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Abstract

The wealth of genomic data has boosted the development of computational methods predicting the phenotypic outcomes 
of missense variants. The most accurate ones exploit multiple sequence alignments, which can be costly to generate. 
Recent efforts for democratizing protein structure prediction have overcome this bottleneck by leveraging the fast hom
ology search of MMseqs2. Here, we show the usefulness of this strategy for mutational outcome prediction through 
a large-scale assessment of 1.5M missense variants across 72 protein families. Our study demonstrates the feasibility of 
producing alignment-based mutational landscape predictions that are both high-quality and compute-efficient for entire 
proteomes. We provide the community with the whole human proteome mutational landscape and simplified access to 
our predictive pipeline.

Key words: genotype–phenotype relationship, protein mutation, multiple sequence alignment, deep mutational scan, 
evolution.

Significance
Understanding the implications of DNA alterations, particularly missense variants, on our health is paramount. This study 
introduces a faster and more efficient approach to predict these effects, harnessing vast genomic data resources. The 
speed-up is made possible by establishing that resource-saving multiple sequence alignments contain sufficient infor
mation. This is true even when using them as input for a method that relies only on a couple of optimized free para
meters. Our results open the door to discovering how tiny changes in our genes can impact our health. They provide 
valuable insights into the genotype–phenotype relationship that could lead to new treatments for genetic diseases.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
In recent years, protein 3D structures and mutations’ func
tional impact prediction (Laine et al. 2021; Nature Methods 
2022) has achieved tremendous progress by leveraging 
the wealth of publicly available natural protein sequence 
data (Nordberg et al. 2014; Suzek et al. 2015; Steinegger 
and Söding 2018; Levy Karin et al. 2020; Mitchell et al. 
2020; Camarillo-Guerrero et al. 2021; Jumper et al. 2021; 
Nayfach et al. 2021; Delmont et al. 2022; Mirdita et al. 
2022; UniProt Consortium 2023). These problems are 
central for bioengineering, medicine, and fundamental biol
ogy. Addressing them with experiments remains cost- and 
labor-intensive (Fowler et al. 2023), emphasizing the im
portance of developing fast and reliable computational 
methods. State-of-the-art predictors capture arbitrary range 
dependencies between amino acid residues by implicitly 
accounting for global sequence contexts or explicitly exploit
ing structured information coming from alignments of 
evolutionary-related protein sequences. Very efficient algo
rithms, for example, MMseqs2 (Steinegger and Söding 
2017), allow for identifying homologous sequences and 
aligning them on a mass scale. Others relying on profile hid
den Markov models (HMMs), such as JackHMMer/HMMer 
(Eddy 2011), carefully generate very large families, achieving 
a very high sensitivity. Several large-scale resources like Pfam 
(Mistry et al. 2021) and ProteinNet (AlQuraishi 2019) give 
access to precomputed multiple sequence alignments 
(MSAs) built from profile HMMs. These MSAs are associated 
with curated protein families in Pfam, or with experimentally 
resolved protein 3D structures in ProteinNet. The depth, 
quality, and computational cost of a MSA are important fac
tors contributing to its effective usefulness. Nevertheless, 
precisely assessing the impact of expanding or filtering out 
sequences on predictive performance is difficult. For protein 
structure prediction, Mirdita et al. showed that AlphaFold2 
original performance could be attained with much smaller 
and cheaper alignments through the MMseqs2-based 
strategy (Steinegger and Söding 2017) implemented in 
ColabFold (Mirdita et al. 2022). This advance makes accur
ate protein structure prediction more accessible and applic
able at a much larger scale.

In this work, we aimed at testing whether the same gain 
could be obtained for mutational outcome prediction. We 
addressed the problem of assessing the functional impact 
of every possible substitution at every position in a protein 
sequence—full single-site mutational landscape—or of 
combinations of mutations (pairs, triplets, etc.). We com
pared the prediction accuracy achieved by Global Epistatic 
Model for predicting Mutational Effects (GEMME) (Laine 
et al. 2019) from MSAs generated using the ColabFold’s 
MMseqs2-based protocol (Steinegger and Söding 2017; 
Mirdita et al. 2022) versus three workflows relying on pro
file HMMs (AlQuraishi 2019; Mistry et al. 2021; Notin et al. 

2022) (fig. 1). GEMME is a fast unsupervised MSA-based 
mutational outcome predictor relying on a few biologically 
meaningful and interpretable parameters. It performs on- 
par with statistical inference-based methods estimating 
pairwise couplings (Hopf et al. 2017) and also deep 
learning-based methods, including family-specific models 
(Riesselman et al. 2018; Frazer et al. 2021; Shin et al. 
2021; Trinquier et al. 2021) as well as high-capacity protein 
language models trained across protein families (Marquet 
et al. 2021; Meier et al. 2021; Notin et al. 2022) (see also 
(Laine et al. 2019; Marquet et al. 2021; Trinquier et al. 
2021) for quantitative comparisons). GEMME is freely avail
able for the community through a stand-alone package 
and a web server. It proved useful for discovering function
ally important sites in proteins (Cagiada et al. 2023; 
Tsuboyama et al. 2023), classifying variants of the human 
glucokinase (Gersing et al. 2023) and transmembrane pro
teins (Tiemann et al. 2023), among others, and for deci
phering the molecular mechanisms underlying diseases 
such as the Lynch syndrome (Abildgaard et al. 2023).

As GEMME optimized only a few free parameters (Laine 
et al. 2019), its performance is much more sensitive to the 
quality of the MSA used as input than methods based on 
machine learning. Thus, GEMME strikes us as an optimal 
proxy for testing whether or not resource-saving alignment 
methods such as MMseqs2 suffice for variant effect predic
tion. We placed ourselves in a context where GEMME relied 
solely on the information contained in a single input MSA 
to make the predictions (fig. 1). This setup allows for a 
fair comparison of different MSA generation protocols. It 
contrasts with the original publication (Laine et al. 2019) 
where GEMME would exploit two sets of input sequences. 
We assessed GEMME predictions against a large collection 
of 87 Deep Mutational Scan (DMS) experiments (Fowler 
and Fields 2014; Gasperini et al. 2016) totaling ∼1.5M 
missense variants across 72 diverse protein families (Notin 
et al. 2022) (Additional file 1: supplementary fig. S1, 
Supplementary Material online). We used the Spearman 
rank correlation coefficient to quantify the accuracy of 
the predictions, as previously done by us and others 
(Laine et al. 2019; Meier et al. 2021; Notin et al. 2022).

We show that the expand-and-filter many-to-many se
quence search strategy implemented in ColabFold yields 
the highest-quality mutational landscapes for most of the 
proteins. For edge cases, where the filter is too drastic, 
we propose a simple solution to overcome the issue. We fa
cilitated the import of alignments generated by ColabFold 
into the GEMME webserver, simplifying accessibility for 
users at: http://www.lcqb.upmc.fr/GEMME. Moreover, we 
provide predictions of single mutational landscapes for 
the entire human proteome at: https://doi.org/10.5061/ 
dryad.vdncjsz1s. The other datasets generated and/or ana
lyzed during the current study are available in the same 
Dryad repository.

Abakarova et al.                                                                                                                                                               GBE

2 Genome Biol. Evol. 15(11) https://doi.org/10.1093/gbe/evad201 Advance Access publication 4 November 2023

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://www.lcqb.upmc.fr/GEMME
https://doi.org/10.5061/dryad.vdncjsz1s
https://doi.org/10.5061/dryad.vdncjsz1s


Results and Discussion
We refer to the four different MSA generation protocols and 
resources we considered as ColabFold, ProteinGym-MSA, 
ProteinNet and Pfam (see Methods, fig. 1, and Additional 
file 1: supplementary table S1, Supplementary Material 
online). They all proved useful for several applications, and 
they represent a variety of choices in terms of sequence data
base, search algorithm and sequence context. In short, 
ProteinGym-MSA relies on the profile HMM-based method 
JackHMMer (Eddy 2011) to search sequences against 
UniRef100 (Suzek et al. 2015), a nonredundant version of 
UniProt (UniProt Consortium 2023). The MSAs generated 
with this protocol have been widely used to assess mutational 
outcome predictors (Hopf et al. 2017; Notin et al. 2022). 
ColabFold uses the many-against-many sequence search algo
rithm MMseqs2 against the same database as ProteinGym, 
namely UniRef100. The MMseqs2 search strategy differs 
markedly from JackHMMer in that it uses the 30% sequence 
identity clustered database UniRef30 (Mirdita et al. 2022) as a 
proxy to Uniref100 to select sequences. This strategy involves a 
series of expansion and filtering steps with different thresholds 
for which straightforward equivalents are not available in 
JackHMMer. Furthermore, ColabFold offers the possibility to 
include metagenomic data from the Big Fantastic Database 

(BFD) (Jumper et al. 2021). Both ProteinNet and Pfam are large 
readily available resources of MSAs generated from profile 
HMMs. Their advantage compared to the two other protocols 
is that they do not add any computational overhead on top of 
GEMME prediction itself. One potential drawback though is 
that they typically do not cover the full protein length and 
thus lack contextual information. Specifically, ProteinNet fo
cuses on protein regions whose 3D structures have been ex
perimentally resolved. It uses JackHMMer against Uniprot 
Archive (Uniparc) (UniProt Consortium 2018) and a collection 
of metagenomic sequences (Nordberg et al. 2014). Pfam 
is centered on manually curated protein domains, and we 
used the largest available MSAs, generated with HMMer 
against the whole UniProtKB. We chose to adopt the default 
parameters settings for each considered protocol or resource. 
This choice guarantees that our findings are comparable to 
those reported in the literature for these resources and that 
users can reproduce our results without fine-tuning the para
meters or algorithms.

ColabFold Alignments Yield High-Quality Mutational 
Landscapes with Fewer Sequences

We found that ColabFold and ProteinGym-MSA were the 
best performing protocols and the only ones covering all 

FIG. 1.—Schematic representation of the workflow. GEMME computes and combines conservations levels, amino acid frequencies and evolutionary dis
tances to predict protein mutational landscapes. The original protocol (Laine et al. 2019), illustrated with gray arrows, used PSI-BLAST against NCBI’s nonre
dundant database to infer conservation levels, and additionally exploited an input MSA generated with JackHMMer against UniRef100 to compute amino acid 
frequencies and evolutionary distances. In the present work, GEMME computed all measures from a single input MSA generated by one of the four depicted 
protocols and resources (see black arrows). ColabFold protocol relies on many-to-many sequence search (in blue) and the three others rely on profile HMMs (in 
pink). The two resources (filled rectangles) provide large amounts of MSAs, covering virtually all protein families or all proteins with an experimentally resolved 
3D structure. For each protocol or resource, we indicate the maximum number of sequences in the considered MSAs, ranging from 25 thousands to 1.4 
millions.
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∼1.5M mutations from the ProteinGym benchmark 
(table 1). The MMseqs2-based ColabFold search strategy 
consistently yielded better predictions than the JackHMMer- 
based ProteinGym-MSA protocol for two thirds of the DMS 
(fig. 2A). This result holds true whether the ColabFold proto
col was performed against the union of UniRef100 and the 
ColabFold environmental database, which is the default 
set up, or only against UniRef100, that is, the same database 
as used by ProteinGym-MSA (Additional file 1: supplementary 
fig. S2, Supplementary Material online). Moreover, the 
expand-and-filter strategy implemented in ColabFold pro
duced shallower alignments, with substantially fewer se
quences, than the other protocols (Additional file 1: 
supplementary table S1 and fig. S3, Supplementary Material 
online). For instance, all proteins falling in the “high” align
ment depth category (Neff/L > 100, see Methods) based on 
their ProteinGym-MSA alignments, would be reclassified 
in the “medium” category (1 < Neff/L < 100) based on their 
ColabFold MSAs (fig. 2B, red triangles, and Additional file 
1: supplementary fig. S4, Supplementary Material online). 
This decreased alignment depth is accompanied by an im
proved prediction accuracy, by an average Spearman rank 
correlation difference Δρ̅ = 0.032, underlying the relevance 
of the ColabFold search strategy for these proteins. 
ColabFold also produced shallower alignments for most 
of the proteins from the “medium” category (fig. 2B, 
blue triangles). The differences in alignment depths have 
a limited impact on the prediction accuracy except for 
two proteins, namely the polymerases PA and PB2 from 
the influenza A virus (fig. 2B, see the two outliers). For these 
two extreme cases, the ColabFold MSAs are 20 times 

shallower than those produced by ProteinGym-MSA, re
sulting in a lower prediction accuracy by Δρ ∼ −0.3. The 
reason behind such a difference is the low divergence of 
these protein families. Indeed, the ProteinGym-MSA align
ments contain a few tens of thousands of sequences, but 
almost all of them are very similar to the query 
(Additional file 1: supplementary fig. S5A and B, 
Supplementary Material online, middle panels). GEMME 
is still able to exploit this limited variability to produce 
good-quality predictions (ρ values of 0.586 and 0.435). 
However, ColabFold’s strategy massively filtered out these 
similar sequences, down to a few tens (Additional file 1: 
supplementary fig. S5A and B, Supplementary Material 
online, left panels). It brought in more divergent sequences, 
but they did not counterbalance the loss of information and 
GEMME predictions dramatically deteriorated. Removing 
the stringent filter of ColabFold and thereby expanding 
the MSAs, allowed for the restoration of prediction accur
acies similar to those achieved by ProteinGym-MSA 
(Additional file 1: supplementary fig. S5A and B, 
Supplementary Material online, right panels). We further 
identified two other proteins from the benchmark for 
which the ColabFold alignments had few sequences (less 
than 200). We obtained a significant gain in performance 
by removing the filter for these two additional cases 
(Additional file 1: supplementary fig. S5C and D, 
Supplementary Material online). Although the number of 
concerned proteins in the benchmark remains small, this re
sult suggests that removing the filter when the alignment 
contains less than 200 sequences can be beneficial. A con
dition for this no-filter strategy to be effective is the 

Table 1 
Average Spearman’s Rank Correlation between Predicted Values and Experimental Measurements on the ProteinGym Substitution Benchmark. For each 
protein class, the value highlighted in bold is the highest one.

Set Class #(proteins) #(DMS) ColabFold ProteinGym-MSA ProteinNet Pfam

All 72 87 0.470 0.463 — —
Low 14 20 0.453 0.444 — —

Medium 43 17 0.443 0.446 — —
High 15 50 0.552 0.520 — —

Human 26 32 0.445 0.436 — —
Eukaryote 10 13 0.500 0.479 — —
Prokaryote 17 21 0.529 0.505 — —

Virus 19 21 0.429 0.451 — —
ProteinNet 42 51 0.507 0.497 0.495 —

Human 19 23 0.484 0.466 0.477 —
Eukaryote 6 7 0.539 0.531 0.495 —
Prokaryote 13 17 0.562 0.536 0.540 —

Virus 4 4 0.353 0.453 0.410 —
Pfam 39 52 0.463 0.440 — 0.432

Human 15 20 0.440 0.423 — 0.407
Eukaryote 7 10 0.462 0.448 — 0.436
Prokaryote 9 13 0.517 0.489 — 0.496

Virus 8 9 0.438 0.399 — 0.391
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presence of numerous highly similar sequences, as is often 
the case for viral protein families. Finally, ColabFold’s de
fault strategy expanded the MSAs for all proteins belonging 
to the “low” category, resulting in a small gain in the overall 
performance (fig. 2B, green triangles).

Environmental Sequences Marginally Contribute to 
Improving Predictions

We assessed the contribution of the environmental se
quences in the context of many-to-many sequence search 
with MMseqs2 and pHMMs-based search with JackHMMer 

FIG. 2.—Performance comparison between the different MSA generation protocols. (A) GEMME’s Spearman rank correlation coefficients (ρ) computed 
against the 87 DMS sets from the ProteinGym substitution benchmark. The input MSAs were generated using the ProteinGym-MSA (x axis) or ColabFold 
(y axis) protocols. The colors indicate the taxons of the target sequences and the shapes indicate whether the experiment contains only single mutations (circle) 
or also multiple mutations (square). (B) Differences in ρ values in function of the number of effective sequence (Neff) ratio (Additional file 1: Supplementary 
Methods, Supplementary Material online). Positive values correspond to ColabFold performing better than ProteinGym-MSA. Each point (triangle) corresponds 
to a given input MSA (i.e., a given target sequence) and its y value is averaged over the set of DMS experiments (between 1 and 4, see Additional file 1: 
supplementary fig. S1, Supplementary Material online) associated to it. The colors indicate the depth of the ProteinGym-MSA alignments, either low, medium, 
or high, as defined in (Notin et al. 2022) (see also Methods). (C) Comparison of ProteinNet, ColabFold and ProteinGym-MSA against the 51 DMS covered by 
ProteinNet (x axis). The ρ coefficients are computed over the residue spans covered by ProteinNet alignments for all methods. The DMS associated to viral 
proteins are highlighted in bold.
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(fig. 2C and Additional file 1: supplementary fig. S6, 
Supplementary Material online). Augmenting Uniref100’s 
set of annotated sequences with environmental sequences 
expands the ColabFold MSAs by up to three folds without 
significantly impacting the mutational landscape quality of 
most proteins (Additional file 1: supplementary fig. S6A, 
Supplementary Material online). It slightly improved predic
tion accuracy for the four above-mentioned viral proteins, 
yet without allowing reaching a good agreement with the ex
perimental measurements—the Spearman rank correlation 
remains below 0.3 (Additional file 1: supplementary fig. 
S6A, Supplementary Material online, see purple dots at the 
bottom left). By contrast, it significantly deteriorated the pre
dictions for the human KCNH2 by Δρ = −0.14 (Additional file 
1: supplementary fig. S6A, Supplementary Material online, 
red outlier). The limited influence of metagenomics can 
also be observed when using JackHMMer as the search algo
rithm, as attested by the similar performance obtained for 
ProteinGym-MSA and ProteinNet (table 1). Both protocols 
rely on JackHMMer as the search algorithm, but while 
ProteinGym-MSA considers only annotated sequences from 
UniRef100, ProteinNet searches against the UniParc archive, 
grouping several databases of annotated sequences, and 
the IMG environmental database. This expanding search re
sults in alignments containing three times more sequences 
on average. However, we identified only a few human pro
teins, namely P53, BRCA1, SUMO1, and YAP1, as well as 
IF1 and CCDB from E. coli, that benefited from this additional 
information by up to Δρ = 0.11 (fig. 2C and Additional file 1: 
supplementary fig. S6B, Supplementary Material online).

Mutational Landscapes of Curated Domains and Folded 
Regions are not Better Resolved

One may wonder whether the predictions are better in re
gions annotated as protein domains or with experimentally 
resolved 3D structures compared to unannotated or disor
dered regions. To test this hypothesis, we compared the 
prediction performance achieved for the full mutational 
landscapes versus partial landscapes focusing only on the 
regions covered by Pfam or ProteinNet (Additional file 1: 
supplementary fig. S7, Supplementary Material online). In 
all cases, we used the full-length alignments generated 
with ColabFold or ProteinGym-MSA and ran GEMME over 
the entire proteins. We focused on specific regions only 
for the computation of the Spearman rank correlation coef
ficients. We did not observe any significant differences be
tween the full-length and region-focused ρ distributions 
(Additional file 1: supplementary fig. S7, Supplementary 
Material online).

Full-length alignments may display unbalanced depths 
over the different domains of a protein, potentially biasing 
the extraction of signals relevant to mutational outcomes. 
In order to assess the influence of the sequence context, 

we compared GEMME mutational landscapes predicted 
from full-length alignments with landscapes reconstructed 
from predictions obtained with domain-centered alignments 
(Additional file 1: supplementary fig. S8, Supplementary 
Material online). Specifically, we ran GEMME on each of 
the Pfam alignments associated to a given protein, each 
one representing a curated Pfam domain, and we merged 
the predictions in a single landscape. We observed that the 
landscapes derived from full-length alignments were consist
ently more accurate than the reconstructed ones (Additional 
file 1: supplementary fig. S8, Supplementary Material online). 
Indeed, the ColabFold strategy led to a higher Spearman rank 
correlation than the Pfam protocol for 70% of the considered 
DMS (Additional file 1: supplementary fig. S9, Supplementary 
Material online). For the remaining 30%, the gain brought 
by Pfam does not exceed Δρmax = 0.077. Along this line, 
the yeast protein GAL4 gives an illustration of the importance 
of the extent of the sequence context (fig. 2C and Additional 
file 1: supplementary fig. S10, Supplementary Material 
online). While the ProteinGym-MSA protocol could retrieve 
16,159 sequences by querying the full-length query, the 
ProteinNet protocol retrieved only 249 sequences by query
ing a very small portion of the protein (6% that is 55 residues 
out of 881, PDB code: 1HBW). As a consequence, ProteinNet 
yielded a mutational landscape of a much poorer quality 
compared to ProteinGym, with a Spearman rank correlation 
of 0.217 versus 0.497 computed over the same residue 
range.

Expanding on our assessment against the ProteinGym 
benchmark, we scaled the application of GEMME using 
ColabFold alignments to the entire human proteome. 
GEMME produced predictions for 20,339 proteins (out 
of a total of 20,484, see Methods) ranging from 21 to 
14,507 residues (Additional file 1: supplementary fig. 
S11, Supplementary Material online). It computed all muta
tional landscapes exploiting the full sequence context of 
each protein.

Conclusion
Multiple sequence alignments are critical to many protein- 
related questions. For instance, the last edition of the 
Critical Assessment of Structure Prediction (CASP, round 
15) showed that MSA-based methods still significantly out
perform protein language models in predicting protein 3D 
structures (Elofsson 2023; Rigden et al. 2023). In this re
port, we assessed the influence of the search algorithm 
and the database choice for generating MSAs on the qual
ity of in silico protein mutational landscapes. We ensured a 
clear readout of the input alignments using an unsuper
vised predictor relying on a few biologically meaningful 
parameters. The MMseqs2-based strategy implemented 
in ColabFold showed a good balance between prediction 
accuracy and computational time. It yields the best overall 
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performance on a set of 87 DMS spanning a wide variety of 
proteins and covers protein regions lacking structural data 
or domain annotations. By controlling the number of se
quences, it allows running these algorithms on machines 
with less memory. It is faster than classical homology detec
tion methods by orders of magnitude. The users can easily 
tune the parameters, for example, relax the filtering criteria, 
for handling protein families with low divergence. We also 
showed that readily available resources such as ProteinNet 
and Pfam are valid options, albeit only partially covering the 
query proteins.

In the last couple of years, a lot of attention has been 
drawn to optimizing, ensembling, clustering, subsampling, 
and pairing alignments toward improving protein 3D 
models (Petti et al. 2023), generating multiple functional 
conformations (Wayment-Steele et al. 2022), and resolving 
interactomes (Bryant et al. 2022; Bret et al. 2023). In the 
context of disease variants calling, Jagota et al. (2022) re
cently showed that vertebrate alignments exhibit a strong 
signal that can be used to boost specificity. Nevertheless, 
determining which alignments are the most suitable for a 
given task, predictive method, or biological system often 
remains challenging. Our findings demonstrated that the 
alignment depth is not as good an indicator of prediction 
accuracy as one might expect. Shallow alignments can yield 
Spearman rank correlation as high as 0.7, and above a cer
tain threshold, adding more sequences does not improve 
the predictions. Achieving accurate predictions with shal
lower alignments makes it possible to shed light on the mu
tational landscapes of protein families with few members 
or low divergence and also significantly reduces computa
tional burden. In addition, we observed that extending 
the sequence search space to environmental datasets only 
marginally improves the accuracy of the predictions. 
Finally, we found that it is beneficial to make predictions 
with the knowledge of the full sequence context, rather 
than focusing on individual domains and concatenating 
the predictions afterwards. This result emphasizes the im
portance of long-range inter-residue dependencies and 
suggests that deep learning methods are strongly limited 
by the maximal input sequence length, and thus context, 
they can handle.

By establishing that fast MSA generation by MMseqs2 
suffices, this study demonstrates the feasibility of MSA- 
based computational scans of entire proteomes at a very 
large scale. Combining ColabFold with GEMME, it takes 
only a few days to generate the complete single- 
mutational landscape of the human proteome on the 
supercomputer “MeSU” of Sorbonne University (64 
CPUs from Intel Xeon E5-4650L processors, 910GB shared 
RAM memory). We made our human proteome-scale pre
dictions available to the community. Moreover, our find
ings imply ways to save resources for other MSA-based 
methods.

Methods

DMS Benchmark Set

We downloaded the ProteinGym substitution benchmark 
(Notin et al. 2022) from the following repository: 
https://github.com/OATML-Markslab/Tranception. It con
tains measurements from 87 DMS collected for 72 proteins 
of various sizes (between 72 and 3,423 residue long), 
functions (e.g., kinases, ion channels, g-protein coupled 
receptors, polymerases, transcription factors, tumor sup
pressors), and origins (Additional file 1: supplementary fig. 
S1A–C, Supplementary Material online). The DMS cover a 
wide range of functional properties, including thermostabil
ity, ligand binding, aggregation, viral replication, and 
drug resistance. Up to four experiments are reported for 
each protein (Additional file 1: supplementary fig. S1D, 
Supplementary Material online). Although the benchmark 
mostly focuses on single point mutations, it also reports 
multiple amino acid variant measurements for 11 proteins 
(Additional file 2: supplementary table S2, Supplementary 
Material online). In the following, we considered the whole 
benchmark, and also a nonredundant version comprising 
only 59 proteins. We extracted these proteins with an 
adjusted version of UniqueProt (https://rostlab.org/owiki/ 
index.php/Uniqueprot) (Mika and Rost 2003; Olenyi et al. 
2022). Compared to the original UniqueProt protocol, we 
used MMseqs2 instead of PSI-BLAST to improve runtime, 
and discarded alignments of less than 50 residues for pairs 
of sequences with at least 180 residues to prevent very short 
alignments from removing longer sequences.

MSA Resources and Protocols

Two protocols, ColabFold and ProteinGym-MSA, were 
available for all 87 DMS (from 72 proteins) from the 
ProteinGym benchmark. ProteinNet was available for 51 
(from 42 proteins), Pfam for 52 (from 39 proteins). When 
comparing two methods, we reduced the Spearman rank 
calculations to their common positions.

The ColabFold protocol (Mirdita et al. 2022). relies on the 
very fast MMseqs2 method (Steinegger and Söding 2017) 
(three iterations) to search against UniRef100 (Suzek et al. 
2015), the nonredundant version of UniProt (UniProt 
Consortium 2023), through a 30% sequence identity clus
tered version (UniRef30), and a novel database compiling 
several environmental sequence sets (Additional file 1: 
supplementary table S1, Supplementary Material online). It 
maximizes diversity while limiting the number of sequences 
through an expand-and-filter strategy. Specifically, it itera
tively identifies representative hits, expand them with their 
cluster members, and filters the latter before adding them 
to the MSA. We used the same sequence queries as those 
defined in ProteinGym-MSA. For all but five proteins, the 
query corresponds to the full-length UniProt sequence. For 

Alignment-based Protein Mutational Landscape Prediction                                                                                               GBE

Genome Biol. Evol. 15(11) https://doi.org/10.1093/gbe/evad201 Advance Access publication 4 November 2023                                7

https://github.com/OATML-Markslab/Tranception
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data
https://rostlab.org/owiki/index.php/Uniqueprot
https://rostlab.org/owiki/index.php/Uniqueprot
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad201#supplementary-data


each query, we generated two MSAs by searching against 
UniRef30 and ColabFold environmental database, respect
ively, and we then concatenated them.

The ProteinGym-MSA protocol (Notin et al. 2022). relies 
on the highly sensitive homology detection method 
JackHMMer (Eddy 2011) (five iterations) to search against 
UniRef100 (Suzek et al. 2015), the nonredundant version 
of UniProt (Additional file 1: supplementary table S1, 
Supplementary Material online). JackHMMer is part of the 
HMMer suite and is based on profile hidden Markov models 
(HMMs). This protocol is relatively costly, with up to several 
hours for a single input MSA. It was initially described in 
Hopf et al. (2017) where it was designed and tested on a 
subset of the current ProteinGym substitution benchmark. 
Hence, the proteins and DMS included in ProteinGym after 
this seminal publication can be considered as an independ
ent test set. The protocol proved useful for large-scale ap
plications (Frazer et al. 2021). In this work, we took the 
alignments provided with the ProteinGym benchmark 
(Notin et al. 2022).

The ProteinNet protocol (AlQuraishi 2019). also performs 
five iterations of JackHMMER, but it extends the sequence 
database to the whole UniProt Archive (Uniparc) (UniProt 
Consortium 2018) complemented with metagenomic 
sequences from IMG (Nordberg et al. 2014) (Additional 
file 1: supplementary table S1, Supplementary Material 
online). Another difference from ProteinGym-MSA is that 
the queries correspond to sequences extracted from experi
mentally determined protein structures available in the PDB 
(Berman et al. 2002). The MSAs are readily available and or
ganized in a series of data sets, each one encompassing all 
proteins structurally characterized prior to different editions 
of the Critical Assessment of protein Structure Prediction 
(CASP) (Kryshtafovych et al. 2021). We chose the most com
plete set, namely ProteinNet12. It covers all proteins whose 
structure was deposited in the PDB before 2016, the year of 
CASP round XII (Moult et al. 2018). For each protein from 
the ProteinGym benchmark, we retrieved the correspond
ing PDB codes from the Uniprot website (https://www. 
uniprot.org) and picked up the structure with the highest 
coverage among those represented in ProteinNet12 
(Additional file 2: supplementary table S2, Supplementary 
Material online). We could treat 42 proteins, out of 72 in to
tal. For the remaining ones, the positions covered by the 
available MSAs were out of the range of mutated positions.

The Pfam database (Mistry et al. 2021). is a resource of 
manually curated protein domain families. Each family, 
sometimes referred to as a Pfam-A entry, is associated 
with a profile HMM built using a small number of represen
tative sequences, and several MSAs. We chose to work with 
the full UniProt alignment, obtained by searching the 
family-specific profile HMM against UniProtKB (Additional 
file 1: supplementary table S1, Supplementary Material 
online). The proteins sharing the same domain composition 

will have exactly the same MSAs. To avoid such redun
dancy, we focused on the nonredundant set of 59 proteins 
from ProteinGym. For each protein, we first retrieved its 
Pfam domain composition and downloaded the corre
sponding MSAs from the Pfam website (https://pfam. 
xfam.org, release 34.0). We could retrieve at least one 
(and up to 5) MSA overlapping with the range of mutated 
positions for 39 proteins (Additional file 2: supplementary 
table S2, Supplementary Material online). Each detected 
Pfam domain appears only once in the set.

Alignment Depth

We measured the alignment depth as the ratio of the ef
fective number of sequences Neff by the number of posi
tions L. The effective number of sequences is computed 
as a sum of weights (Ekeberg et al. 2013),

Neff =
􏽘N

s

πs, (1) 

where N is the number of sequences in the MSA and πs is 
the weight assigned to sequence x(s), computed as

πs =
􏽘N

t

I[DH(x(s), x(t)) < θID]

􏼠 􏼡−1

, (2) 

where DH(x(s), x(t)) is the normalized Hamming distance be
tween the sequences x(s) and x(t) and θID is a predefined 
neighborhood size (percent divergence). Hence, the weight 
of a given sequence reflects how dissimilar it is to the other 
sequences in the MSA. To be consistent with (Notin et al. 
2022), we set θID = 0.2 (80% sequence identity) for eukary
otic and prokaryotic proteins, and θID = 0.01 (99% se
quence identity) for viral proteins.

In Notin et al. (2022), MSAs are labeled as low, medium 
or high depending on the ratio Neff/Lcov, where Lcov is the 
number of positions with less than 30% gaps. Specifically, 
MSAs with Neff/Lcov < 1 are considered as shallow (“low” 
group) whereas those with Neff/Lcov > 100 are considered 
as deep (“High” group). MSAs with 1 < Neff/Lcov < 100 
are in the intermediate “Medium” group. In our calcula
tions, we consider the ratio between Neff and the total num
ber of positions L, which is equal to the length of the target 
sequence for both ProteinGym-MSA and ColabFold MSAs.

GEMME Methodology and Usage

GEMME exploits the evolutionary history relating the nat
ural protein sequences to estimate the functional impact 
of mutations. It relies on a measure of evolutionary conser
vation explicitly accounting for the way protein sites are 
segregated along the topology of evolutionary trees 
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(Engelen et al. 2009). A conserved position is associated 
with at least two subtrees of ancient origin and homoge
neous with respect to that position (all sequences in a sub
tree display the same amino acid). Since the trees are built 
from global similarities between sequences, the whole se
quence context plays a role in estimating the conservation 
level of a given position. The GEMME algorithm makes 
use of these conservation levels in two main steps. First, 
to compare different substitutions occurring at the same 
position, it combines amino acid frequencies, computed 
with a reduced alphabet, with evolutionary distances repre
senting the minimum amount of changes necessary to ac
commodate the mutations of interest. We determine the 
evolutionary distance associated to the substitution of a 
into b at position i as the minimal conservation-weighted 
Hamming distance between the query wild-type sequence 
and any sequence from the input alignment displaying b at 
position i. Then, to be able to compare substitutions occur
ring at different positions, GEMME weights the predicted 
effects with the conservation levels.

In the original GEMME publication (Laine et al. 2019), we 
gave two sets of sequences as input to GEMME. We used 
the ProteinGym-MSA protocol to generate an input align
ment and we compiled an additional set of input sequences 
using PSI-BLAST (Altschul et al. 1997) against the NCBI’s 
nonredundant (NR) database (O’Leary et al. 2015) (fig. 1). 
GEMME used the later to estimate the conservation levels, 
and the former to computed amino acid frequencies and 
evolutionary distances. Since then, we observed that the 
additional set of sequences had a limited impact on the 
performance (average Δρ̅ = 0.012 on the dataset reported 
(Hopf et al. 2017)). Hence, in more recent studies 
(Mohseni Behbahani et al. 2023; Tsuboyama et al. 2023), 
we solely relied on an input alignment generated with the 
ProteinGym-MSA protocol. In the present work, for all cal
culations, we asked GEMME to exploit only a single input 
MSA generated by one of the four tested protocols and re
sources (see Additional file 1: Supplementary Methods, 
Supplementary Material online for computational details).

Application to the Human Proteome

We retrieved 20,586 protein identifiers and their amino 
acid sequences from the Swiss-Prot reviewed human 
proteome available in UniProt (UniProt Consortium 2023), 
as of August 2023. We generated MSAs with the 
ColabFold protocol against UniRef30 v2302 and 
ColabFold Environmental Database v202108. We system
atically regenerated the MSAs containing less than 200 se
quences without the filter step. We modified the sequences 
that contained undefined residues (“X” or “U” symbol) in 
the following way. When the undefined residue was lo
cated at the beginning of the sequence, the corresponding 
column in the alignment was always filled with gaps, and 

thus we removed that column. Otherwise, we replaced 
the undefined residue(s) by the most frequent amino acid 
appearing at the corresponding position(s) in the MSA. 
We ran GEMME through the Docker image available at: 
https://hub.docker.com/r/elodielaine/gemme with default 
parameters. A subset of 102 sequences were too short 
(≤20 residues) to be considered as proteins and were thus 
not treated. Another subset of 145 proteins displayed 
MSAs too shallow for GEMME to estimate conservation le
vels. In total, GEMME generated mutational landscapes for 
25,339 proteins.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online.
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