Multi-dimensional maximal coherent subsets made easy: illustration on an estimation problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Multi-dimensional maximal coherent subsets made easy: illustration on an estimation problem

Résumé

Fusing uncertain pieces of information to obtain a synthetic estimation when those are inconsistent is a difficult task. A particularly appealing solution to solve such conflict or inconsistency is to look at maximal coherent subsets of sources (MCS), and to concentrate on those. Yet, enumerating MCS is a difficult combinatorial task in general, making the use of MCS limited in practice. In this paper, we are interested in the case where the pieces of information are multi-dimensional sets or polytopes. While the problem remains difficult for general polytopes, we show that it can be solved more efficiently for hyperrectangles. We then illustrate how such an approach could be used to estimate linear models in the presence of outliers or in the presence of misspecified model.
Fichier principal
Vignette du fichier
SMPS_2022.pdf (183.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03896619 , version 1 (13-12-2022)

Identifiants

Citer

Loïc Adam, Sébastien Destercke. Multi-dimensional maximal coherent subsets made easy: illustration on an estimation problem. 10th International Conference on Soft Methods in Probability and Statistics (SMPS 2022), Sep 2022, Valladolid, Spain. pp.1-8, ⟨10.1007/978-3-031-15509-3_1⟩. ⟨hal-03896619⟩
36 Consultations
61 Téléchargements

Altmetric

Partager

More