.

Remark 2.2. It is known that any closed odd-dimensional manifold has zero Euler-
characteristic, so that this aforementioned property for every connected boundary
component of ∂Ω holds more generally for any smoothly bounded Ω ⊂ Rn with n
even. Indeed, with minimal changes, our proof extends to this case which is relevant
for instance for the fourth-order mean-�eld equation in Lin-Wei-Wang [27].

Proposition 2.4. The degree of ∇ΦN,h is well-de�ned on ΩN \DN and one has

deg(∇ΦN,h,Ω
N \DN , 0) = χ(Ω)(χ(Ω)− 1)...(χ(Ω)−N + 1). (2.10)

Proving Proposition 2.4 is the purpose of Section 3.

We are now in position to prove Theorems 1.1 and 1.2, starting with the speci�c
case where β > 0 is out of the set 4πN? of the critical energy levels.

Proof of the degree formula of Theorem 1.2 for β 6∈ 4πN?. During this whole �rst
part, we �x N ∈ N and β ∈ (4πN, 4π(N + 1)). For t ∈ [0, 1] and p ∈ [1, 2], let
Tp,β and T

MF
t,β be the Fredholm-type nonlinear operators given for any non-negative

non-zero function v ∈ C1(Ω̄) by

Tp,β(v) = v −∆−1

 2βvp−1ev
p

p
(∫

Ω
(evp − 1) dx

) 2−p
p
(∫

Ω
vpevpdx

) 2(p−1)
p


and

TMF
t,β (v) = v −∆−1

(
2βev∫

Ω
(eu − t)dx

)
,
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where ∆−1f is the solution w of ∆w = f with zero Dirichlet boundary conditions.
By Theorem 2.1 and formula (2.6) with standard elliptic theory and (2.3), there
exist constants C > c > 0 such that

‖u‖C1(Ω̄) < C and u > cv1 in Ω

for all u positive in Ω solving TMF
t,β (u) = 0 for some t ∈ [0, 1], and all u solving

Tp,β(u) = 0, i.e. (Ep,β), for some p ∈ [1, 2], where v1 is still a given �rst Dirichlet
eigenfunction of ∆ chosen positive in Ω. Let C1

0 (Ω̄) be the closed subspace of C1(Ω̄)
consisting of the functions vanishing on ∂Ω. Let V be the open subset of C1

0 (Ω̄)
given by

V =

{
v ∈ C1

0 (Ω̄) s.t.
v > cv1 in Ω ,
‖v‖C1(Ω̄) < C

}
.

Using Hopf's lemma, observe that only positive functions in Ω are in the closure
of V for the C1(Ω̄)-topology, in particular neither the zero nor any sign-changing
function is in this closure. Then,

(p, v) 7→ Tp,β(v) and (t, v) 7→ TMF
t,β (v)

are continuous from [1, 2] × V and [0, 1] × V respectively into C1
0 (Ω̄), by standard

elliptic theory. Observe in particular that this continuity does hold for Tp,β up

to p = 1 despite the jump of (p, t) ∈ [1, 2] × (0 + ∞) 7→ ptp−1et
p

at t = 0+

as p → 1. Using also that these operators do not vanish on the boundary of
V by construction, the total Leray-Schauder degree dp,β(Ω) := degLS(Tp,β ,V, 0)
(resp. dMF

t,β (Ω) := degLS(TMF
t,β ,V, 0)) of all the solutions of (Ep,β) (resp. of all

the functions v > 0 in Ω such that TMF
t,β (v) = 0) is well-de�ned, see for instance

Nirenberg [33].

Remark 2.3. It is convenient to work here within the space C1
0 (Ω̄), but one could

ask whether the degree thus de�ned coincides with the one that one could de�ne
within the natural variational space H1

0 . The arguments in Li [26, Appendix B]
slightly transposed to the present situation show that it is actually the case.

Now, for t = 0, the formula for the total degree dMF
0,β (Ω) of all the solutions of

(EMF
β ) is given by Theorem 2.2. Moreover, we clearly have T1,β = TMF

1,β , so that

d1,β(Ω) = dMF
1,β (Ω). Using then our de�nition of V, Theorem 2.2 and the homotopy

invariance of the total Leray-Schauder degree as far as compactness holds, we have
dp,β(Ω) = d1,β(Ω) for all p ∈ [1, 2] on the one hand, while dMF

t,β (Ω) = dMF
0,β (Ω) =

dMF
1,β (Ω) for all t ∈ [0, 1] on the other hand, which concludes the proof of Theorem
1.2, and thus that of Theorem 1.1, in this �rst case where β 6∈ 4πN?. �

Remark 2.4. Let p ∈ [1, 2] be �xed. A posteriori, by contraposing the homotopy
invariance of the Leray-Schauder degree as far as compactness holds, observe that
the e�ective degree jump of dp,β(Ω) at the levels β ∈ 4πN?, as soon as the genus
g(Ω) is greater than 1, imposes the existence of a sequence of blowing-up solutions
with limiting energy β = 4πN for all N ∈ N? as in Theorem 2.1 with pε = p (see
also Deng-Musso [14] or del Pino-Musso-Ruf [12, 13] for speci�c constructions of
such blowing-up solutions for (Ep,β)).

In order to complete the proof of Theorems 1.1 and 1.2, it remains to treat the
case β ∈ 4πN?. This will be based on the estimate in the following theorem, saying
roughly that for p ∈ (1, 2] the amount of Dirichlet energy near each blow-up point
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approaches 4π from above. This estimate was �rst proven in the radial case and
for p = 2 by Mancini and the second author [29], then extended to the case of
a bounded domain in R2 by the third author [38] (see also Ibrahim-Masmoudi-
Nakanishi-Sani [23] for related results), �nally on a closed two-dimensional surface
[11, Theorem 5.1]. Taking Proposition 2.1 into account, the proof of [11, Theorem
5.1] can be easily adapted to yield:

Theorem 2.3. Assume pε = p ∈ (1, 2] for all ε and let uε, λε, βε → β = 4πN ∈
4πN? be as in Theorem 2.1. Then

βε ≥ 4π

N +
4(p− 1)(1 + o(1))

p2

∑
1≤i≤N

1

γ2p
i,ε

 as ε→ 0 (2.11)

where the sequence (γi,ε)ε is given by Proposition 2.2 for all i.

Conclusion of the proof of Theorems 1.1 and 1.2. We �x now p ∈ (1, 2]. Then,
from Theorem 2.3 we get that βε > β for all ε small enough in Theorem 2.1.
As a consequence, for any given N ∈ N and small η ∈ (0, 1], we have compactness
of all the solutions of (Ep,β) for all β ∈ [4π(N + η), 4π(N + 1)]. In particular,
we may de�ne as above an open neighborhood V ′ ⊂ C1

0 (Ω̄) containing all these
solutions and whose closure contains only positive functions in Ω. Then, the map
(β, v) 7→ Tp,β(v) is continuous from [4π(N + η), 4π(N + 1)] × V ′ to C1

0 (Ω̄) and,
by a deformation argument as above, we get that the total Leray-Schauder degree
degLS(Tp,β ,V ′, 0) of all the solutions of (Ep,β) is well-de�ned and does not depend
on β ∈ [4π(N + η), 4π(N + 1)]: Theorems 1.1 and 1.2 are proven. �

Remark 2.5. Relying now on [18], we may get a more general non-homogeneous
version of Theorem 1.1, which can be stated as follows:

Theorem 2.4. Let Ω ⊂ R2 be a smoothly bounded domain and h be a smooth
positive C2-function in Ω̄. Let Fh be given in H1

0 by

Fh(v) :=

∫
Ω

(
ev

2

− 1
)
h dx

and Mβ ⊂ H1
0 be as in (1.2). Assume that Ω is not contractible. Then, given

any positive real number β > 0, there exists a nonnegative function u, critical point
of Fh constrained to Mβ. In particular, u is smooth and solves (Ep,β,h) below for
p = 2.

Proof of Theorem 2.4. We �x p = 2. Given β ∈ (4πN, 4π(N + 1)], we claim that
the total Leray-Schauder degree dp,β,h(Ω) of the solutions of

∆u = pλhup−1eu
p

, u > 0 in Ω ,

u = 0 on ∂Ω ,

λp2

2

(∫
Ω

(
eu

p − 1
)
h dx

) 2−p
p
(∫

Ω
upeu

p

h dx
) 2(p−1)

p = β ,

(Ep,β,h)

is well-de�ned and does not depend of h, positive C2-function in Ω̄, so that it

always equals
(
N−χ(Ω)

N

)
, formula given by Theorem 1.2 for h ≡ 1. Indeed, �rst

given β > 0 out of 4πN?, it follows from the quantization and the associated
compactness result in [18] that dp,β,hr (Ω) is well-de�ned and does not depend of
r ∈ [0, 1], where hr = (1 − r) + rh. Fixing now such an h, N ∈ N and η ∈ (0, 1]
and using that boundary blow-up cannot either occur for the solutions of (Ep,β,h)
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(see Remark 2.6 just below), the energy estimate in Theorem 2.3 from [11, Section
5] still holds here and gives the compactness of all the solutions of (Ep,β,h) for all
β ∈ [4π(N + η), 4π(N + 1)], so that dp,β,h(Ω) does not depend on β in this range
by following the second part of the above proof: Theorem 2.4 is proven. �

Remark 2.6. Excluding boundary blow-up is actually the most delicate part in [18]
where p is �xed equal to 2. The analogue property appears to be open for p ∈ (1, 2).

3. Degree formula for the vector field associated to EMF
β,h on a

bounded domain Ω

The purpose of this section is to prove Proposition 2.4. Let G be the Green's
function of ∆ with zero Dirichlet boundary conditions and H be its regular part
with the convention in (2.9). Given y ∈ Ω, notice that

G(x, y)→ +∞ as x→ y and that H(x, x)→ −∞ as x→ ∂Ω.

Given a positive function h ∈ C1(Ω), let ΦN,h be given by (2.8). To �x the notation,
we will write

∇ΦN,h(x1, . . . , xN ) = (∇x1
ΦN,h(x1, . . . , xN ), . . . ,∇xNΦN,h(x1, . . . , xN )),

with

∇xjΦN,h(x1, . . . , xN ) = 16π
∑

1≤`≤N
` 6=j

∇G(xj , x`) + 8π∇H(xj , xj) +
∇h(xj)

h(xj)
,

where we denote by ∇G(x, y) and ∇H(x, y) the gradient with respect to the �rst
variable.

In order to get Proposition 2.4, we �rst need to analyse the compactness of the
critical points of ΦN,h.

3.1. Compactness of critical points of ΦN,h. In this subsection we prove that,
uniformly with respect to t ∈ [0, 1], critical the points of

ΦtN,h(x1, . . . , xN ) := 8π
∑

1≤i,j≤N
i6=j

G(xi, xj) + 4π
∑

1≤i≤N

H(xi, xi) + t
∑

1≤i≤N

lnh(xi)

cannot be arbitrarily close to the boundary of ΩN \DN , implying that the degree
in Proposition 2.4 is well-de�ned. More precisely, de�ne

(ΩN \DN )δ := {(x1, . . . , xN ) ∈ ΩN \DN : |xi − xj | > δ for 1 ≤ i < j ≤ N,
d(xi, ∂Ω) > δ for 1 ≤ i ≤ N}.

(3.1)

Lemma 3.1. For every M > 0, there exists δ > 0 such that

|∇ΦtN,h(x1, . . . , xN )| ≥M, for every (x1, . . . , xN ) ∈ (ΩN\DN )\(ΩN\DN )δ, t ∈ [0, 1].

As a consequence, the degree of ∇ΦtN,h is well-de�ned on ΩN \DN as

deg(∇ΦN,h,Ω
N \DN , 0) := deg(∇ΦN,h, A, 0),

for any open set A with (ΩN \DN )δ ⊂ A ⊂ ΩN \DN .
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Proof. Consider sequences

(tk)k∈N ⊂ [0, 1], (x1,k, . . . , xN,k)k∈N ⊂ ΩN \DN

such that
∇ΦtkN,h(x1,k, . . . , xN,k) = O(1), as k →∞. (3.2)

Set

ri,k := min

{
di,k,min

j 6=i
|xi,k − xj,k|

}
, di,k := d(xi,k, ∂Ω). (3.3)

Up to extracting a subsequence and reordering the indices we can assume that

r1,k ≤ rj,k, for 1 ≤ j ≤ N, (3.4)

and set
rk := r1,k, xk := x1,k, dk := d1,k. (3.5)

It su�ces to prove that lim infk→∞ rk > 0. Then we assume, by contradiction, that

lim
k→∞

rk = 0. (3.6)

We now scale the domain Ω and the functional ΦtkN,h at xk by a factor rk. More

precisely, we set Ωk := r−1
k (Ω− xk) and, for (z1, . . . , zN ) ∈ ΩNk \DN , we de�ne

Ξk(z1, . . . , zN ) = ΦtkN,h(xk + rkz1, . . . , xk + rkzN )

= 8π
∑

1≤i,j≤N
i6=j

Gk(zi, zj) + 4π
∑

1≤i≤N

Hk(zi, zi) + tk
∑

1≤i≤N

lnhk(zi),

where Gk and Hk are the Green's function of ∆ on Ωk and its regular part, and
hk(z) := h(xk + rkz). Then (3.2) gives

∇Ξk(z1,k, . . . , zN,k) = O(rk), as k →∞, (3.7)

where
(z1,k, . . . , zN,k) := (r−1

k (x1,k − xk), . . . , r−1
k (xN,k − xk)).

Up to a further subsequence we set

D := {i ∈ {1, . . . , N} : |xi,k − xk| = O(rk) as k →∞}, (3.8)

and have

lim
k→∞

|xi,k − xk|
rk

= +∞ for i ∈ {1, . . . , N} \ D. (3.9)

Clearly D 6= ∅, since 1 ∈ D. De�ne also, up to a subsequence,

Z ′ = (zi)i∈D, Z ′k = (zi,k)i∈D → Z ′∞ = (zi,∞)i∈D, as k →∞.
Notice that (3.3) and (3.8) imply

1

C
rk ≤ |xi,k − xj,k| ≤ Crk for i, j ∈ D, i 6= j, (3.10)

and in particular zi,∞ 6= zj,∞ for i, j ∈ D, i 6= j. We now de�ne the �reduced�
functional

ΞD,k(z1, . . . , zN ) :=8π
∑
i,j∈D
i 6=j

Gk(zi, zj) + 4π
∑
i∈D
Hk(zi, zi) + tk

∑
i∈D

lnhk(zi)

+ 16π
∑
i∈D

∑
1≤j≤N
j 6∈D

Gk(zi, zj).
(3.11)
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From (3.7) we get
∇Z′ΞD,k(z1,k, . . . , zN,k) = O(rk). (3.12)

Taking (3.6) into account, we now consider 2 cases.

Case 1. Assume that, up to a subsequence,

rk = o(dk) as k →∞. (3.13)

Then Ωk invades R2 as k →∞ and, choosing K ⊂ R2 compact containing zi,k for
i ∈ D and k large, we get from Lemma A.1

∇Gk(zi,k, zj,k) =
1

2π
∇ ln

1

|zi,k − zj,k|
+O

(
rk
dk

)
, for i, j ∈ D,

∇Gk(zi,k, zj,k) =
1

2π
∇ ln

1

|zi,k − zj,k|
+O

(
rk
dk

)
= o(1), for i ∈ D, j 6∈ D,

∇Hk(zi,k, zi,k) = O

(
rk
dk

)
for i ∈ D,

as k →∞. Moreover ∇ lnhk(zi,k) = O(rk) as k →∞ for i ∈ D. Then from (3.11)
and (3.12) we infer

∇ΞD,R2(Z ′k) = o(1), as k →∞, (3.14)

where

ΞD,R2(Z ′) := 4
∑
i,j∈D
i 6=j

ln
1

|zi − zj |
. (3.15)

Notice that, thanks to (3.3), (3.8) and (3.13), we have D ∩ {2, . . . , N} 6= ∅. Since
also 1 ∈ D, the sum in (3.15) is non-empty. Letting now k →∞ in (3.14) it follows
that ∇ΞD,R2(Z ′∞) = 0. This contradicts Lemma A.3.

Case 2. Assume that we are not in Case 1. Then since rk ≤ dk, we have up to a
subsequence

dk
rk
→ L ≥ 1, as k →∞.

Then, up to a rotation, Ωk converges to the half-space H = {(x, y) ∈ R2 : y < L}.
Let GH andHH be the Green's function onH and its regular part, as given explicitly
in the appendix. Choosing K ⊂ H compact containing zi,k for i ∈ D and k large,
by Lemma A.2 we estimate

∇Gk(zi,k, zj,k) = ∇GH(zi,k, zj,k) +O (rk) , for i, j ∈ D
∇Gk(zi,k, zj,k) = o(1), for i ∈ D, j 6∈ D
∇Hk(zi,k, zi,k) = ∇HH(zi,k, zi,k) +O (rk) for i ∈ D,

and ∇ lnhk(zi,k) = O(rk) as k → ∞ for i ∈ D, hence, from (3.11) and (3.12) we
obtain

∇ΞD,H(Z ′k) = o(1), as k →∞, (3.16)

where
ΞD,H(Z ′) := 8π

∑
i,j∈D
i6=j

GH(zi, zj) + 4π
∑
i∈D
HH(zi, zi).

Letting k →∞ in (3.16) we get ∇ΞD,H(Z ′∞) = 0, contradicting Lemma A.5.

These contradictions, arising from assumptions (3.2) and (3.6), complete the proof
of the lemma. �
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A �rst consequence of Lemma 3.1 is that the degree of ΦN,h does not depend on
h, so that in the following we will work with h ≡ 1.

Corollary 3.1. We have

deg(∇ΦN,h,Ω
N \DN , 0) = deg(∇ΦN ,Ω

N \DN , 0),

where, for (x1, . . . , xN ) ∈ ΩN \DN ,

ΦN (x1, . . . , xN ) := 8π
∑

1≤i,j≤N
i6=j

G(xi, xj) + 4π
∑

1≤i≤N

H(xi, xi).

Proof. We can deform ΦN,h = Φ1
N,h into ΦN = Φ0

N,h and use the invariance of the

degree under homotopy, since for δ su�ciently small and t ∈ [0, 1], ΦtN,h has no

critical points on ∂(ΩN \DN )δ. �

3.2. Bending the Robin function to apply the Poincaré-Hopf theorem.
Since we will not be able to apply the theorem of Poincaré-Hopf directly to ∇ΦN
to compute deg(∇ΦN ,Ω

N \DN , 0), as ∇ΦN does not always point outwards near

∂(ΩN \ DN ), we now introduce a modi�ed function Φ̃N by bending the function
H(y, y) upwards near the boundary of Ω, in order to obtain a function that tends
to +∞ on ∂(ΩN \ DN ). More precisely, let τ ∈ C∞([0,∞)) be a non-decreasing
function such that

τ(t) = 1 for t ≥ 1

2
, τ(t) = −1 for t ≤ 1

4
,

and set

H̃(x) := H(x, x)τ

(
d(y, ∂Ω)

δ̃

)
, (3.17)

see Figure 1. Let then Φ̃N be given in ΩN \DN by

Figure 1. Heuristic sketch of H̃ near ∂Ω

Φ̃N (x1, . . . , xN ) = 8π
∑

1≤i,j≤N
i 6=j

G(xi, xj) + 4π
∑

1≤i≤N

H̃(xi). (3.18)

We next show that for 0 < δ′ < δ/2 and for δ̃ su�ciently small (depending on
δ′), the topological strips determined by δ′ < d(y, ∂Ω) < δ is a forbidden zone for

critical points of Φ̃, as made precise in the following lemma.
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Lemma 3.2. For every M ′ > 0 there exist δ > 0, such that for any δ′ ∈ (0, δ/2)

there exists δ̃ ∈ (0, δ′/2) such that, setting Φ̃N depending on δ̃ as in (3.17)-(3.18),
we have

|∇Φ̃N (x1, . . . , xN )| ≥M ′

if (x1, . . . , xN ) ∈ ΩN \ DN is such that δ′ ≤ d(xi, ∂Ω) ≤ δ for some 1 ≤ i ≤ N .

In particular, if (x1, . . . , xN ) is a critical point of Φ̃N , then either d(xi, ∂Ω) > δ or
d(xi, ∂Ω) < δ′ for every i = 1, . . . , N .

Proof. Fix M ′ > 0 and let δ := min1≤I≤N δI , where δI is the constant δ appearing
in Lemma 3.1 applied with N replaced by I and with M = M ′ + 1 > 0.

Assuming by contradiction that the lemma is false, we can �nd δ′ ∈ (0, δ/2), and

sequences δ̃k → 0 and (x1,k, . . . , xN,k) ⊂ ΩN \DN such that, for Φ̃N,k de�ned using

δ̃k, we have

|∇Φ̃N,k(x1,k, . . . , xN,k)| < M ′ as k →∞, (3.19)

and such that, up to relabelling,

δ′ ≤ d(x1,k, ∂Ω) ≤ δ. (3.20)

Up to passing to subsequence and a further relabelling, let I ∈ {1, . . . , N} such that

lim
k→∞

d(xi,k, ∂Ω) > 0 for 1 ≤ i ≤ I, (3.21)

and

lim
k→∞

d(xj,k, ∂Ω) = 0, I + 1 ≤ j ≤ N.

By (3.20) and Lemma 3.1 we have

|∇ΦI(x1,k, . . . , xI,k)| ≥M ′ + 1, (3.22)

where

ΦI(x1, . . . , xI) := 8π
∑

1≤i,j≤I
i 6=j

G(xi, xj) + 4π
∑

1≤i≤I

H(xi, xi).

Observe, on the other, hand that

∇G(xi,k, xj,k) = o(1), 1 ≤ i ≤ I, I + 1 ≤ j ≤ N, (3.23)

with o(1)→ 0 as k →∞ (since xj,k is approaching ∂Ω, while xi,k is not as k →∞).

Then, by (3.21), for k large enough (hence δ̃k su�ciently small), we have

Φ̃N,k(x1,k, . . . , xN,k) =ΦI(x1,k, . . . , xI,k) + 16π
∑

1≤i≤I
I+1≤j≤N

G(xi,k, xj,k)

+ 8π
∑

I+1≤i,j≤N

G(xi,k, xj,k) + 4π
∑

I+1≤J≤N

H̃k(xj,k).

Then, setting X ′ := (x1, . . . , xI), from (3.19), (3.22) and (3.23) we get

M ′ >|∇X′Φ̃N,k(x1,k, . . . , xN,k)| = |∇ΦI(x1,k, . . . , xI,k)|+ o(1)

≥M ′ + 1 + o(1),

giving a contradiction for k large enough. �

We now have the analog of Lemma 3.1 for Φ̃N .



14 A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

Lemma 3.3. For every M ′′ > 0 there exists δ′′ ≤ δ̃
2 depending on δ̃ and M ′′ such

that

|∇Φ̃N (x1, . . . , xN )| ≥M ′′

for every (x1, . . . , xN ) ∈ (ΩN \ DN ) \ (ΩN \ DN )δ′′ . In particular, all the critical

points of ∇Φ̃N are in (ΩN \DN )δ′′ and we can de�ne

deg(∇Φ̃N ,Ω
N \DN , 0) := deg(∇Φ̃N , A, 0),

for any open set A such that (ΩN \DN )δ′′ ⊂ A ⊂ ΩN \DN .

Proof. The proof by contradiction is essentially identical to the proof of Lemma
3.1, upon noticing the following facts. In Case 1, namely rk = o(dk), if (up to a
subsequence) dk → 0 as k →∞, then

H̃(xi,k) = −H(xi,k, xi,k) for i ∈ D, k large,

hence

∇H̃k(zi,k) = −∇Hk(zi,k, zi,k) = O(rk), for i ∈ D, k large.

If dk 6→ 0, from (3.17), we bound

|∇H̃(xi,k)| = O(∇H(xi,k, xi,k) + Cδ̃|H(xi,k, xi,k)|) = O(1), as k →∞, i ∈ D,

hence again ∇H̃k(zi,k) = O(rk) as k → ∞ for i ∈ D, where H̃k(z) := H̃(xk +
rkz). Then, up to a subsequence, Z ′k converges to Z ′∞, a critical point of ΞD,R2 ,
contradicting Lemma A.3.

In Case 2, since d(x1,k, ∂Ω) → 0, we also have d(xi,k, ∂Ω) → 0 as k → ∞ for

i ∈ D, hence H̃(xi,k) = −H(xi,k, xi,k) for i ∈ D and k large enough. Then, setting
Ξ−D,k as in (3.11) with hk ≡ 1 and Hk(zi, zi) replaced by −Hk(zi, zi), we obtain

∇Ξ−D,H(Z ′∞) = 0, where

Ξ−D,H(Z ′) := 8π
∑
i,j∈D
i6=j

GH(zi, zj)− 4π
∑
i∈D
HH(zi, zi),

contradicting Lemma A.5. �

We recall next a variant of the classical Poincaré-Hopf index theorem, which can
be found e.g. in [6], pages 99-104 (here we adapt the statement to our purposes).

Proposition 3.1. Let U ⊂ Rn be an open set and consider f ∈ C2(U,R). Assume
also that, for some b ∈ R, f b := {x ∈ U : f(x) < b} has compact closure, and that
f has no critical points in f−1(b). Then we have

deg(∇f, f b, 0) = χ(f b). (3.24)

Lemma 3.4. We have

deg(∇Φ̃N ,Ω
N \DN , 0) = χ(Ω)(χ(Ω)− 1)...(χ(Ω)−N + 1). (3.25)

Proof. Since

lim
(x1,...,xN )→∂(ΩN\DN )

Φ̃N (x1, . . . , xN ) = +∞,

we can take b > 0 large enough such that

(ΩN \DN )δ′′ ⊂ (Φ̃N )b,
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Figure 2. (x1, . . . , xN ) ∈ Θ∗δ,δ′,I = ((Ωδ)
I \DI)× ((Σδ′)

N−I \DN−I)

where δ′′ is as in Lemma 3.3 withM ′′ = 1. Then, since (ΩN \DN )\ (Φ̃N )b contains

no critical points of Φ̃N by Lemma 3.3, we can apply Proposition 3.1 to get

deg(∇Φ̃N ,Ω
N \DN , 0) = deg(∇Φ̃N , (Φ̃N )b, 0) = χ((Φ̃N )b).

Since (ΩN \DN ) \ (Φ̃N )b contains no critical points of Φ̃N , we can use a gradient

�ow to retract (ΩN \DN ) to (Φ̃N )b. Therefore χ((Φ̃N )b) = χ(ΩN \DN ), and we
conclude with Proposition B.1 below. �

3.3. Counting the new critical points. By bending the Robin function we have
in general created new critical points near the boundary. In this section we will
show that these new critical points do not change the total degree. To this purpose,
we now de�ne the following sets (see Figure 2):

Ωδ := {y ∈ Ω : d(y, ∂Ω) > δ} ; Σδ′ := Ω \ Ωδ′ ,

and for 0 ≤ I ≤ N
Θ∗δ,δ′,I =

{
(x1, . . . , xN ) ∈ ΩN \DN : x1, . . . , xI ∈ Ωδ, xI+1, . . . , xN ∈ Σδ′

}
= ((Ωδ)

I \DI)× ((Σδ′)
N−I \DN−I);

Θδ,δ′,I =
{

(x1, . . . , xN ) ∈ ΩN \DN : (xσ(1), . . . , xσ(N)) ∈ Θ∗δ,δ′,I

for a permutation σ ∈ SN
}

;

Θ∗δ,δ′,δ′′,I = Θ∗δ,δ′,I ∩ (ΩN \DN )δ′′ , Θδ,δ′,δ′′,I = Θδ,δ′,I ∩ (ΩN \DN )δ′′ .

By Lemmata 3.2 and 3.3, we can de�ne for 0 ≤ I ≤ N − 1

deg(∇Φ̃N ,Θδ,δ′,I , 0) := deg(∇Φ̃N , A, 0)

for any open set A such that Θδ,δ′,δ′′,I ⊂ A ⊂ Θδ,δ′,I . Moreover, there are no

critical points of Φ̃N in (ΩN \ DN ) \ ∪NI=0Θδ,δ′,I by Lemma 3.2; therefore by the

excision property and noting that Θδ,δ′,N = (Ωδ)
N \DN and that Φ̃N = ΦN inside

(Ωδ)
N \DN , we have

deg(∇Φ̃N ,Ω
N \DN , 0) = deg(∇ΦN , (Ωδ)

N \DN , 0) +
∑

0≤I≤N−1

deg(∇Φ̃N ,Θδ,δ′,I , 0)

= deg(∇ΦN , (Ωδ)
N \DN , 0) +

∑
0≤I≤N−1

(
N

I

)
deg(∇Φ̃N ,Θ

∗
δ,δ′,I , 0).

(3.26)

Lemma 3.5. Up to choosing δ′ su�ciently small in Lemma 3.2 (and δ̃ and δ′′

correspondingly), we have that

deg(∇Φ̃N ,Θ
∗
δ,δ′,I , 0) = deg(∇X′ΦI , (Ωδ)I \DI , 0)× deg(∇X′′Φ̃N−I , (Σδ′)N−I \DN−I , 0),
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for 0 ≤ I ≤ N − 1, where

X ′ = (x1, . . . , xI), X ′′ = (xI+1, . . . , xN ), X = (X ′, X ′′),

and the degrees are well-de�ned intersecting the domains with (ΩI \ DI)δ′′ and
(ΩN−I \DN−I)δ′′ .

Proof. For X ∈ Θ∗δ,δ′,I we have

xi ∈ Ωδ for 1 ≤ i ≤ I, xa ∈ Σδ′ for I + 1 ≤ a ≤ N. (3.27)

Interestingly, the gradient almost decouples into the �rst I components and the last
N − I. In fact, since H̃(x) coincides with H(x, x) for x ∈ Ωδ, we have

Φ̃N (X) = ΦI(X
′) + Φ̃N−I(X

′′) + ΞI,N (X),

where

Φ̃N−I(X
′′) = 8π

∑
I+1≤a,b≤N

a 6=b

G(xa, xb) + 4π
∑

I+1≤a≤N

H̃(xa);

ΞI,N (X) = 16π
∑

1≤i≤I<a≤N

G(xi, xa).

Notice that

G(xi, xa) = oδ′(1), ∇G(xi, xa) = oδ′(1),

with oδ′(1) → 0 as δ′ → 0 (for δ �xed), uniformly with respect to xi and xa as in

(3.27). Now observe that X = (x1, . . . , xN ) ∈ ∂Θ∗δ,δ′,δ′′,I (with δ
′′ < δ̃

2 to be �xed)
implies that one of the following holds

(1) |xi − xj | = δ′′ for some 1 ≤ i < j ≤ I;
(2) |xa − xb| = δ′′ for some I + 1 ≤ a < b ≤ N ;
(3) d(xi, ∂Ω) = δ for some 1 ≤ i ≤ I;
(4) d(xa, ∂Ω) = δ′ for some I + 1 ≤ a ≤ N ;
(5) d(xa, ∂Ω) = δ′′ for some I + 1 ≤ a ≤ N .

If we chooseM = M ′ = M ′′ = 1 in Lemmata 3.1, 3.2 and 3.3 and δ, δ′, δ′′ su�ciently
small, we obtain that in all the above cases

max{|∇X′ΦI(X ′)|, |∇X′′Φ̃N−I(X ′′)|} ≥ 1, for X ∈ ∂Θ∗δ,δ′,δ′′,I . (3.28)

Then, by the analog of (3.23), we can choose δ′ even smaller (changing also δ̃
accordingly) so that in addition to (3.28) we also have

|∇ΞI,N (X)| ≤ 1

2
for X ∈ ∂Θ∗δ,δ′,δ′′,I . (3.29)

Consider now for t ∈ [0, 1]

Φ̃tN (X) := ΦI(X
′) + Φ̃N−I(X

′′) + tΞI,N (X).

Then (3.28)-(3.29) imply at once

|∇Φ̃tN (X)| ≥ |(∇X′ΦI(X ′),∇X′′Φ̃N−I(X ′′))| − |∇ΞI,N (X)| > 0 forX ∈ ∂Θ∗δ,δ′,δ′′,I .

By the invariance of the degree under homotopy, we obtain

deg(∇Φ̃N ,Θ
∗
δ,δ′,δ′′,I , 0) = deg(∇Φ̃0

N ,Θ
∗
δ,δ′,δ′′,I , 0)

= deg((∇X′ΦI(X ′),∇X′′Φ̃N−I(X ′′)),Θ∗δ,δ′,δ′′,I , 0),
(3.30)

and we conclude by the product formula of the degree. �
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Lemma 3.6. Up to choosing δ′ su�ciently small (reducing δ̃, δ′′ accordingly), for
1 ≤ J ≤ N we have

deg(∇Φ̃J , (Σδ′)
J \DJ , 0) = 0.

Proof. We will work on the the larger domain Σ2δ′ , and modify H̃ in the strip
Σ2δ′ \ Σδ′ = Ω̄δ′ \ Ω̄2δ′ by de�ning

Ĥ(x) := H̃(x) + σ

(
d(x, ∂Ω)

δ′

)
,

where σ ∈ C∞([0, 2)) is non-negative, non-decreasing, and

σ(t) =

{
0 for 0 ≤ t ≤ 1,

ln
(

1
2−t

)
for 3

2 ≤ t < 2.

Clearly Ĥ = H̃ in Σδ′ , so that

deg(∇Φ̃J , (Σδ′)
J \DJ , 0) = deg(∇Φ̂J , (Σδ′)

J \DJ , 0), (3.31)

where, for (x1, . . . , xJ) ∈ (Σ2δ′)
J \DJ ,

Φ̂J(x1, . . . , xJ) = Φ̃J(x1, . . . , xJ) +
∑

1≤i≤J

σ

(
d(xi, ∂Ω)

δ′

)
= 8π

∑
1≤i,j≤J
i 6=j

G(xi, xj) + 4π
∑

1≤i≤J

Ĥ(xi).
(3.32)

Thanks to Lemmata 3.7 and 3.8 below, we can choose δ′ > 0 even smaller than be-
fore, and δ̃ accordingly small (without a�ecting the previous results, which are

valid for δ′, δ̃ and δ′′ su�ciently small), so that Φ̂J has no critical points in(
(Σ2δ′)

J \ (Σδ′)
J
)
\DJ . Then

deg(∇Φ̂J , (Σδ′)
J \DJ , 0) = deg(∇Φ̂J , (Σ2δ′)

J \DJ , 0). (3.33)

Since now

lim
(x1,...,xJ )→∂((Σ2δ′ )

J\DJ )
Φ̂J(x1, . . . , xJ) = +∞,

we can apply Proposition 3.1, and get

deg(∇Φ̂J , (Σ2δ′)
J \DJ , 0) = χ((Σ2δ′)

J \DJ). (3.34)

On the other hand, χ(Σ2δ′) = 0, since Σ2δ′ retracts to a union of circles (up to
choosing δ′ su�ciently small) and χ(S1) = 0. Then it follows from Proposition B.1

χ((Σ2δ′)
J \DJ) = 0.
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This, together with (3.31), (3.33) and (3.34) yields deg(∇Φ̃J , (Σδ′)
J \ DJ , 0) =

χ((Σ2δ′)
J \DJ) = 0. �

Lemma 3.7. For 1 ≤ J ≤ N and M ′ > 0 and δ > 0 there exists δ′ ∈ (0, δ/2) such
that

|∇ΨJ | ≥M ′ in (Σ2δ′)
J \DJ ,

where, for x1, . . . , xJ ∈ (Ω \ Ω2δ′)
J \DJ ,

ΨJ(x1, . . . , xJ) := ΦJ(x1, . . . , xJ) +
∑

1≤i≤J

σ

(
d(xi, ∂Ω)

δ′

)

= 8π
∑

1≤i,j≤J
i6=j

G(xi, xj) + 4π
∑

1≤i≤J

H(xi) +
∑

1≤i≤J

σ

(
d(xi, ∂Ω)

δ′

)
,

(3.35)

and G and H are still the Green's function of ∆ in Ω (not in Ω \ Ω2δ′) and its
regular part.

Proof. We assume by contradiction that there exist sequences δ′k → 0+ and

(x1,k, . . . , xJ,k) ∈ (Σ2δ′k
)J \DJ

such that

∇Ψk
J(x1,k, . . . , xJ,k) = O(1) as k →∞, (3.36)

where the notation Ψk
J is meant to emphasize that ΨJ depends on δ′k, due to the

last term in (3.35). We proceed as in the proof of Lemma 3.1. Set

ri,k = min

{
di,k, d̂i,k,min

j 6=i
|xi,k − xj,k|

}
,

where

di,k := d(xi,k, ∂Ω), d̂i,k := d(xi,k, ∂Ω2δ′k
) = 2δ′k − d(xi,k, ∂Ω).

Up to reordering we assume r1,k ≤ ri,k for every 1 ≤ i ≤ J , and set

rk := r1,k, dk := d1,k, d̂k := d̂1,k, xk := x1,k.

De�ne D, Zk, Z ′k → Z ′∞, Ωk, as in the proof of Lemma 3.1, and similarly

(Σ2δ′k
)k := r−1

k (Σ2δ′k
− xk).

Then we set, for Z = (z1, . . . , zJ) ∈ ((Σ2δ′k
)k)J \DJ ,

Ξ̂D,k(z1, . . . , zN ) :=8π
∑
i,j∈D
i 6=j

Gk(zi, zj) + 16π
∑
i∈D

∑
1≤j≤N
j 6∈D

Gk(zi, zj)

+ 4π
∑
i∈D
Hk(zi, zi) +

∑
i∈D

σ

(
rkd(zi, ∂Ωk)

δ′k

)
,

(3.37)

where Gk and Hk are the Green's function of ∆ on Ωk and its regular part, respec-
tively. Observe that rk ≤ δ′k → 0 as k →∞. We consider several cases.

Case 1 Assume that, up to a subsequence, rk = o(dk), rk = o(d̂k) as k →∞. Since

∇zσ
(
rkd(z, ∂Ωk)

δ′k

)
= ∇zσ

(
d(xk + rkz, ∂Ω)

δ′k

)
= rk∇xσ

(
d(x, ∂Ω)

δ′k

) ∣∣∣∣
x=xk+rkz

,
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and

σ′
(
d(xi,k, ∂Ω)

δ′k

)
= O

(
δ′k
d̂k

)
, |∇d(·, ∂Ω)| = 1, for i ∈ D

we infer

∇zσ
(
rkd(zi,k, ∂Ωk)

δ′k

)
= O

(
rk

d̂k

)
= o(1) as k →∞, for i ∈ D.

Then we can proceed as in Case 1 of the proof of Lemma 3.1 to get that Z ′∞ is
critical point of ΞD,R2 , as de�ned in (3.15), contradicting Lemma A.3.

Case 2 Assume that, up to a subsequence, rk = o(d̂k), dk
rk
→ L ≥ 1 as k → ∞.

This implies that rk = o(δ′k) as k → ∞ and, up to a rotation, (Σδ′k)k converges to

a half-space H = {(x, y) ∈ R2 : y < L}. We proceed as in Case 1, except that now

σ

(
rkd(zi,k, ∂Ωk)

δ′k

)
= 0, for i ∈ D, k large enough.

Then Ξ̂D,k(Zk) = ΞD,k(Zk) for k large enough, where ΞD,k is as in (3.11) (with
tk = 0). Then we are in the same situation as Case 2 of the proof of Lemma 3.1,
leading to the same contradiction, i.e. Z ′∞ is a critical point of ΞD,H , violating
Lemma A.5.

Case 3 Assume that, up to a subsequence, rk = o(dk), d̂krk → L̂1 ≥ 1. This implies
in particular that, up to a subsequence,

rk = o(δ′k),
d̂i,k
rk
→ L̂i ≥ 1 as k →∞, for i ∈ D. (3.38)

Then, up to a rotation (Σ2δ′k
)k converges to Ĥ = {(x, y) ∈ R2 : y > −L̂}. As before,

rk = o(dk) implies rk = o(di,k) for i ∈ D and it follows ∇Hk(zi,k, zi,k) = O(rk) as
k →∞ for i ∈ D. Considering that

rkd(zi,k, ∂Ωk)

δ′k
=
d(xi,k, ∂Ω)

δ′k
→ 2, as k →∞, for i ∈ D,

and σ(t) = − ln(2− t) for 3
2 ≤ t < 2, we have that

∇zσ
(
rkd(zi,k, ∂Ωk)

δ′k

)
=

rk∇d(zi,k, ∂Ωk)

2δ′k − rkd(zi,k, ∂Ωk)
=
−rk∇d(zi,k, ∂(Ω \ Ω2δ′k

)k)

d̂i,k

→ −∇zd(zi,∞, ∂Ĥ)

L̂i
= ∇z ln

1

d(zi,∞, ∂Ĥ)
,

(3.39)

since L̂i = d(zi,∞, ∂Ĥ). Then Z ′∞ is a critical point of

Ξ̂D,Ĥ(Z) = 4
∑
i,j∈D
i 6=j

ln
1

|zi − zj |
+
∑
i∈D

ln
1

d(zi, ∂Ĥ)
,

contradicting Lemma A.4.

Case 4 If we are not in any of the above cases, then, up to a subsequence,

dk
rk
→ L1 ≥ 1,

d̂k
rk
→ L̂1 ≥ 1, as k →∞.



20 A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

Then,
rk
δ′k
→ γ > 0, as k →∞,

and,

di,k
rk
→ Li ≥ 1,

d̂i,k
rk
→ L̂i ≥ 1,

d̂i,k
δ′k
→ ρi ∈ (0, 2), as k →∞, i ∈ D.

Up to a rotation (Σ2δ′k
)k converges to H ∩ Ĥ, where

H = {(x, y) ∈ R2 : y < L1}, Ĥ = {(x, y) ∈ R2 : y > −L̂1}.

Considering now that

Li + o(1) =
di,k
rk

= d(zi,k, ∂Ωk) = d(zi,∞, ∂H) + o(1), as k →∞, for i ∈ D,

we compute

∇zσ
(
rkd(zi,k, ∂Ωk)

δ′k

)
=
rk
δ′k
σ′
(
di,k
δ′k

)
∇zd(zi,k, ∂Ωk)

→ γσ′(γLi)∇zd(zi,∞, ∂H)

= ∇zσ(γd(zi,∞, ∂H)), as k →∞, for i ∈ D.

Then Z ′∞ is a critical point of

Ξ̂D,Ĥ(Z ′) = 8π
∑
i,j∈D
i 6=j

GH(zi, zj) + 4π
∑
i∈D
HH(zi) +

∑
i∈D

σ(γd(zi, H)).

This contradicts Lemma A.6.

These contradictions, arising from (3.36), complete the proof of the lemma. �

Lemma 3.8. Given 1 ≤ J ≤ N and δ′ as in Lemma 3.7 (or smaller), there exists

δ̃ ∈ (0, δ
′

2 ) su�ciently small such that Φ̂J (de�ned as in (3.32), hence depending on

δ̃) has no critical points in ((Σ2δ′)
J \ (Σδ′)

J) \DJ .

Proof. This follows as in the proof of Lemma 3.2 by a contradiction argument, using
Lemma 3.7 instead of Lemma 3.1. Here 2δ′ plays the role of δ in Lemma 3.7. �

3.4. Proof of Proposition 2.4 (completed). By Corollary 2.3 we can assume
h ≡ 1 and work with ΦN instead of ΦN,h. Using Lemma 3.1, considering that ΦN
coincides with Φ̃N on (Ωδ)

N \DN , using formula (3.26) and Lemmata 3.5 and 3.6
we now get

deg(∇ΦN ,Ω
N \DN , 0) = deg(∇ΦN , (Ωδ)

N \DN , 0)

= deg(∇Φ̃N , (Ωδ)
N \DN , 0)

= deg(∇Φ̃N ,Ω
N \DN , 0)−

∑
0≤I≤N−1

deg(∇Φ̃N ,Θδ,δ′,I , 0)

= deg(∇Φ̃N ,Ω
N \DN , 0).

By Lemma 3.4 we �nally obtain deg(∇ΦN ,Ω
N \DN , 0) = χ(Ω)(χ(Ω)−1)...(χ(Ω)−

N + 1). �



CRITICAL POINTS OF THE TRUDINGER-MOSER EMBEDDING 21

Appendix A. Properties of the Green's function

For some �xed L, L̂ > 0, let H and Ĥ denote the half spaces

H = {(x, y) ∈ R2 : y < L}, Ĥ = {(x, y) ∈ R2 : y > −L̂} . (A.1)

On the half-space H, the Green's function and its regular part are given explicitly
by

GH(z, η) =
1

2π
ln
|z − η∗|
|z − η|

, HH(z, η) =
1

2π
ln |z − η∗|, (A.2)

where η∗ is the re�ection of η across ∂H.
Consider now Ω ⊂ R2 smoothly bounded. For xk ∈ Ω, dk := d(xk, ∂Ω), rk > 0,

let Gk(z, η) and Hk(z, η) denote the Green's function of ∆ in Ωk := r−1
k (Ω − xk)

and its regular part.

Lemma A.1. With the above notation, assume that, up to a subsequence, rk =
o(dk), so that Ωk invades R2 as k → ∞. Then, for every compact set K ⊂ R2,
there exists CK such that∣∣∣∣∇z (Gk(z, η)− 1

2π
ln

1

|z − η|

)∣∣∣∣ ≤ CK rkdk
and

|∇zHk(z, z)| ≤ CK
rk
dk
,

uniformly for z ∈ K, η ∈ Ωk.

Proof. This follows from Appendix B in [18]. �

Lemma A.2. With the above notation, assume that, up to a subsequence and a
rotation, rk → 0, dk/rk → L ∈ (0,∞), and Ωk converges to the half-space H as
k →∞. Then for every compact set K ⊂ H and for k large enough

‖∇(Hk −HH)‖L∞(K×Ωk,ρ) ≤ CKrk max{1, ρ−1},
and

‖∇(Gk − GH)‖L∞(K×Ωk,ρ) ≤ CKrk max{1, ρ−1},
where Ωk,ρ := {z ∈ Ωk : d(z, ∂Ωk) > ρ}.

Proof. We have{
∆zHk(z, η) = 0 in Ωk × Ωk
Hk(z, η) = 1

2π ln |z − η| for z ∈ ∂Ωk, y ∈ Ωk.
(A.3)

We apply the maximum principle to the function

Hk(z, ·)−HH(z, ·) : Ωk → R,

where z ∈ K and K ⊂ H is a �xed compact set. We want to prove that

sup
z∈K,η∈∂Ωk

|Hk(z, η)−HH(z, η)| ≤ C(K)rk, (A.4)

for k su�ciently large. By de�nition we have

Hk(z, η) =
1

2π
ln |z − η|, HH(z, η) =

1

2π
ln |z − η∗| for η ∈ ∂Ωk.

Let δ > 0 be so small that ∂Ω ∩Bδ(p(xk)) can be written as the graph over [−δ, δ]
of a function f , where p(xk) is the nearest point projection of xk onto ∂Ω. Let
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L ⊂ R2 be the tangent line to ∂Ω at p(xk) and f : L ∩ Bδ(xk) → R. Up to a
rotation we can assume that f ′(p(xk)) = 0 and by a Taylor expansion we obtain

|f(t)| ≤
sup[−δ,δ] f

′′

2
t2, t ∈ [−δ, δ].

In particular for each x ∈ ∂Ω∩Bδ(xk) we have d(x, L) ≤ CΩ,δ|x− xk|2. Scaling to
Ωk we then obtain

η ∈ ∂Ωk, |η| ≤ δ

rk
⇒ d(η, ∂H) = O(rk).

Then, for such η and for z ∈ K, we have |z − η| ≤ |z − η∗|+O(rk) and

|Hk −HH | =
∣∣∣∣ln |z − η||z − η∗|

∣∣∣∣ ≤ ln

(
1 +

O(rk)

|z − η∗|

)
= C(K)O(rk),

since 1
|z−η∗| ≥ ε(K) > 0 uniformly for z ∈ K. On the other hand

η ∈ ∂Ωk, |η| ≥ δ

rk
⇒ |z − η∗| − |z − η| ≤ C(K).

Then

|Hk −HH | =
∣∣∣∣ln |z − η||z − η∗|

∣∣∣∣ ≤ ln

(
1 +

rkC(K)

δ

)
= C(K)O(rk),

so that (A.4) is proven. By the maximum principle we obtain

sup
z∈K,η∈Ωk

|Hk(z, η)−HH(z, η)| = C(K)O(rk), (A.5)

and the bound on ∇(Hk − HH) follows by elliptic estimates, since both HH(z, ·)
and Hk(z, ·) are harmonic. The estimate of ∇(Gk − GH) follows at once since
Gk − GH = Hk −HH . �

We state Lemmata A.3, A.4 and A.5 below with general positive coe�cients
αi,j and βi for future reference, and also to remark that the coe�cients 8π and
4π appearing in the de�nitions of ΦN,h, ΦN , etc..., can be replaced by any other
positive constants.

Lemma A.3. Consider for some J ≥ 2 the functional ΞJ,R2 : (R2)J \DJ → R

ΞJ,R2(z1, . . . , zJ) :=
∑

1≤i,j≤J
i6=j

αi,j ln
1

|zi − zj |
,

with αi,j > 0 for 1 ≤ i, j ≤ J , i 6= j. Then ΞJ,R2 has no critical points.

Proof. Consider 1 ≤ i ≤ J such that zi lies on the boundary of the convex hull
of {z1, . . . , zJ}, and observe that the derivative with respect to zi in a direction
pointing outwards of the convex hull is negative, as |zi − zj | is increasing for every
1 ≤ i 6= j ≤ J . �

Lemma A.4. Consider for some J ≥ 1 the functional Ξ̂J,Ĥ : ĤJ \DJ → R

Ξ̂J,Ĥ(z1, . . . , zJ) :=
∑

1≤i,j≤J
i 6=j

αi,j ln
1

|zi − zj |
+
∑

1≤i≤J

γi ln
1

d(zi, ∂Ĥ)
,

with αi,j > 0 for 1 ≤ i < j ≤ J and γi > 0 for 1 ≤ i ≤ J . Then Ξ̂J,Ĥ has no

critical point.
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Proof. Given (z1, . . . , zJ), write zi = (ai, bi) and up to reordering, assume that

b1 ≤ · · · ≤ bJ , i.e. zJ is one of the points farthest from ∂Ĥ. Then

∂

∂bJ
ln

1

|zi − zJ |
≤ 0, for 1 ≤ i < J,

∂

∂bJ
ln

1

d(zJ , ∂Ĥ)
< 0, hence

∂Ξ̂J,Ĥ(z1, . . . , zJ)

∂bJ
< 0.

�

Lemma A.5. Consider for some J ≥ 1 the functionals Ξ±J,H : HJ \DJ → R given
as

Ξ±J,H(z1, . . . , zJ) :=
∑

1≤i,j≤J
i 6=j

αi,jGH(zi, zj)±
∑

1≤i≤J

βjHH(zi, zi),

with αi,j > 0 for 1 ≤ i, j ≤ J , i 6= j, βj > 0 for 1 ≤ i ≤ J . Then Ξ±J,H has no
critical points.

Proof. Given (z1, . . . , zJ), write in coordinates zi = (ai, bi) ∈ H for 1 ≤ i ≤ J and,
up to reordering, assume �rst that J > 1, a1 ≤ a2 ≤ · · · ≤ aJ and a1 < aJ . Then,
it follows from (A.2)

∂GH(z1, zJ)

∂a1
> 0,

∂GH(z1, zj)

∂a1
≥ 0, for 2 ≤ j ≤ J − 1,

∂HH(z1, z1)

∂a1
= 0,

hence ∇z1Ξ±J,H(z1, . . . , zJ) 6= 0.

If J = 1 or all the z′is are vertically, i.e. a1 = · · · = aJ , then, up to reordering,
assume that b1 < · · · < bJ . Then, again from (A.2), we get

∂GH(z1, zj)

∂b1
< 0, for 2 ≤ j ≤ J, ∂HH(z1, z1)

∂b1
< 0, (A.6)

hence ∇z1Ξ+
J,H(z1, . . . , zJ) 6= 0, and

∂GH(zJ , zj)

∂bJ
> 0, for 2 ≤ j ≤ J, ∂HH(zJ , zJ)

∂bJ
< 0,

hence ∇zNΞ−J,H(z1, . . . , zJ) 6= 0. �

Lemma A.6. Consider for some J ≥ 1 the functional Ξϕ
J,H,Ĥ

: (H∩Ĥ)J \DJ → R
given as

Ξϕ
J,H,Ĥ

(z1, . . . , zJ) := Ξ+
J,H(z1, . . . , zJ) +

∑
1≤i≤J

γiϕ(zi),

where H and Ĥ are as in (A.1) for some L, L̂ > 0, Ξ+
J,H is as in Lemma A.5,

γi ≥ 0, for 1 ≤ i ≤ J , ϕ ∈ C1(H ∩ Ĥ) and ∇ϕ(z) · (0, 1) ≤ 0 for every z ∈ H ∩ Ĥ.
Then Ξϕ

J,H,Ĥ
has no critical points.

Proof. The proof is identical to the proof of Lemma A.5, using (A.6) together with

∂ϕ(z1)

∂b1
= ∇ϕ(z1) · (0, 1) ≤ 0.

�
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Appendix B. The Euler characteristic of configuration spaces

We will need the following general fact about con�guration spaces.

Proposition B.1. Let Ω be a smoothly bounded domain of R2 and call for any
N ∈ N?

F (Ω, N) := ΩN \DN =
{

(x1, . . . , xN ) ∈ ΩN : xi 6= xj for i 6= j
}
.

Then

χ(F (Ω, N)) = χ(Ω)(χ(Ω)− 1)...(χ(Ω)−N + 1).

Proof. This result follows from the fact that F (Ω, N) �bers on F (Ω, N − 1) with
�ber ΩN−1 (projecting on the last of the N points), where we denote by Ωj the set
Ω with j points removed, see [35, Chapter 2].

Claim The above �bration is orientable, in the sense that π1(F (Ω, N − 1)) acts
trivially on the homology H∗(ΩN−1,R) of the �ber.

Proof of the claim. Since ΩN−1 is homotopically equivalent to a (connected) �nite
union of circles, the only relevant homology group of ΩN−1 is H1(ΩN−1,R). Con-
sider now a closed path γ ∈ C0([0, 1], F (Ω, N − 1)) representing a homotopy class
[γ] ∈ π1(F (Ω, N − 1)). Set

(x1(t), . . . , xN−1(t)) := γ(t).

For the point γ(0) =: (x1, . . . , xN−1) ∈ F (Ω, N − 1) consider the �ber

Ω \ {x1, . . . , xN−1} ' ΩN−1

and choose generators of its �rst homology group as follows. Since Ω is a two-
dimensional domain, it is homotopic to a disk with r points removed, for r =
0, 1, 2, . . . . Given the i-th hole of Ω, i = 1, . . . , r, choose an element σi of H1(Ω,R)
in the form of a smooth Jordan curve that does not contain any of the points
x1(t), . . . , xN−1(t) with t ∈ [0, 1]. Then it is clear that the action of γ on σ1, . . . , σr
is trivial.

Now, for each xj , j = 1, . . . , k − 1, choose a small and smooth Jordan curve ηj
around xj not intersecting σ1, . . . , σr, for instance the oriented boundary of Bε(xj).
By compactness, if we choose ε small enough we get

Bε(xj(t)) ∩Bε(xi(t)) = ∅, for 1 ≤ i < j ≤ N − 1, t ∈ [0, 1]

and

Bε(xj(t)) ∩ σi = ∅, for 1 ≤ j ≤ N − 1, 1 ≤ i ≤ r, t ∈ [0, 1].

Again it follows immediately that the action of [γ] of ηj is trivial. Since

H1(ΩN−1,R) = span{σi, ηj , 1 ≤ i ≤ r, 1 ≤ j ≤ N − 1}

the claim is proven. �

By the product formula for orientable �brations, see Spanier [35, p.481], we infer

χ(F (Ω, N)) = χ(F (Ω, N − 1))χ(ΩN−1) = χ(F (Ω, N − 1))(χ(Ω)−N + 1).

Now the proposition follows at once by induction in N . �
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