Non-archimedean hyperbolicity and applications - Archive ouverte HAL
Article Dans Une Revue Journal für die reine und angewandte Mathematik Année : 2021

Non-archimedean hyperbolicity and applications

Résumé

Abstract Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field K of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is K -analytically Brody hyperbolic in equal characteristic 0. These two results are predicted by the Green–Griffiths–Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use Scholze’s uniformization theorem to prove that the aforementioned moduli space satisfies a non-archimedean analogue of the “Theorem of the Fixed Part” in mixed characteristic.
Fichier principal
Vignette du fichier
hal_HYP.pdf (401.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03895759 , version 1 (13-12-2022)

Licence

Identifiants

Citer

Ariyan Javanpeykar, Alberto Vezzani. Non-archimedean hyperbolicity and applications. Journal für die reine und angewandte Mathematik, 2021, 778, pp.1-29. ⟨10.1515/crelle-2021-0032⟩. ⟨hal-03895759⟩
18 Consultations
72 Téléchargements

Altmetric

Partager

More