A Parareal algorithm for a highly oscillating Vlasov-Poisson system with reduced models for the coarse solving
Résumé
In this paper, we introduce a new strategy for solving highly oscillatory two-dimensional Vlasov-Poisson systems by means of a specific version of the parareal algorithm. The novelty consists in using reduced models, obtained from the two-scale convergence theory, for the coarse solving. The reduced models are useful to approximate the original Vlasov-Poisson model at a low computational cost since they are free of high oscillations. Both models are numerically solved in a particle-in-cell framework. We illustrate this strategy with numerical experiments based on long time simulations of a charged beam in a focusing channel and under the influence of a rapidly oscillating external electric field. On the basis of computing times, we provide an analysis of the efficiency of the parareal algorithm in terms of speedup.
Origine | Fichiers produits par l'(les) auteur(s) |
---|