A Review of Benchmarks for Visual Defect Detection in the Manufacturing Industry - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A Review of Benchmarks for Visual Defect Detection in the Manufacturing Industry

Philippe Carvalho
Alexandre Durupt
  • Fonction : Auteur

Résumé

The field of industrial defect detection using machine learning and deep learning is a subject of active research. Datasets, also called benchmarks, are used to compare and assess research results. There is a number of datasets in industrial visual inspection, of varying quality. Thus, it is a difficult task to determine which dataset to use. Generally speaking, datasets which include a testing set, with precise labeling and made in real-world conditions should be preferred. We propose a study of existing benchmarks to compare and expose their characteristics and their use-cases. A study of industrial metrics requirements, as well as testing procedures, will be presented and applied to the studied benchmarks. We discuss our findings by examining the current state of benchmarks for industrial visual inspection, and by exposing guidelines on the usage of benchmarks.
Fichier principal
Vignette du fichier
samplepaper.pdf (622.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03895824 , version 1 (04-05-2023)

Licence

Identifiants

Citer

Philippe Carvalho, Alexandre Durupt, Yves Grandvalet. A Review of Benchmarks for Visual Defect Detection in the Manufacturing Industry. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2022), Jun 2022, Ischia, Italy. pp.1527--1538, ⟨10.1007/978-3-031-15928-2_133⟩. ⟨hal-03895824⟩
68 Consultations
148 Téléchargements

Altmetric

Partager

More