Alignment-based protein mutational landscape prediction: doing more with less - Archive ouverte HAL
Article Dans Une Revue Genome Biology and Evolution Année : 2023

Alignment-based protein mutational landscape prediction: doing more with less

Résumé

Recent efforts for democratising protein structure prediction have leveraged the MMseqs2 algorithm to efficiently generate multiple sequence alignments with high diversity and a limited number of sequences. Here, we investigated the usefulness of this strategy for mutational outcome prediction. We place ourselves in a context where we only exploit information coming from the input alignment for making predictions. Through a large-scale assessment of ~1.5M missense variants across 72 protein families, we show that the MMseqs2-based protocol implemented in ColabFold compares favourably with tools and resources relying on profile-Hidden Markov Models. Our study demonstrates the feasibility of simultaneously providing high-quality and compute-efficient alignment-based predictions for the mutational landscape of entire proteomes.
Fichier principal
Vignette du fichier
evad201.pdf (541.25 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03907222 , version 1 (11-10-2023)
hal-03907222 , version 2 (13-11-2024)

Identifiants

Citer

Marina Abakarova, Céline Marquet, Michael Rera, Burkhard Rost, Elodie Laine. Alignment-based protein mutational landscape prediction: doing more with less. Genome Biology and Evolution, 2023, 15 (11), pp.evad201. ⟨10.1093/gbe/evad201⟩. ⟨hal-03907222v2⟩
67 Consultations
224 Téléchargements

Altmetric

Partager

More