
HAL Id: hal-03903280
https://hal.science/hal-03903280

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Parareal algorithm for a highly oscillating
Vlasov-Poisson system with reduced models for the

coarse solving
Laura Grigori, Sever A Hirstoaga, Julien Salomon

To cite this version:
Laura Grigori, Sever A Hirstoaga, Julien Salomon. A Parareal algorithm for a highly oscillating
Vlasov-Poisson system with reduced models for the coarse solving. Computers & Mathematics with
Applications, 2023, 130, pp.137-148. �hal-03903280�

https://hal.science/hal-03903280
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Parareal algorithm for a highly oscillating Vlasov-Poisson

system with reduced models for the coarse solving
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Abstract

In this paper, we introduce a new strategy for solving highly oscillatory two-dimensional
Vlasov-Poisson systems by means of a specific version of the parareal algorithm. The
novelty consists in using reduced models, obtained from the two-scale convergence the-
ory, for the coarse solving. The reduced models are useful to approximate the original
Vlasov-Poisson model at a low computational cost since they are free of high oscilla-
tions. Both models are numerically solved in a particle-in-cell framework. We illustrate
this strategy with numerical experiments based on long time simulations of a charged
beam in a focusing channel and under the influence of a rapidly oscillating external
electric field. On the basis of computing times, we provide an analysis of the efficiency
of the parareal algorithm in terms of speedup.

Keywords: Vlasov-Poisson system, two-scale convergence, multi-scale models, particle-in-
cell method, parareal algorithm, parareal speedup

1 Introduction

The present contribution focuses on the construction of a parallel-in-time numerical scheme
for an accurate and efficient solving in long term of a kinetic equation which involves several
time scales. The kinetic description under consideration is a Vlasov-Poisson system which
models the dynamics of a charged particle beam, focused by an external electric field and
under the action of the self-consistent electric force. Specifically, the system reads

∂fε
∂t

+
1

ε
v
∂fε
∂r

+
(
Eε + Ξε

)∂fε
∂v

= 0, fε(t = 0, r, v) = f0(r, v), (1)

where 0 < ε ≪ 1 is a parameter, fε = fε(t, r, v) > 0 is the distribution function of a particle
species, t ∈ [0, T ) is the time, r ∈ [rmin, rmax] is the position and v ∈ R the velocity, while f0
is a given initial condition. The functions Ξε = Ξε(t, r) ∈ R and Eε = Eε(t, r) ∈ R play the
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role of external and self-consistent electric forces, respectively. More precisely, we consider
the term Ξε under the form

Ξε(t, r) = −r

ε
+ rH

( t

ε

)
, (2)

where H is a given 2π-periodic function, while the self-consistent electric field is solution to
the following Poisson equation

1

r

∂(rEε)

∂r
= ρε, where ρε(t, r) =

∫
R
fε(t, r, v) dv. (3)

This model is derived as a paraxial approximation of a full Vlasov-Maxwell system and under
several assumptions on the physical properties of the beam (see [8, 10] and the references
therein). An example of such assumption is that the beam is long and thin, meaning that
the longitudinal self-consistent forces are neglected and that the transverse dimensions of
the beam are small compared to the characteristic longitudinal dimension. Besides, the
small parameter ε denotes the ratio between these two characteristic lengths.

The coupled Vlasov-Poisson equations (1)-(2)-(3) have been extensively studied theo-
retically as well as numerically (see for example [8, 10, 21, 5, 6, 9]). The difficulty arising
in the numerical solving of this system is that the solution displays high oscillations in time
when the parameter ε is small. Thus, any standard numerical method needs to resolve these
oscillations by using a time step which is much smaller than ε, which corresponds to the
order of the period of oscillation. Consequently, this approach has a high computational
cost, which is prohibitive in applications demanding long run times. In addition, applying
some of the conventional numerical methods (which are not symplectic for example) leads
to cumulative large errors in the solution.

Several works deal with these issues. In [5, 6], the authors design finite difference and
semi-Lagrangian schemes whose level of accuracy is uniform with respect to the oscillations
frequencies, for well-chosen initial conditions. This approach gives excellent results for
long time simulations where the particle beam is shorter than the case considered in the
present contribution. Another method, based on an exponential time integrator of the
characteristics of the Vlasov equation, is proposed in [9] (see also the references therein).
However, this last paper tackles only the case of equations (1)-(2)-(3) with H = 0 and with
a particle beam which is short, as in references [5, 6]. The case of a shorter particle beam
is simpler than the one considered in the present work since its behaviour is much easier to
capture by a reduced (or averaged) model that we introduce in Section 2.

This paper aims at building a numerical frame that provide an accurate long time
solution of (1)-(2)-(3), without the computational burden inherent to standard schemes.
We achieve this goal in two steps. First, we infer two reduced models (corresponding
to two choices for the function H) from the limit model obtained in [10] via the two-scale
convergence theory. The benefits of the reduced models are: (i) they approximate over small
time intervals the initial Vlasov-Poisson model in the limit ε → 0; (ii) they are significantly
less computationally expensive than the full model; see [22] for a general theory of reduced
(or averaging) models for dynamical systems. Their drawback is that in long time the
approximation becomes inaccurate. To circumvent this issue, we propose in a second step
to use the parareal algorithm [18]. This framework allows to correct the reduced models by
applying the fine (or full) models only in short time windows and in parallel. The parareal
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algorithm has been intensively analyzed, see, e.g., [2, 12, 23, 11] and applied in various
contexts, as fluid and structure problems [7], the Navier–Stokes equations [13], or reservoir
simulation [14]. Several variants of the method have also been proposed [14, 7], including
its adaptation to matrix function computations [4]. The algorithm exploits very efficiently
parallel computing over a large number of processors to solve problems subject to time
constrains. This approach is detailed in the next section.

The strategy of using reduced models in a parareal algorithm goes back at least to
[19] (see also [16, 1]) and was successfully applied in our previous paper [15] where we
solved differential equations which are similar to the characteristics of the equation (1).
Specifically, there is only an external electric term in the equations in [15] and no self-
consistent field is present. The new framework of the Vlasov-Poisson system cannot be
considered as a consequence of the method in [15] since the self-consistent electric term is
not an external force but changes in time according to the unknown distribution function.
Thus, the limit models considered in the previous reference cannot be used in the new
configuration. Instead, one needs to use a specific reduced model which takes into account
the correct two-scale limit electric field. This limit is obtained by following the approach
derived in [10].

Finally, we briefly describe the numerical scheme that we choose for solving the sys-
tem (1)-(2)-(3) and the reduced models, namely the particle-in-cell method [3, 17]. This
approach is based on the approximation of the unknown distribution function by a sum of
Dirac masses, or in other words, by a collection of numerical particles in the phase space
(r, v). Afterwards, we have to advance in time these particles by solving the differential
equations given by the characteristics of the Vlasov equation. Here, we need to solve the
Poisson equation at each time step to take into account the interaction between particles,
i.e., the self-consistent electric field.

The remainder of the paper is organized as follows. In section 2, we describe the problem
under consideration and the numerical strategy in the parareal framework. In section 3, we
first discuss the two-scale limit model obtained in [10] and we propose a new reduced model
to be used in the case of H ̸= 0. Then, we present the particle-in-cell method and study
the validity of approximation of the reduced models in long time. In section 4, we analyze
the results obtained with our strategy. We demonstrate that the parareal algorithm only
requires few iterations to converge and discuss the efficiency of the method according to the
values of the parameters involved. More precisely, we obtain a low computational cost of
the method, in large final times and for any parameter ε, while keeping the accuracy of the
fine solver.

2 The problem of interest and the parareal algorithm

We first provide an illustrative description of problem (1)-(2)-(3). The unknown of the
Vlasov-Poisson system is the pair (fε, Eε), while Ξε is a given function. In the numerical
experiments, we consider two cases: first, H ≡ 0 (called from now on Case I), and second
(Case II) for

H(τ) = cos2(τ). (4)
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We explain in the next section why these two cases are well representative for the general
behaviour of the solution. Note that similar tests could be performed with other 2π-periodic
functions. The choice of H impacts significantly on the dynamics of the particles. For ex-
ample, the case of the function H(τ) = cos(τ) leads to a behaviour of the solution similar
to the case H ≡ 0.

The problem models the dynamics of a beam of particles that move in the phase space
(r, v) along the characteristic curves of the Vlasov equation (1). This dynamics entails a
fast rotation around the origin (at the time scale ε), coupled to slower motions which are
due to the self-consistent electric field Eε and to the external force term H. The behaviour
of the solutions to (1)-(2)-(3) is illustrated in Figs. 1 and 2 for both Case I and Case II,
where one can see filaments of particles that develop differently depending on the external
force H. Note that the solutions represented in these figures are obtained with the initial
condition in (20). However, in [6, 9] a simpler case is considered where the space interval
[rmin, rmax] is smaller, corresponding to a shorter particle beam. With such an initial data,
the particle beam evolves differently than those in Figs. 1 & 2, by rotating around the
origin and spiraling from the origin in long times.

In this context, the role of a reduced model is to approximate the slow motions without
resolving the fastest rotation. The computational cost of such a model is therefore low. We
first illustrate these ideas on an example in a general context. Given α > 0, consider the
problem

duε
dt

= F
( t

ε
, uε

)
in (0, T ), uε(0) = u0, (5)

where ε is a small parameter as above, F is a regular enough function which is α-periodic
with respect to its first variable. Then, the averaged (or reduced) model associated to (5)
is given by (see [22])

dv

dt
= G(v) in (0, T ), v(0) = u0, where G(v) =

1

α

∫ α

0
F (t, v)dt. (6)

In this setting, it is well-known [22] that one can derive the approximation ∥uε(t)− v(t)∥ ≤
Cε for t ∈ (0, T ), where the constant C and the final time T are independent of ε. The
important point to be remarked is that equation (6) can be solved with large time steps
with respect to ε. Back to the problem (1)-(2)-(3), we make use in this paper of the reduced
model developed in [10] to approximate the initial stiff Vlasov-Poisson system. However,
for a long time interval (for instance a thousand of fast rotations), such an averaged model
turns out to be not accurate enough, even for small values of ε. A solution to perform
accurate long time simulations of stiff systems, with low computational cost, can be the use
of the reduced model in a parareal framework, as described below.

In order to accelerate the solving of our problem, we will make use of the parareal
algorithm. Let us briefly recall the main features of this approach in the framework of
the time dependent problem (5) and its limit (6). The time interval [0, T ] is decomposed
into N uniform time intervals [Tn, Tn+1], for n ∈ {0, . . . , N − 1}. Let F(Tn+1, Tn, Yn)
denote the fine solver, which is assumed to provide a very accurate approximation of the
solution of (5) at time Tn+1 with the initial condition Yn given at time Tn. In the same
way, let G(Tn+1, Tn, Yn) denote the coarse solver, which is assumed to provide a coarse
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Figure 1: The particle solution of the Vlasov-Poisson Case I with ε = 0.01 at different times
T ∈ {0, 18, 36, 54}.

approximation of the solution of (5) at time Tn+1 also with the condition Yn given at time
Tn. In this framework, the use of F for solving equation (5) requires a computational effort,
since the time step is constrained by the small parameter ε. Therefore, the coarse solver
must be chosen in such a way that its cost is much lower than the one of the fine solver.
A standard strategy to achieve this requirement consists in using as a coarse solver either
the approximation scheme considered in the fine solver but with a larger time step or a
different approximation scheme with lower accuracy [12]. Yet, another approach is to use
a different model from the initial one, as long as it provides a reasonable coarse and fast
approximation of the solution [19, 15].
In this paper, we follow this last approach and use as a coarse solver a reduced model asso-
ciated with the original problem. In this way, the coarse solver G(Tn+1, Tn, Yn) is always as-
signed to the numerical solution of the reduced model (6) and the fine solver F(Tn+1, Tn, Yn)
is always assigned to the approximated solution of the original problem (5). In addition,
we let the coarse propagator perform a single time step per time interval [Tn, Tn+1]. The
parareal algorithm then consists in computing iteratively a sequence (Y k

n )k,n of approxima-
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Figure 2: The particle solution of the Vlasov-Poisson Case II (with the H function in (4))
and with ε = 0.01 at different times T ∈ {0, 18, 36, 54}.

tions of uε(Tn) for n ∈ {0, . . . , N} that will serve as initial condition on [Tn, Tn+1], where a
fine solving will be carried out in parallel. More precisely, it proceeds as follows. In a first
step, the initial approximation Y 0

n at coarse time points 0 = T0 < T1 < · · · < TN = T is
computed sequentially using the coarse solver, namely

Y 0
n+1 = G(Tn+1, Tn, Y

0
n ), Y 0

0 = u0. (7)

Then, for k = 0, 1, . . . , starting with Y k+1
0 = u0, the sequence (Y k

n )k,n is updated by

Y k+1
n+1 = G(Tn+1, Tn, Y

k+1
n )+F(Tn+1, Tn, Y

k
n )−G(Tn+1, Tn, Y

k
n ), ∀n ∈ {0, . . . , N −1}. (8)

In this iteration, the terms F(Tn+1, Tn, Y
k
n ) have the most significant computational cost.

On the other hand, these fine computations are to be performed in parallel over each
interval [Tn, Tn+1]. In this setting, the algorithm should converge in a number of iterations
significantly smaller than the number of time intervals to achieve a real speedup.

In practice, we evaluate the computational time Tpar of the parareal algorithm as follows.
Denote by Tinit the time required to compute (Y 0

n )n=1,...,N , by Tfine the time required to
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compute (F(Tn+1, Tn, Y
k
n ))n=0,...,N−1, and by Tcoarse the time required to compute(

G(Tn+1, Tn, Y
k+1
n ); Y k+1

n+1

)
n=0,...,N−1

. Then, with an ideal speedup, corresponding to per-

form the computation of (F(Tn+1, Tn, Y
k
n ))n=0,...,N−1 in parallel over N processors, the total

time of the parareal run is

Tpar = Tinit +K
(Tfine

N
+ Tcoarse

)
, (9)

where K is the number of iterations after which we decide to stop the simulation. The value
of K can be obtained for example, by imposing a target accuracy to be achieved.

3 The reduced models and their validity

We present in this section the reduced models for the Vlasov-Poisson systems and we assess
their validity by numerical experiments. These models will be used in section 4 for the
coarse solving in the parareal framework.

3.1 The two-scale limit model

In section 4 of [10], a limit model of the Vlasov-Poisson equation is derived for ε → 0. More
precisely, it is proved that over the time interval [0, T ] the solution (fε, Eε) to (1)-(2)-(3)
two-scale converges to some functions (F,E). These limit functions depend additionally on
the fast time scale τ ∈ [0, 2π]: F = F (t, τ, r, v) and E = E(t, τ, r). Moreover, by virtue of
[10, Theorem 4.5], we have that there exists G = G(t, q, u) such that

F (t, τ, r, v) = G
(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
, (10)

and (G,E) is the solution of the following system

∂G

∂t
+

1

2π

∫ 2π

0
− sin(τ)

[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+H(τ)

(
cos(τ)q + sin(τ)u

)]
dτ

∂G

∂q

+
1

2π

∫ 2π

0
cos(τ)

[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+H(τ)

(
cos(τ)q + sin(τ)u

)]
dτ

∂G

∂u
= 0,

G(0, q, u) = f0(q, u),

1

r

∂(rE)

∂r
= Υ, Υ(t, τ, r) =

∫
R
G
(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
dv.

(11)

Remark 3.1.

(i) The two-scale convergence of (fε)ε towards F means that fε is approximated by
fε(t, r, v) ≈ F (t, t/ε, r, v), when ε vanishes. Note that the function F is obtained from
G according to (10).

(ii) The transport equation on G is free of high oscillations and its advection field (the
integral terms in (11)) is obtained by averaging with respect to the rapid time variable
the limit electric field E.
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(iii) Note that the limit Poisson equation in (11) needs to be solved for every τ ∈ [0, 2π] in
order to provide the terms E(·, τ, ·) required in the first two equations.

(iv) The integral terms containing E in equation (11) have to be approximated, whereas
the terms with H may be easily computed. As an example, when H is given by (4),
we have

1

2π

∫ 2π

0
sin(τ) cos2(τ)

(
cos(τ)q + sin(τ)u

)
dτ =

1

8
u

1

2π

∫ 2π

0
cos(τ) cos2(τ)

(
cos(τ)q + sin(τ)u

)
dτ =

3

8
q

and the two terms in the equation (11) change accordingly.

(v) As announced before, the two choices for the function H (Cases I and II) are sufficient
for illustrating the typical averaged behaviour of the solutions, since these choices
summarize the general forms of the limit model in (11). More precisely, they entail
the possibilities of the non-resonant case (corresponding to H ≡ 0) and the resonant
one (corresponding to H(τ) = cos2(τ)); see Theorem 4.5 in [10].

The aim of this work is to use the reduced model (11) as a coarse solver in the parareal
algorithm. Therefore, as one can deduce from (8), we have to apply the limit model with
an initial condition starting at a time which is not zero, unlike the one in (11). However,
this model is not originally proved to approximate the problem (1)-(2)-(3) over an interval
[s, s+∆t] when s ̸= 0. Hence, in order to proceed, we derive below a new model to be used
when the initial condition is G(s, q, u) = fs(q, u) with s ̸= 0. Note that this issue appears
only in the case where H ̸= 0 contains time-dependent terms, e.g., in Case II. In such an
instance, the idea is simply to shift in time the term H by s. Specifically, assume that we
have to solve the equation

∂fε
∂t

+
1

ε
v
∂fε
∂r

+
(
Eε + Ξε

)∂fε
∂v

= 0, fε(t = s, r, v) = fs(r, v), s > 0, (12)

together with (2) and (3). Then, by changing the time variable in t̂ = t−s and the unknowns
via f̂ε(t̂, r, v) = fε(t, r, v) and Êε(t̂, r) = Eε(t, r), we are left with solving equation (1) in t̂
instead of t, with the initial condition f̂ε(t̂ = 0, r, v) = fs(r, v) and the term Ĥ(t̂/ε) where
Ĥ(τ) = H(τ + s/ε). Now, on the basis of the result in [10] for these new unknowns, we
replace in the limit equation (11) the term H(τ) by H(τ + s/ε).

Thus, we propose the following reduced model, depending on ε through H:

∂Gε

∂t
+

1

2π

∫ 2π

0
− sin(τ)

[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+H

(
τ +

s

ε

)(
cos(τ)q + sin(τ)u

)]
dτ

∂Gε

∂q

+
1

2π

∫ 2π

0
cos(τ)

[
E
(
t, τ, cos(τ)q + sin(τ)u

)
+H

(
τ +

s

ε

)(
cos(τ)q + sin(τ)u

)]
dτ

∂Gε

∂u
= 0,

Gε(s, q, u) = fs(q, u),

1

r

∂(rE)

∂r
= Υ, Υ(t, τ, r) =

∫
R
Gε

(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
dv.

(13)
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The function Gε given by (13) will be used in section 4 as an approximation of fε given
by (12), when ε → 0. More precisely, on the basis of (10), we formally write that for
t ∈ [s, s+∆t],

fε(t, r, v) ≈ Gε

(
t, cos(t/ε)r − sin(t/ε)v, sin(t/ε)r + cos(t/ε)v

)
,

when ε vanishes. If s = 0, we recover the result in [10] on the two-scale limit G.
Now, if we consider the function H in (4), we have for any S ∈ R,

1

2π

∫ 2π

0
sin(τ) cos2(τ + S)

(
cos(τ)q + sin(τ)u

)
dτ =

1

8

[
(1 + 2 sin2(S))u− sin(2S)q

]
,

1

2π

∫ 2π

0
cos(τ) cos2(τ + S)

(
cos(τ)q + sin(τ)u

)
dτ =

1

8

[
(1 + 2 cos2(S))q − sin(2S)u

]
,

(14)

and thus, the equations for the reduced model of the Vlasov-Poisson Case II over the time
interval [s, s+∆t] become

∂Gε

∂t
+

{
1

2π

∫ 2π

0
− sin(τ)E

(
t, τ, cos(τ)q + sin(τ)u

)
dτ

−1

8

[
(1 + 2 sin2(s/ε))u− sin(2s/ε)q

]} ∂Gε

∂q

+

{
1

2π

∫ 2π

0
cos(τ)E

(
t, τ, cos(τ)q + sin(τ)u

)
dτ

+
1

8

[
(1 + 2 cos2(s/ε))q − sin(2s/ε)u

]} ∂Gε

∂u
= 0,

Gε(s, q, u) = fs(q, u),

1

r

∂(rE)

∂r
= Υ, Υ(t, τ, r) =

∫
R
Gε

(
t, cos(τ)r − sin(τ)v, sin(τ)r + cos(τ)v

)
dv.

(15)

In section 3.3, we show numerically that the functions Gε defined by (15) provide a good
approximation of the functions fε given by (12)-(2)-(3), when ε → 0. A theoretical analysis
of this approximation goes beyond the scope of this work and might be considered as a
future research direction.

3.2 The numerical solving of the reduced models

We solve both systems (1)-(2)-(3) and (15) by a particle-in-cell method [3, 17]. The corre-
sponding unknown distribution functions, denoted by fε and G respectively, are approxi-
mated by Dirac sums, i.e., by a number Np of numerical particles. Then, for each unknown,
we compute the trajectories of the particles by solving the characteristic curves of the cor-
responding Vlasov equation, while the self-consistent electric fields are computed on a grid
in the physical space by solving the corresponding Poisson equation. This is done in a
standard way.

Next, we detail the algorithm we implemented for solving (15), following [10]. The
solution G is approximated by

GN (t, q, u) =

Np∑
j=1

wjδ(q −Qj(t)) δ(u− Uj(t)), (16)
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where
(
Qj(t), Uj(t)

)
is the position in the phase space of the macro-particle j moving along

a characteristic curve of the Vlasov equation in (15). The problem consists therefore in
finding the positions and velocities

(
Qn+1

j , Un+1
j

)
at time tn+1 = (n + 1)∆t from their

values at time tn = n∆t by solving the ordinary differential equation
dQj

dt
= −1

8
Uj −

1

2π

∫ 2π

0
sin(τ)E

(
t, τ, cos(τ)Qj + sin(τ)Uj

)
dτ, Qj(tn) = Qn

j ,

dUj

dt
=

3

8
Qj +

1

2π

∫ 2π

0
cos(τ)E

(
t, τ, cos(τ)Qj + sin(τ)Uj

)
dτ, Uj(tn) = Un

j ,

(17)

where, we considered the equations in the case s = 0 for the simplicity of the presentation.
Generalization to s ̸= 0 can be easily derived from (15). Then, we approximate the integral
in the fast variable τ by the trapezoidal rule which yields accurate results with a few
quadrature points over [0, 2π]. Thus, if we consider a grid with M cells for [0, 2π] and nodes
τℓ = 2πℓ/M for all ℓ ∈ {0, 1, . . . ,M}, we are left with solving the differential system

dQj

dt
= −1

8
Uj −

1

M

M−1∑
ℓ=1

sin(τℓ)E
(
t, τℓ, cos(τℓ)Qj + sin(τℓ)Uj

)
, Qj(tn) = Qn

j ,

dUj

dt
=

3

8
Qj +

1

M

M∑
ℓ=1

cos(τℓ)E
(
t, τℓ, cos(τℓ)Qj + sin(τℓ)Uj

)
, Uj(tn) = Un

j .

(18)

In practice, we found that M = 23 is a good trade-off value between the computational
cost and the accuracy of the integral approximation. In (18), the two-scale electric field E

is to be computed at a fixed time t from the particles
(
Qj(t), Uj(t)

)
j=1,...,Np

by means of

the Poisson equation (15). More precisely, we consider the following steps:

Algorithm 3.2.

1. For each ℓ ∈ {0, 1, . . . ,M}, rotate all the particles by the angle τℓ, i.e., compute the
positions

∀ℓ ∈ {0, 1, . . . ,M}, Pj(τℓ) = cos(τℓ)Qj + sin(τℓ)Uj ∀j ∈ {1, . . . , Np}.

2. Accumulate particles
(
Pj(τℓ)

)
j
on the grid of [rmin, rmax], in order to derive an ap-

proximation of the right-hand side Υ(t, τℓ, ·) of the Poisson equation, on the physical
grid.

3. Solve the Poisson equation in (15) by a numerical scheme to obtain the grid electric
field E(t, τℓ, ·).

We finally describe the numerical algorithm for solving the reduced model (15) by the
particle-in-cell method. We couple the solving of the ODEs in (18) by an explicit high-order
scheme with that of the Poisson equation by the trapezoidal formula for the r-integral.
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Algorithm 3.3.

1. Initialization: Generate random particles (Qj , Uj)j following a given distribution func-
tion and compute the initial two-scale electric field on the grid, by Algorithm 3.2.

2. For every n ∈ {0, 1, . . . }, consider (Qn
j , U

n
j ) given at time tn = n∆t. Compute

(Qn+1
j , Un+1

j ) as follows.

� compute the grid electric field following Algorithm 3.2 at time tn: En(τℓ, ·).
� by interpolation compute the electric field in the particles cos(τℓ)Q

n
j + sin(τℓ)U

n
j .

� push particles (Qn
j , U

n
j ) with a time-stepping scheme for solving (18).

Note that we can recover the particles (Rn
j , V

n
j )j approximating the solution fε to the system

(1)-(2)-(3) at any time tn, by computing
Rn

j = cos
( tn
ε

)
Qn

j + sin
( tn
ε

)
Un
j

V n
j = − sin

( tn
ε

)
Qn

j + cos
( tn
ε

)
Un
j ,

(19)

as a consequence of Remark 3.1(iii).

We conclude this part with the numerical parameters. In the following, we consider as
an initial condition the discontinuous distribution

f0(r, v) =
n0√
2π vth

exp
(
−

v2

2v2th

)
χ[rmin,rmax](r), (20)

where, as in [10], vth = 0.0727518214392, rmax = 1.83271471003 and rmin = −rmax and
where χ[rmin,rmax](r) = 1 if r ∈ [rmin, rmax] and χ[rmin,rmax](r) = 0 otherwise. We implement
this distribution function with Np = 10000 particles and weights wj = (rmax−rmin)/Np. For
the accumulation step, we compute the density ρε on the spatial grid by using first-order
B-splines as convolution kernel.
The Poisson equation in (3) is solved as follows (we drop the time variable in Eε): for
r ∈ [0, rmax] we consider

Eε(r) =
1

r

∫ r

0
sρε(s) ds

and for r ∈ [rmin, 0], we define Eε(r) = −Eε(−r). Then we approximate the integral above
by the trapezoidal quadrature with 128 cells. Finally, in order to evaluate the self-consistent
electric field in a particle, we use the same B-splines as in the step 2 of Algorithm 3.2, which
amounts to an interpolation over the grid nodes. As for the time integration, an explicit
Runge-Kutta 4 scheme for both the reduced and the original model is implemented. In
addition, when solving the characteristics of equation (1), we use a time step δt = 2πε/100,
which is sufficiently small for ensuring an accurate solving of the fastest time scale P = 2πε
among the three.
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3.3 Validity of the reduced models

The results in [10] do not allow to assess the validity of the reduced models over time
intervals of length 1/ε or more. Therefore, we check now numerically for how long these
models can be used as accurate approximations of the initial stiff models. We thus compute
at any time tn the following mean relative error

Error(tn) =
1

Np

Np∑
j=1

∥(Rn
j , V

n
j )− (R̃n

j , Ṽ
n
j )∥2

∥(R̃n
j , Ṽ

n
j )∥2

, (21)

where ∥ · ∥2 stands for the Euclidean norm in R2 and (Rn
j , V

n
j )j and (R̃n

j , Ṽ
n
j )j are obtained

following Algorithm 3.3 as the numerical solutions at time tn of the reduced model and of
the original model, respectively. Considering the Vlasov-Poisson Case I and the limit model
by equation (11), we plot in Fig. 3, left panel, the L2 norm in time over [0, T = 64] of the
mean error defined in (21), for several macro time steps ∆t and several values of ε. In order
to give more details about the behaviour of the mean relative error, we plot its evolution
as obtained with a fixed time step ∆t in Fig. 3, right panel. The same curves are plotted in
Fig. 4 for the Vlasov-Poisson Case II. We deduce from the left panels that when varying the
time step of the limit model in the set {0.4, 0.6, 0.8, 1}, there is no significant improvement
of the accuracy of approximation, in all the cases but Case II with ε = 0.001. Therefore, in
the remainder of the paper, the typical values of the coarse time step are 0.8 and 1.

For both Vlasov-Poisson cases, the common observation is that the limit model turns out to
be a very accurate approximation of the initial model for every ε and for some small (of order
1) final time. Then, for larger final times (of order 10) the accuracy of the approximation
is satisfactory when ε is not bigger than 0.01, whereas for values of ε in {0.05, 0.1} the
approximation error becomes much larger. Finally, in long runs as T = 64, for every value
of ε the error of the reduced model is more than 20% in Case I and respectively 50% in
Case II. Therefore, the approximation given by the limit model is not accurate anymore.
In the next section, we enhance the accuracy of the numerical approximations by means of
the parareal algorithm, without a prohibitive computational cost. We conclude this part by
underlining the following numerical rate of convergence, well illustrated by the right panels
of Figs. 3&4: the reduced model provides a much better approximation to the initial model
for the three smallest values of ε ∈ {0.001, 0.005, 0.01} than for the values ε ∈ {0.05, 0.1}.

Finally, we show that the model proposed in (15) is an accurate approximation of the
solution of the Vlasov-Poisson Case II. We thus plot in Fig. 5 the evolution in time of the
mean relative error of the limit model in (11) and that of the model in (15). Whereas the
first error is computed in a standard manner, the second one is computed as follows: for
every n = 1, 2, . . . , in order to obtain the solution at each time tn = n∆t, we solve the model
during one time step taking as initial condition the solution of the model computed at the
previous step tn−1. This is possible with the model in (15) but not with the two-scale limit
model which cannot start with an arbitrary initial time. We observe that the errors are very
close, for each value of ε, meaning that the model given in (15) provide an approximation of
the stiff Vlasov-Poisson solution which is as accurate as the one obtained from the two-scale
limit in (11).
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Figure 3: The Vlasov-Poisson Case I for several values of ε. Left panel: the discrete L2

norm on [0, T = 64] of the mean relative error of the two-scale limit model, computed using
several time steps ∆t. Right panel: evolution in time of the mean relative error of the limit
model with time step ∆t = 1.
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norm on [0, T = 64] of the mean relative error of the two-scale limit model, computed using
several time steps ∆t. Right panel: evolution in time of the mean relative error of the
two-scale limit model with time step ∆t = 1.

4 Parareal numerical results

In the previous section, we analyzed the level of approximation of the reduced models and
found that in large times of order 1/ε, they are not valid anymore. However, we show
hereafter that the parareal framework allows to obtain accurate results in such large times.
We thus present in this section numerical experiments illustrating the performance of the
algorithm. We recall that our strategy is to use the reduced models described in Section 3.1
to define the coarse solvers. More precisely, we start by implementing the parareal algorithm
in (7)-(8) by using the initial condition in (20). Then, for the fine solver F, we use the
standard numerical approximation of the system (1)-(2)-(3), while for the coarse solver G,
we employ the numerical scheme described in Section 3.2, for solving the problem (15).
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relative error of the two-scale limit model vs. the evolution of the error of the model given
by Gε in (15). The time step is ∆t = 1.

The relevant way to evaluate the errors of the parareal algorithm is the following. If we
denote by EF the error at a fixed final time of the fine solver F with respect to the exact
solution (or in other words the target accuracy, see [20]), then we determine the parareal
iteration at which the error EPA of the algorithm with respect to the exact solution is smaller
than EF.

We start now to discuss the outcome of the numerical simulations. We compute the fol-
lowing mean relative error in L∞([0, T ]) as a function of the number k of parareal iterations

Error(k) = max
n∈{1,...,N}

 1

Np

Np∑
j=1

∥(Y k
n )j −Xn

j ∥2
∥Xn

j ∥2

 , (22)

where ∥ · ∥2 stands for the Euclidean norm in R2,
(
(Y k

n )j
)
j
are the numerical particles

obtained at the k-th iteration of the parareal algorithm and (Xn
j )j stand for the numerical

particles approximating the initial Vlasov-Poisson model, at time tn.

For both cases, analytic forms of the solutions are not available and therefore, we need to
compute very accurate numerical solutions which play the role of the exact one. In the
following, we detail the way we obtain this solution, only for the Vlasov-Poisson Case II.
The accuracy is provided by a sufficiently small time step; we keep fixed the numerical
parameters for the discretization of the phase space (see the values described in the previous
section). We consider as fine solver F1 the outcome of the Runge-Kutta 4 method applied
with a time step δt = 2πε/100. Then, we consider the solution obtained with the time step
δ̃t = δt/6 as the reference solution, playing the role of the exact one. Indeed, we plot in
Fig. 6 (left panel) the errors of the fine solver with respect to several very fine solutions
obtained with time steps δt/2, δt/4, δt/6, δt/8, δt/10, and δt/12. We observe that the error
stabilizes when the time step is lower than δt/6. Therefore, we call in the following the very
fine solution the one obtained with the time step δ̃t = δt/6, as a trade-off between accuracy
and very high computational cost. In Fig. 6 we plot only the results at time T = 20 but
the same behaviour was observed when several final times were used. As described above,
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we run the algorithm until its error EPA is smaller than the target error EF1 = 4.8 · 10−4

of the fine solver F1. This is rapidly achieved at iteration 3 (see Fig. 6, right panel). If an
improved accuracy is targeted, one can use a finer fine solver F: if one makes use of the
solver F2 with the time step δt = 2πε/200, the parareal algorithm achieves an error which
is smaller than that of the solver F2, at iteration 5.

As a first convergence test for the parareal algorithm, we study the property of finding
smaller errors with smaller ε, at each parareal iteration, in short-time simulations. We fix
the coarse time step to ∆t = 0.8 to keep the same numerical approximation of the reduced
model. The final time is T = 800ε corresponding to approximately 127 rapid rotations P
for each ε. We plot the errors of the algorithm in Fig. 7. The curves are relevant, consistent
with the property of a better approximation of the reduced model when ε decreases.

Next, we discuss the more interesting long-time behaviour of the parareal algorithm and
its convergence properties. The fine solver is fixed from now on to F1. In Fig. 8, we plot
the errors of the algorithm for both Vlasov-Poisson cases, with several ε and final time
T = 64, while ∆t = 0.8. Firstly, we observe a rapid convergence of the algorithm for
the three smallest values of ε. The reason is that the reduced model gives a very good
approximation of these solutions, as previously showed in Figs. 3 and 4, right panels.
For the values ε ∈ {0.05, 0.1} the convergence is slower. Similar results were obtained
with ∆t = 1. Secondly, in order to get into the details of the efficiency of the parareal
algorithm, we display in Table 1 the run times of the (sequential) fine solver F1 and of the
algorithm together with the iterations number K at which EPA < EF. We observe that
parareal is quite efficient in terms of computational time when ε is small, unlike the cases
of ε ∈ {0.05, 0.1} where the inaccurate approximations of the reduced model require a large
number of parareal iterations to achieve the targeted accuracy. We note that the numerical
results in Table 1 show that, in some cases, a rather large number of iterations is required
to obtain convergence. However, a closer look to Fig. 8 shows that less iterations are needed
if our aim is to achieve only the order of the error EF, i.e., EPA ≳ EF. For example, in
Case II with ε = 0.001, the parareal algorithm converges in 6 iterations, but the order of
that error (EF ∼ 1.7 · 10−2) is achieved already at iteration 3, as one can see in the right
panel of Fig. 8: the relative difference between these two errors is 0.3%. Thus, if we stop
the algorithm at iteration 3, the parareal run time would be smaller. The same comment
can be done in Case I with ε = 0.01 and ε = 0.1. This behaviour have also been observed
in some cases with the coarse time step ∆t = 1.

Despite the previous remark, the parareal algorithm is not efficient for the two largest
values of ε, as expected. Indeed, the coarse solving (i.e. the reduced model) is not accurate
for those values and therefore, many parareal iterations are required. In order to improve
these results, we performed simulations with large values for the coarse time step. This
alternative seems promising since the convergence of the parareal algorithm accelerates
when ∆t increases, or equivalently, when N decreases. We thus plot in Fig. 9 the speedup
S = Tfine/Tpar of the algorithm, where Tpar is given in (9), for ∆t ∈ {0.8, 1, 2, 4, 8, 16, 32}, at
the same final time T = 64. We note that, unlike in Case I, the largest value for the coarse
time step we could consider in Case II is ∆t = 8, since the values 16 and 32 led to very
large errors of the reduced model. A first result that we deduce is that a speedup close to
1 is achieved in the cases of ε ∈ {0.05, 0.1}, when ∆t = 32. This is surely not an excellent
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result, but a better one than when ∆t = 0.8. Furthermore, for the three smallest values
of ε, we found that the choices leading to the best speedups are certainly the time steps
∆t = 0.8 or 1. In addition, in these interesting cases of the stiffest problems, we obtained
quite good values of the speedup of the parareal algorithm. At best, we achieved a speedup
around 11 for both Vlasov-Poisson cases, for the smallest value of ε, as expected. In some
cases the speedup can still be improved as discussed above, namely, by taking into account
the convergence of the algorithm together with the achievement of the order of the error.
Finally, we report in Tables 2 and 3 the best choices of the time step ∆t in terms of speedup,
for each value of ε (to be compared to the values obtained with ∆t = 0.8 in Table 1).

We finally study the very long time behaviour of our approximation. In this way, we
perform simulations, keeping the coarse time step fixed to ∆t = 1 and increasing the final
time with N . Ideally, it would be interesting to compute the error of the parareal algorithm
as before, namely, by comparing the approximation with the very fine solution, obtained
with the time step δ̃t. Since the latter has a computational cost overly expensive, we simply
estimate the error by taking as a reference the numerical solution obtained with the time
step δt = 2πε/100. We consider the Vlasov-Poisson cases with ε = 0.01 that we solve until
final times running from 254 to 2037 rapid rotations. We observe from Fig. 10 that the
convergence of the parareal algorithm is obtained at K = 9 when N = 16 or K = 14 when
N = 128 iterations, in Case I. This is an interesting and positive result and we expect to
obtain good speedup when the error of the parareal algorithm we aim at is for example of
order 10−3.

5 Conclusion

We designed and implemented a specific version of the parareal algorithm to solve some
highly oscillating Vlasov-Poisson system. Specifically, we considered for the coarse solving
reduced models that we deduced from the two-scale limit of the original Vlasov-Poisson
system. In a first step, we estimated numerically this convergence by identifying the smallest
values of the parameter ε for which the reduced models provide accurate approximations
and we found that in long term runs these approximations become inaccurate, whatever the
value of ε is. In order to solve this problem, we investigated the parareal framework. Thus,
in a second step, we analyzed the numerical convergence of the parareal algorithm together
with its efficiency by determining the coarse time steps leading to the best speedups. We
proved that the parareal strategy, unlike the reduced model, has the capability of providing
an accurate solution at any final time and for any ε, with a low computational cost. Indeed,
we obtained a good speedup when ε is small and the same computational time as that of
the fine solution when ε is large.

Acknowledgement: The authors thank Yvon Maday for interesting and helpful discus-
sions about the parareal algorithm.
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ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

Tfine (sec.) 470 94 47 9.4 4.7

Tpar (sec.) 44.3 13.3 20.5 17.5 62

Parareal iteration K 5 3 6 6 24

ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

Tfine (sec.) 1043 209 104 20.8 10.4

Tpar (sec.) 95 22.5 21 24 33.2

Parareal iteration K 6 4 5 8 12

Table 1: The Vlasov-Poisson cases (I at the top and II at the bottom) for several ε: the
computing times in seconds of the fine solver F1 and of the parareal algorithm until its error
is smaller than the error of the fine solver F1 with respect to the very fine solution. The
iterations number at which this error is attained is displayed. The final time is T = 64 and
the coarse time step fixed to ∆t = 0.8.

ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

Tfine (sec.) 470 94 47 9.8 4.9

Tpar (sec.) 44.3 13.3 18 10 5.1

Parareal iteration K/N 5/80 3/80 6/64 2/2 2/2

error EF 1.282 · 10−2 2.60 · 10−3 1.49 · 10−3 2.18 · 10−3 4.99 · 10−3

Table 2: The Vlasov-Poisson Case I for several ε: the computing times in seconds of the
fine solver F1 and of the parareal algorithm until its error is smaller than the error EF of
the fine solver F1 with respect to the very fine solution. The iterations number at which
this error is attained is displayed. The final time is fixed T = 64.

ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

Tfine (sec.) 1041 209 104 21 10.5

Tpar (sec.) 93 22.5 21 15.5 13

Parareal iteration K/N 5/64 4/80 5/80 6/64 8/8

error EF 1.767 · 10−2 4.40 · 10−3 2.27 · 10−3 6.96 · 10−3 9.44 · 10−3

Table 3: The Vlasov-Poisson Case II for several ε: the computing times in seconds of the
fine solver F1 and of the parareal algorithm until its error is smaller than the error E of the
fine solver F1 with respect to the very fine solution. The iterations number at which this
error is attained is displayed. The final time is fixed T = 64.
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