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NON-ARCHIMEDEAN HYPERBOLICITY AND APPLICATIONS

ARIYAN JAVANPEYKAR AND ALBERTO VEZZANI

Abstract. Inspired by the work of Cherry, we introduce and study a new notion
of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field K

of characteristic zero. We use this notion of hyperbolicity to show the following
algebraic statement: if a projective variety admits a non-constant morphism from
an abelian variety, then so does any specialization of it. As an application of this
result, we show that the moduli space of abelian varieties is K-analytically Brody
hyperbolic in equal characteristic 0. These two results are predicted by the Green–
Griffiths–Lang conjecture on hyperbolic varieties and its natural analogues for non-
archimedean hyperbolicity. Finally, we use Scholze’s uniformization theorem to
prove that the aforementioned moduli space satisfies a non-archimedean analogue
of the “Theorem of the Fixed Part” in mixed characteristic.

1. Introduction

Conjectures of Green–Griffiths and Lang predict a precise interplay between dif-
ferent notions of hyperbolicity [31, 49]. In this paper, inspired by work of Cherry
[17], we introduce and study a new non-archimedean notion of hyperbolicity, and
study an analogue of the Green–Griffiths–Lang conjecture in this context.

1.1. Non-archimedean Green–Griffiths–Lang’s conjecture. Let X be a vari-
ety over C, and let Xan be the associated complex analytic space. Recall that X is
Brody hyperbolic if Xan has no entire curves, i.e., every holomorphic map C→ Xan

is constant. A conjecture of Green–Griffiths–Lang says that, if every algebraic map
from an abelian variety to a projective variety X over C is constant, then Xan is
Brody hyperbolic; see [31, 49]. We now formulate a non-archimedean analogue of
this conjecture.

If K is a complete non-archimedean valued field and X is a finite type scheme over
K, we let Xan be the associated rigid analytic variety over K. We say that a variety
over K is K-analytically Brody hyperbolic if, for every finite type connected group
scheme G over K, every morphism Gan → Xan is constant; see Section 2 for more
definitions. The analogue of the Green–Griffiths–Lang conjecture in this context
reads as follows.
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Conjecture 1.1 (Non-archimedean Green–Griffiths–Lang). Let K be an alge-
braically closed complete non-archimedean valued field of characteristic zero, and let
X be a proper scheme over K. Suppose that, for every abelian variety A over K,
every morphism A→ X is constant. Then X is K-analytically Brody hyperbolic.

Although the notion of K-analytic Brody hyperbolicity introduced above has not
appeared before in the literature, we were first led to investigate this notion by the
work of Cherry; see [2, 16, 17, 18, 51, 52].

There is no non-constant morphism A
1,an
K → Gan

m,K (contrary to the complex ana-
lytic setting); see [16, Proposition I.4] for instance. Therefore, as Gm,K is clearly not
hyperbolic, we see that, to prove that an algebraic variety X over K isK-analytically
Brody hyperbolicity, it does not suffice to show that all morphisms A1,an

K → Xan are
constant.

In fact, to “show” the K-analytic Brody hyperbolicity of a variety X over K, one
has to verify that, for every connected algebraic group G over K, every analytic map
Gan → Xan is constant. We show that, a variety X over K is K-analytically Brody
hyperbolic if and only if, for every abelian variety A over K with good reduction
every morphism of K-schemes A → X is constant and every K-analytic morphism
Gan

m,K → Xan is constant.
We stress that it is not clear what the “right” notion of non-archimedean hyper-

bolicity is (or should be). In this paper, we investigate a non-archimedean analogue
of “groupless varieties” (as defined in [40, 44] and Definition 3.1), and show that this
notion satisfies some of the expected properties. However, it is certainly worth pur-
suing non-archimedean analogues of “Borel hyperbolic” complex algebraic varieties
[41], as recently done by Ruiran Sun [66]. Moreover, another perspective on complex-
analytic hyperbolicity is provided by Kobayashi’s pseudometric. Cherry proposed a
non-archimedean analogue of this pseudometric, but notices quickly that it does not
have the right properties. We refer the reader to Section 3.5 for a discussion of
Cherry’s non-archimedean analogue of Kobayashi’s pseudodistance.

Lang conjectured that, for k an algebraically closed field of characteristic zero
and X a projective variety X over k, we have that every morphism from an abelian
variety A to X is constant if and only if it is “arithmetically hyperbolic” [42, Def-
inition 4.1], i.e., for every Z-finitely generated subring A ⊂ C, and every finite
type separated scheme X over A with XC

∼= X , the set X (A) is finite; see [1,
§0.3], [38], [39, Conjecture 1.1], [49] and [22, Conjecture XV.4.3]. In conclusion,
the non-archimedean version of the Green–Griffiths–Lang conjecture (Conjecture
1.1) predicts that a projective variety X over an algebraically closed complete non-
archimedean valued field K of characteristic zero is arithmetically hyperbolic over K
if and only if it is K-analytically Brody hyperbolic. Other “arithmetic” speculations
related to K-analytic Brody hyperbolicity are made by An–Levin–Wang [3].

1.2. Evidence for non-archimedean Green–Griffiths–Lang. Our first result
verifies Conjecture 1.1 for constant varieties over K.
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Theorem 1.2 (Non-archimedean Green–Griffiths–Lang for constant varieties). Let
X be a proper scheme over an algebraically closed field k. Fix a complete algebraically
closed non-archimedean valued field K with ring of integers OK and fix a section
k →֒ OK of the quotient map. Suppose that, for every abelian variety A over K,
every morphism A → XK is constant. Then XK is K-analytically Brody hyperbolic
over K.

To prove Theorem 1.2, we establish a more general result relating K-analytic
Brody hyperbolicity of the generic fiber of a proper scheme X over OK to the “hy-
perbolicity” of its special fiber. The precise statement reads as follows.

Theorem 1.3 (Inheriting hyperbolicity from the special fiber). Let K be complete
algebraically closed non-archimedean valued field K. Let X be a proper finitely pre-
sented scheme over OK. Suppose that, for every abelian variety over k, every mor-
phism A→ Xk is constant. Then XK is K-analytically Brody hyperbolic.

Theorem 1.3 is proven using a uniformization theorem of Bosch–Lütkebohmert for
abelian varieties over K.

The above two results (Theorems 1.2 and 1.3) are in accordance with the non-
archimedean Green–Griffiths–Lang conjecture (Conjecture 1.1). We note that Con-
jecture 1.1 was previously shown to hold for closed subvarieties of abelian varieties.
More precisely, for closed subvarieties of abelian varieties, the work of Cherry [16],
Faltings [28, 29], Kawamata [45], and Ueno [67, Theorem 3.10] can be combined into
the following result.

Theorem 1.4 (Cherry, Faltings, Kawamata, Ueno). Let K be an algebraically closed
field of characteristic zero. Let X be a closed subvariety of an abelian variety over
K. Then the following are equivalent.

(1) For every abelian variety A over K, every morphism A → X is constant,
i.e., X is groupless (Definition 3.1). (Equivalently, X does not contain the
translate of a positive-dimensional abelian subvariety of A.)

(2) Every closed integral subvariety of X is of general type.
(3) The projective variety X is arithmetically hyperbolic [42, Definition 4.1].
(4) If K = C: The projective variety is X is Brody hyperbolic.
(5) If K is non-archimedean: The projective variety X is K-analytically Brody

hyperbolic.

Cherry’s theorem (Theorem 1.4) not only shows that the non-archimedean Green–
Griffiths–Lang conjecture holds for closed subvarieties of abelian varieties, but it also
suggests that our notion of non-archimedean hyperbolicity is not far from the “right”
one.

We use Cherry’s theorem (Theorem 1.4) to verify that the non-archimedean
Green–Griffiths–Lang conjecture (Conjecture 1.1) holds for all projective curves
(Proposition 3.15) and their symmetric powers (Proposition 3.16).

1.3. An algebraic application of Theorem 1.3. If X is a projective variety over
an algebraically closed field k, then we say that X is groupless if, for every abelian
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variety A over k, every morphism A → X is constant (see Definition 3.1). To
motivate the following results, note that the classic Green–Griffiths–Lang conjecture
predicts that a projective variety over C is groupless if and only if it is of general
type and Brody hyperbolic.

Now, the (classical) Green–Griffiths–Lang conjecture predicts that every special-
ization of a non-groupless variety is non-groupless; we explain this in detail in Remark
4.1. Our next result verifies this prediction.

Theorem 1.5 (Grouplessness generizes). Let S be an integral normal variety over
an algebraically closed field k of characteristic zero with function field K = K(S).
Let K → Ka be an algebraic closure of K. Let X → S be a proper morphism of
schemes such that there is an s in S(k) with Xs groupless over k. Then the geometric
generic fiber XKa of X → S is groupless over Ka.

It seems worth stressing that our proof of Theorem 1.5 uses our “algebraic” cri-
terion for non-archimedean hyperbolicity (Theorem 1.3). In particular, our proof
of Theorem 1.5 illustrates that our notion of non-archimedean hyperbolicity can be
used to verify algebraic predictions made by the (classical) Green–Griffiths–Lang
conjecture.

To motivate our next result, we note that the fact that a groupless variety should
specialize to a groupless variety is also a consequence of the Green–Griffiths–Lang
conjecture; we explain this also in detail in Remark 4.1. The precise statement reads
as follows.

Theorem 1.6 (Grouplessness specializes). Let k be an uncountable algebraically
closed field. Let S be an integral variety over k with function field K = K(S). Let
K → Ka be an algebraic closure of K. Let X → S be a proper morphism of schemes.
If XKa is groupless over Ka, then there is an s in S(k) such that Xs is groupless.

To prove Theorem 1.6 we use (only) algebraic arguments, and properties of the
moduli space of principally polarized abelian varieties.

We stress that Theorems 1.5 and 1.6 verify predictions made by the Green–
Griffiths–Lang conjecture, and thereby provide (new) evidence for this conjecture.

1.4. The moduli space of abelian varieties. If g is a positive integer, we let
Ag be the stack of g-dimensional principally polarized abelian schemes over Z. Let

N > 3 be an integer coprime to p and let X := A
[N ]
g be the moduli space of g-

dimensional principally polarized abelian schemes with full level N -structure over
Z[1/N ]. Note that X is a smooth quasi-projective scheme over Z[1/N ]; see [56].

The Green–Griffiths–Lang conjecture has an analogue for quasi-projective, not
necessarily projective, varieties to which we will refer to as the Lang–Vojta con-
jecture. The original versions of Lang–Vojta’s conjecture appeared in [49] and [70,
Conj. 4.3]. A general conjecture over finitely generated subrings of C is stated in
[1, §0.3] (see also [43, Conj. 6.1]). Part of Lang–Vojta’s conjecture predicts that,
if X is a quasi-projective integral scheme over C whose integral subvarieties are of
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log-general type, then X is arithmetically hyperbolic over C [42, Definition 4.1] and
Brody hyperbolic.

It follows from the work of Zuo that every integral subvariety of the moduli space
XC is of log-general type [72] (see also [14] and [43, Lemma 6.3]). The aforementioned
predictions made by the Lang–Vojta conjecture are that XC is arithmetically hyper-
bolic over C and Brody hyperbolic. The arithmetic hyperbolicity of XC was proven
by Faltings; see [26, 27]. As it plays a crucial role in our work below, recall that XC

is (complex analytically) Brody hyperbolic, as any holomorphic map A1 an
C → X an

C

lifts to the universal cover Hg of X an
C , the universal cover Hg of X an

C is a bounded
domain, and bounded domains are Brody hyperbolic by Liouville’s theorem. In a
diagram, the proof can be summarized as follows:

bounded domain

topological covering
��

A1 an
C

∃

55
❥

❥

❥

❥

❥

❥

❥

❥

❥

// X an
C

This proof also shows that maps into XC with trivial monodromy are constant. The
latter statement is an instance of the so-called “Theorem of the Fixed Part”; see [69,
Theorem 3.1] for the more general version due to Griffiths.

Theorem 1.7 (Theorem of the Fixed Part). Let S be a finite type separated con-
nected scheme over C. A morphism San → X an

C is constant if and only if the image
of the induced morphism on fundamental groups

π1(S
an)→ π1(X

an
C )

is finite.

Motivated by the Lang–Vojta conjecture and the aforementioned properties of
the moduli space of abelian varieties, it seems reasonable to suspect that, if K is
a complete algebraically closed non-archimedean valued field of characteristic zero,
then the moduli space XK is K-analytically Brody hyperbolic. Our first result in
the direction of this reasonable expectation reads as follows.

Theorem 1.8. If the residue field of K has characteristic 0, then the moduli space
XK is K-analytically Brody hyperbolic.

In the mixed characteristic case, we do not show that the moduli space XK is K-
analytically Brody hyperbolic. However, we do obtain an analogue of the Theorem of
the Fixed Part in this case. Indeed, using results of Scholze on perfectoid spaces, an
argument similar to the above “complex-analytic” argument leads to the following
result.

Theorem 1.9 (Non-archimedean Theorem of the Fixed Part). Let K be a complete
algebraically closed non-archimedean valued field of characteristic zero and residue
characteristic p > 0. Let S be a connected rigid analytic variety over K. A morphism
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S → X an
K is constant if and only if the image of the induced morphism on (algebraic)

étale pro-p-fundamental groups

πalg
1 (S)→ πalg

1 (X an
K )→ GSp2g(Zp)

is finite.

Our proof of Theorem 1.9 is conceptually quite close to the line of reasoning
sketched above. However, instead of lifting a map S → X an

K to the topological
universal cover of X an

K , we lift to a suitable perfectoid pro-finite étale covering [62,
§3].

In a diagram similar to the above “complex-analytic” diagram, our line of reason-
ing used to prove Theorem 1.9 can be summarized as follows:

Scholze’s perfectoid space

pro-finite étale

��

S //

∃

44
✐

✐

✐

✐

✐

✐

✐

✐

✐

✐

✐ X an
K

For the reader’s convenience, we stress that the crucial property of perfectoid
spaces used in the proof of Theorem 1.9 is the following folklore result; we refer to
Proposition 2.10 for a more precise statement.

Proposition 1.10. Let K be a complete algebraically closed non-archimedean valued
field of characteristic zero and residue characteristic p > 0. A perfectoid space over
K is K-analytically Brody hyperbolic.

Acknowledgements. We thank Jackson Morrow for very helpful discussions.
We thank Peter Scholze for a very helpful and inspiring discussion in Alpbach.
We are grateful to Giuseppe Ancona, Johannes Anschütz, Olivier Benoist, Yohan
Brunebarbe, Ana Caraiani, Cédric Pepin, Arno Kret, Robert Kucharczyk, Jaclyn
Lang, Marco Maculan, Lucia Mocz, Frans Oort, Will Sawin, Benôıt Stroh, Yunqing
Tang, Jacques Tilouine, Robert Wilms, and Kang Zuo for helpful discussions.

2. Non-archimedean Brody hyperbolicity

Throughout this paper, we make the following assumption.

Assumption 2.1. We let K be an algebraically closed field of characteristic 0
which is complete with respect to a non-archimedean, non-trivial multiplicative norm
|| · || : K → R. We let OK be its valuation ring and k be its residue field.

Example 2.2. Finite field extensions of Qp are complete non-archimedean valued

fields of characteristic zero and residue characteristic p > 0. The completion Cp of Qp

is also a complete non-archimedean valued of field of characteristic zero and residue
characteristic p > 0. Finally, for any field k of characteristic 0, the completion K of
k((t)) endowed with the t-adic valuation is a complete non-archimedean valued field
with residue field k.
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We will use the language of adic spaces [36, 37] in order to deal with rigid analytic
varieties. In particular, we will denote by |X| the underlying topological space of a
rigid analytic variety as defined by Huber [37]. All schemes and adic spaces (see [36]
for the general theory) will be considered as spaces over K endowed with its valuation
of rank 1. For a reduced Tate algebra R which is a quotient of K〈T1, . . . , TN〉 (the
completion of the polynomial ring) we write SpaR for the affinoid space Spa(R,R◦).
We let BN be the poly-disc SpaK〈T1, . . . , TN〉.

If X is a locally finite type scheme over K, we let Xan be the associated rigid
analytic variety (see for example [7, Proposition 0.3.3] or [11]). To simplify the
notation, we will sometimes let Gan

m be the rigid analytic variety associated to the
finite type K-scheme Gm,K .

The following definition introduces the main objects of study of our paper. We
stress that our definition is modeled on the observation that a complex algebraic
variety X over C is Brody hyperbolic (i.e., has no entire curves C → Xan) if and
only if for every connected finite type group scheme G over C, every morphism of
varieties Gan → Xan is constant. We refer the reader interested in complex algebraic
Brody hyperbolic varieties to Kobayashi’s book [46].

Definition 2.3. An adic space X over K is K-analytically Brody hyperbolic if,
for every connected finite type group scheme G over K, every morphism of adic
spaces Gan → X is constant, i.e. factors over a K-rational point. A locally finite
type K-scheme X is K-analytically Brody hyperbolic if Xan is K-analytically Brody
hyperbolic.

Remark 2.4. Since any finite type group scheme G over K is reduced (as K is of
characteristic zero) and has a K-rational point (by definition), a map Gan → X is
constant if and only if it is constant as a map of topological spaces.

Remark 2.5. The closed disc B1 and the open disc B̊1 are subgroups of (A1,an,+),
and any rigid analytic variety admits non-trivial maps from B1. A definition of
hyperbolicity using rigid analytic groups as “test” objects would therefore be of no
interest.

Remark 2.6. In [46, Corollary 3.11.2], it is shown that the total space of a family
of Kobayashi hyperbolic varieties over C over a Kobayashi hyperbolic variety over
C is Kobayashi hyperbolic. The non-archimedean analogue of this statement reads
as follows (and is not hard to prove). Let X → Y be a morphism of rigid analytic
varieties over K. If Y is K-analytically Brody hyperbolic and all K-fibers of X → Y
are K-analytically Brody hyperbolic, then X is K-analytically Brody hyperbolic.

The notion of K-analytic hyperbolicity introduced above (Definition 2.3) has not
appeared before in the literature. However, the following weaker notion was studied
in the work of Cherry [17]; see also [2, 16, 18, 51, 52].

Definition 2.7. An adic space X over K is K-analytically pure if all morphisms
Gan

m,K → X are constant. A locally finite type scheme X over K is K-analytically
pure if the adic space Xan is K-analytically pure.
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Note that smooth proper curves of genus one over K with good reduction are
K-analytically pure. In particular, a K-analytically pure is not necessarily “hy-
perbolic”. This is why we avoid saying that K-analytically pure varieties are “hy-
perbolic”. Part of the aim of this paper is to show that a (more) “correct” non-
archimedean analogue of Brody hyperbolic complex manifolds is provided by K-
analytic Brody hyperbolicity (Definition 2.3).

2.1. Hyperbolicity of affinoids. It follows from Liouville’s theorem on bounded
holomorphic functions that a bounded domain in affine space is Brody hyperbolic.
In the non-archimedean setting, we can state the following analogue of this fact.

Proposition 2.8. An affinoid adic space A over K is K-analytically Brody hyper-
bolic. More generally, if X is a reduced connected locally finite type scheme over K,
then any morphism Xan → A is constant.

Proof. It suffices to prove the second statement. To do so, note that any map Xan →
A to an affinoid space A = Spa(R,R+) over K is uniquely determined by a morphism
from R+ to the ring of global bounded functions on Xan; see [36, Proposition 2.1(ii)].
The claim then follows if we show that this ring is OK . Therefore, we may and do
assume that A is the closed disc B1.

Now, to show that Xan → A is constant, we may and do assume that X is affine.
Moreover, by considering the normalization of X , we can also assume that X is
normal. Let X → X be an open immersion with X connected, normal and projective
over K. By the Hebbarkeitssatz ([19, p. 502] or [55, Theorem 1.6]), any morphism
Xan → B1 extends to a morphism X

an
→ B1. By GAGA [21, 47], the composite

map X
an
→ B1 → P1,an is induced by an algebraic map X → P1 whose image is

closed and does not contain ∞. Therefore, since X is connected, we conclude that
X

an
→ P1,an is constant, as required. �

Remark 2.9. The complex analytic analogue of Proposition 2.8 reads as follows.
LetD be a bounded domain in the affine space CN , and let X be a reduced connected
locally finite type scheme over C. Then, any morphism Xan → D is constant. Indeed,
since any two points in X lie in the image of a reduced connected curve, we may and
do assume that X is a curve. Let Y be a connected component of the normalization
X ′ of X , and note that Y is a smooth quasi-projective curve over C. It suffices to
show that Y an → D is constant. Let Y ⊂ Y be the smooth compactification of
Y . Let P ∈ Y \ Y , and let ∆P ⊂ Y

an
be an open disk around P not containing

any other point of Y \ Y . Then, as the morphism ∆P \ {P} → D is a bounded
holomorphic function, it extends to a morphism ∆P → D. We see that Y an → D
extends a holomorphic morphism Y

an
→ D ⊂ Cn. As Y is projective, every global

holomorphic function Y
an
→ C is constant. We see that Y

an
→ D is constant, and

conclude that Y an → D is constant.

2.2. Hyperbolicity of perfectoid spaces. Recall that in Proposition 2.8 we
showed that affinoid adic spaces do not admit non-constant maps from a connected
algebraic variety. Similarly, perfectoid spaces over K (see [60] for definitions) also
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do not admit non-constant morphisms from an algebraic variety. Even better, they
do not admit any non-constant morphisms from a connected rigid analytic variety
(Proposition 2.10). This property is fairly obvious to anyone accustomed to Scholze’s
theory of perfectoid spaces; we include it here due to a lack of a suitable reference
in the literature.

Proposition 2.10. Assume K has positive residue characteristic. Let X be a reduced
connected rigid analytic variety over K and let Y be a perfectoid space over K. Then
any morphism of adic spaces X → Y is constant.

Proof. By a standard induction argument on the dimension of X , replacing X by its
(dense open) smooth locus if necessary, we may and do assume that X is smooth.
Moreover, we may and do assume that X and Y are affinoid and equal to Spa(R,R◦)
and Spa(P, P+), respectively. Let ϕ : P → R be the morphism of rings associated to
X → Y .

We first prove that R does not contain any non-constant element having arbitrary
p-th roots. (That is, we first treat the case P = K〈T 1/p∞〉.) Fix a K-rational
point x of X . Since X is smooth, it is locally étale over a poly-disc Bn (see [5,
Corollary 1.1.51]) and there is an open neighborhood of x which is isomorphic to an
open neighborhood of a rational point y in Bn (see [5, Remark 1.2.4]). Thus, since
concentric poly-discs form a basis of open neighborhoods of y, by the identity theorem
(see [19, Lemma 2.1.4]), we may and do assume that X is Bn, so that R equals the
Tate algebra K〈T1, . . . , Tn〉. Note that, as in the proof of [60, Lemma 3.4.(i)], we
have an isomorphism of multiplicative monoids

lim
←−
x 7→xp

OK〈T1, . . . , Tn〉 ∼= lim
←−
x 7→xp

OK〈T1, . . . , Tn〉/p.

Therefore, we have the following isomorphisms of multiplicative monoids

lim
←−
x 7→xp

OK〈T1, . . . , Tn〉 ∼= lim
←−
x 7→xp

OK〈T1, . . . , Tn〉/p

∼= lim
←−
x 7→xp

(OK/p)[T1, . . . , Tn] ∼= lim
←−
x 7→xp

OK/p ∼= lim
←−
x 7→xp

OK .

We deduce that R◦ = OK〈T1, . . . , Tn〉 does not contain any non-constant element
with arbitrary p-th roots. By multiplying with a constant, this implies the statement
for R as well, as desired.

Let

P ♭ ∼= lim
←−
x 7→xp

P

be the tilt of P ; see [60, Proposition 5.17]. Consider the multiplicative map ♯ : P ♭ →
P , y 7→ y♯ given by the projection to the first term. Since R does not contain
any non-constant element having all p-th roots (as shown above), we deduce that
ϕ(♯(P ♭)) is contained in K. Because the canonical map of rings P ♭◦/p♭ → P ◦/p is
an isomorphism (see [60, Lemma 6.2]), it follows that, for any element x in P ◦, there
exist an element y in P ♭◦ and an element x′ in P ◦ such that x = y♯ + px′. Fix an
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element x0 in P ◦ and define inductively a sequence xi ∈ P ◦ and yi ∈ P ♭◦ by

xi = y♯i + pxi+1

Note that the sequence (zn)
∞
n=0 defined by zn =

∑n
i=0 p

iy♯i = x0−pn+1xn+1 converges

to x0. By what we proved above, we see that ϕ(zn) =
∑n

i=0 p
iϕ(y♯i) ∈ K. We deduce

that ϕ(x0) is a limit of elements of K, and thus lies in K. This proves that ϕ factors
over K as wanted. �

Remark 2.11. Proposition 2.10 can be generalized to a connected (not necessarily
reduced) rigid analytic variety X by saying that its image is a single rational point
of Y . Indeed, it suffices to take the reduced closed subvariety of X . On the other
hand, we remark that in this (more general) case the morphism may not factor
over SpaK. For example, the map T 1/pn 7→ 1 + 1

pn
T induces a morphism from

the perfectoid algebra K〈T 1/p∞〉 to the (non-reduced) Tate algebra K〈T 〉/T 2 which
clearly does not factor over K.

Remark 2.12. Let X be an adic space over K. Let P ⊂ X be an open adic subspace
which is perfectoid. If S is a connected reduced rigid analytic variety over K and
S → X is a non-constant morphism, then the image of S → X lies in the complement
of P . In particular, following the complex-analytic terminology [46, §3.2], one could
say that X is “hyperbolic modulo the complement of P”.

2.3. Descending hyperbolicity along finite étale covers. If X → Y is a finite
étale morphism of complex algebraic varieties and X is Brody hyperbolic (resp.
Kobayashi hyperbolic), then Y is Brody hyperbolic (resp. Kobayashi hyperbolic);
see for instance [46, Theorem 3.2.8.(2)]. We now show the analogue of the latter
statement for K-analytically Brody hyperbolic varieties.

Proposition 2.13. Let X → Y be a finite étale morphism of adic spaces over K.
If X is K-analytically Brody hyperbolic, then Y is K-analytically Brody hyperbolic.

Proof. Let G be a finite type connected group scheme over K, and let ϕ : Gan → Y an

be a morphism. Consider the Cartesian diagram

V ′′ //

��

Xan

��

Gan
ϕ

// Y an

Let V ′ be a connected component of V ′′, and note that V ′ → Gan is finite étale.
Let V → V ′ → Gan be its Galois closure, so that V → Gan is finite étale Galois. We
claim that there is a finite type group scheme H over K and a central isogeny H → G
such that the associated morphism Han → Gan is isomorphic to V → Gan. To prove
this, note that, by the non-archimedean analogue of Riemann’s existence theorem,
the finite étale morphism V → Gan algebraizes; see [54, Theorem. 3.1]. Since K is
an algebraically closed field of characteristic zero and H → G is finite étale Galois,
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there is a group structure on the connected K-scheme H such that H → G is a
homomorphism; see [13]. This proves the claim.

Since X is K-analytically Brody hyperbolic, the induced morphism Han → Xan is
constant. It follows readily that the morphism ϕ : Gan → Y an is constant. �

2.4. Testing hyperbolicity on algebraic groups with good reduction. The
main result of this section (Theorem 2.18) shows that the hyperbolicity of a variety
over K can be tested on analytic maps from Gm and algebraic maps from abelian
varieties with good reduction. Our proof uses the (algebraic) classification theory of
algebraic groups, GAGA for rigid analytic varieties, and a uniformization theorem
of Bosch–Lütkebohmert; we note that Cherry also used this uniformization theorem
to prove the non-archimedean version of Bloch’s conjecture (Theorem 1.4). We start
with two preliminary lemmas.

Lemma 2.14. Let X be an adic space over K. The following are equivalent.

(1) The adic space X is K-analytically Brody hyperbolic.
(2) For every abelian variety A over K, every morphism Aan → Xan is constant,

and every morphism Gan
m → Xan is constant.

Proof. We follow the proof of [40, Lemma 2.4]. It suffices to show that (2) =⇒ (1).
Since K is of characteristic zero, a finite type connected group scheme over K is
smooth, integral and quasi-projective over K [65, Tag 0BF6]. In particular, by
Chevalley’s theorem on algebraic groups [20], there is a unique affine normal subgroup
scheme H of G such that G/H is an abelian variety over K. Since H is a smooth
connected affine algebraic group, every two points lie on the image of a morphism of
K-schemes A1

K \{0} → H . Thus, as every morphism Gan
m,K → X is constant (by (2)),

we see that every morphism Han → X is constant. In particular, every morphism
Gan → X factors via a morphism (G/H)an → X . However, since G/H is an abelian
variety, we conclude that (G/H)an → X is constant (by (2)). This concludes the
proof. �

Lemma 2.15. If X is a finite type separated scheme over K and A is an abelian
variety over K, then every morphism ϕ : Aan → Xan is algebraic.

Proof. We first use Nagata’s theorem to compactify X . Thus, let X be a proper
scheme over K and let X ⊂ X be an open immersion. Now, by GAGA for proper
schemes over K [21, 47], the composed morphism Aan → Xan → X

an
algebraizes. In

particular, the morphism ϕ algebraizes. �

We now show that K-analytic Brody hyperbolicity can be tested on analytic maps
from Gan

m and algebraic maps from abelian varieties.

Proposition 2.16. Let X be a finite type separated scheme over K. The following
are equivalent.

(1) X is K-analytically Brody hyperbolic.
(2) For every abelian variety A over K, every morphism A→ X of schemes over

K is constant, and X is K-analytically pure (Definition 2.7).
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Proof. Assume (2) holds. In order to prove that Xan is K-analytically Brody hyper-
bolic, let Aan → Xan be a morphism. By Lemma 2.15, this morphism is algebraic,
and hence constant by (2). Therefore, by Lemma 2.14, as X is K-analytically pure,
we conclude that X is K-analytically Brody. This shows that (2) =⇒ (1). The
other implication is straightforward. �

The uniformization theorem of Bosch–Lütkebohmert that we require reads as fol-
lows.

Theorem 2.17 (Bosch–Lütkebohmert). Let K be a complete non-archimedean al-
gebraically closed field. Let A be an abelian variety over K. Then the following data
exists.

(1) A semi-abelian variety G over K;
(2) An abelian variety B over K with good reduction over OK ;
(3) A surjective morphism of K-group schemes G → B whose kernel is a torus

GdimG−dimB
m,K , and

(4) A topological covering Gan → Aan.

Proof. See [12, Theorem. 8.8 and Remark. 8.9]. �

Recall that an abelian variety A over K has good reduction (over OK) if there
is an abelian scheme A over OK and an isomorphism of schemes AK

∼= A over
K. The following result says, roughly speaking, that one can test the K-analytic
hyperbolicity of a variety over K on analytic tori and on abelian varieties with good
reduction.

Theorem 2.18. Let X be a finite type separated scheme over K. Then the following
are equivalent.

(1) X is K-analytically Brody hyperbolic.
(2) Every morphism Gan

m,K → X is constant and, for every abelian variety B over
K with good reduction over OK, every morphism B → X is constant.

Proof. Clearly, (1) =⇒ (2). To prove the theorem, assume that (2) holds. In
particular, X is K-analytically pure. Let A be an abelian variety over K and let
Aan → Xan

K be a morphism. By Lemma 2.14, it sufices to show that this morphism
is constant.

By Theorem 2.17, there is a semi-abelian variety G over K, an abelian variety B
over K with good reduction over OK , a surjective homomorphism G → B whose
kernel T is a torus, and a topological covering Gan → Aan.

Since every morphism Gan
m → Xan

K is constant, the composed morphism

T an ⊂ Gan → Aan → Xan
K

is constant. Therefore, the composed morphism Gan → Aan → Xan
K factors over

a morphism Ban = Gan/T an → Xan
K . By GAGA (Lemma 2.15), the morphism

Ban → Xan is the analytification of a morphism B → X . By assumption (2), this
morphism B → X is constant. We conclude that Ban → Xan and thus Aan → Xan

is constant, as required. �
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We stress that Theorem 2.18 will be used to show that the generic fiber of a proper
scheme over OK “inherits” K-analytic Brody hyperbolicity from the “grouplessness”
of its special fiber (Theorem 3.13).

2.5. Inherting hyperbolicity from the special fiber. Given a proper finitely
presented scheme X over OK , the “hyperbolicity” of its special fiber forces the “hy-
perbolicity” of its generic fiber. We will make this more precise in the next section
(see Theorem 3.13). In this section, we prove some preliminary results necessary to
prove the latter result.

We start with a criterion for a map of topological spaces to be constant. We recall
first some definitions about spectral spaces; see [34] or [65, Section 08YF].

Definition 2.19. A topological space X is spectral if X is quasi-compact, if X has
a basis of quasi-compact open subsets which is stable under finite intersections, and
if every irreducible closed subset of X is the closure of a unique point.

We recall that examples of spectral spaces are given by quasi-compact quasi-
separated schemes and quasi-compact quasi-separated adic spaces over K [37,
Lemma 1.3.12]. We will apply the next lemma to a situation where both these types
of spaces appear.

Lemma 2.20. Let f : X → Y be a quasi-compact continuous map between spectral
spaces, with X connected and Y noetherian. Let N be the set of non-closed points in
the image. If N is empty, then f is constant. Otherwise, the image of f is included
in the closure of N .

Proof. Let Z be the closure of N and suppose that there is a (closed) point y in
the image of f which does not lie in Z. The set U := f−1(Y \ {y}) is open and
quasi-compact. Let x′ ∈ U be a point and let x be a point in the closure of x′,
so that f(x) is in the closure of f(x′). If f(x′) lies in Z, then f(x) also lies in Z.
Otherwise, the point f(x′) is closed, so that f(x) = f(x′). In both cases, we deduce
that x′ lies in U . Therefore U is stable under specializations, and is therefore closed
[65, Tag 0903]. As X is connected, we conclude that U is empty, as desired. �

Corollary 2.21. Let X be a quasi-compact separated formal scheme over OK which
is topologically of finite presentation, and let π : Xη → Xk be the specialization map.
Let S be a connected finite type separated scheme over K. A map of rigid analytic
varieties f : San → Xη is constant if and only if every point in the image of the
composite continuous map π ◦ f is closed.

Proof. Suppose that every point in the image π ◦ f is closed. We claim that the
composite map π ◦ f is constant. To prove this, we can restrict San to some quasi-
compact connected open subset T . Since the specialization map is quasi-compact
[7, (0.2.2)-(0.2.3)] and f is quasi-compact, the composite π ◦ f : T → Xσ is a quasi-
compact continuous map of spectral spaces with a noetherian target. The claim that
π ◦ f is constant now follows from the previous lemma.

We conclude that there is a point x in Xσ such that f factors over the set π−1(x).
Note that π−1(x) is included in Uη = π−1(Uσ) for some open affine subscheme U of
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X. Since Uη is affinoid [7, (0.2.2.1)], the corollary follows from the hyperbolicity of
affinoids (Proposition 2.8). �

We recall that whenever one considers a formal scheme X over OK which is ob-
tained as the formal completion of a proper finitely presented scheme X over OK , its
generic fiber Xη coincides with theK-analytic space associated to XK [7, Proposition
(0.3.5)].

We now investigate the “generic” properties of a proper scheme over OK whose
special fiber does not contain any curves of genus at most g. To make this more
precise, we start with two definitions.

Definition 2.22. If X is a proper scheme over a field k, then we say that X has
no curves of genus at most g if, for every smooth projective geometrically connected
curve C over k of genus 6 g, every morphism C → X is constant.

Definition 2.23. If X is a rigid analytic variety over K, we say that X has no
K-analytic curves of genus at most g if, for every smooth projective geometrically
connected curve C of genus 6 g and every dense open subscheme C̃ ⊂ C, every

morphism C̃an → X is constant.

If X is a rigid analytic variety over K with no K-analytic curves of genus zero,
then X is K-analytically pure (Definition 2.7).

The following results are inspired by (and generalize) [17, Lemmas 2.12-2.13]. The
proof in loc. cit. uses the Berkovich topology.

Proposition 2.24. Let X be a proper scheme over OK such that Xk has no curves of
genus at most g. Let C be a smooth projective connected curve of genus at most g over
K and let U ⊂ Can be a connected open analytic subvariety of Can. If f : U → Xan

K

is a K-analytic map, then the composite map of topological spaces U → Xan
K → Xk

is constant.

Proof. By Lemma 2.20, it suffices to show that every point in the image of Can → Xk

is closed.
Let x̃ be a non-closed point of Xk with local field κ(x̃). Suppose that there is a

point c in Can with π ◦ f(c) = x̃. Define x := f(c). Let κ(c) [resp. κ(x)] be the

valuation field associated to c [resp. x] and let κ̃(c) [resp. κ̃(x)] be its residue field.
Then we have an inclusion of fields

κ(x̃) ⊆ κ̃(x) ⊆ κ̃(c).

Since c ∈ Can, we have that κ̃(c) = k or κ̃(c) is the function field of smooth projective
connected curve over k of genus at most g [6, Remark 4.18]. Since x̃ is a non-closed
point of Xk and Xk is a finite type k-scheme, we have that κ(x̃) 6= k. Thus, the
curve Cx̃ ⊂ Xk given by the closure of x̃ in Xk is dominated by a curve of genus
at most g. This contradicts the fact that Xk admits no curves of genus at most g.
Thus, the point x̃ is not contained in the image of π ◦ f : Can → Xk, i.e., every point
in the image is closed. �
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Corollary 2.25. Let X be a proper scheme over OK such that Xk has no smooth
projective connected curves of genus at most g. Then Xan

K has no K-analytic curves
of genus at most g.

Proof. Combine Corollary 2.21 and Proposition 2.24. �

3. Grouplessness, purity, and their relation with non-archimedean

hyperbolicity

In this section we investigate some notions of hyperbolicity for algebraic varieties.
In particular, we verify some predictions made by Green–Griffiths–Lang’s conjec-
ture. To prove our results, we will combine the non-archimedean results with the
uniformization theorem of Bosch–Lütkebohmert [12]. To simplify some of our proofs
and statements, we introduce some terminology.

Definition 3.1. Let k be an algebraically closed field. Let X be a finite type scheme
over k.

(1) We say X is groupless over k if, for any finite type connected group scheme
G over k, every morphism G→ X is constant.

(2) We say X is pure over k if, for every normal variety T over k and every dense
open U ⊂ T with codim(T \ U) > 2, we have that every morphism U → X
extends (uniquely) to a morphism T → Xk.

Note that Kovács [48], Kobayashi [46, Remark 3.2.24] and Hu–Meng–Zhang [35]
refer to groupless varieties (over C) as being “algebraically hyperbolic” or “alge-
braically Lang hyperbolic” or “algebraically Brody hyperbolic”. We avoid this ter-
minology, as “algebraic hyperbolicity” more commonly refers to a notion introduced
by Demailly [9, 25, 40].

Note that Proposition 2.16 says that the non-archimedean analogue (Conjecture
1.1) of the Green–Griffiths–Lang conjecture boils down to showing the non-existence
of “analytic” tori mapping to a groupless variety. Thus, we see that Conjecture 1.1
is equivalent to the following conjecture.

Conjecture 3.2 (Non-archimedean Green–Griffiths–Lang Conjecture). Let X be a
projective variety over K. If X is groupless over K, then X is K-analytically pure
over K.

Needless to stress, a smooth projective K-analytically pure variety is not necessar-
ily K-analytically Brody hyperbolic. Indeed, a smooth proper connected genus one
curve over K with good reduction over OK is K-analytically pure [16, Theorem 3.6],
but (clearly) not groupless (and therefore not K-analytically Brody hyperbolic).

3.1. Properties of groupless and pure varieties. Groupless and pure varieties
are studied systematically in [40, 44]. Some of the properties of groupless varieties
we need in this paper are summarized in the following two remarks.

Remark 3.3. If k is an algebraically closed field of characteristic zero and X is a
proper scheme over k, then X is groupless (over k) if and only if for every abelian
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variety A over k every morphism A → X is constant [40, Lemma 2.5]. Moreover, a
proper scheme X over k is pure if and only if it has no rational curves, i.e., every
morphism P1

k → X is constant [40, Lemma 3.5]. In other words, a proper scheme
over k is pure if and only if it contains no curves of genus at most zero in the sense
of Definition 2.22. In particular, if X is a proper groupless variety over k, then X is
pure over k. The latter statement also follows from [30, Proposition 6.2].

Remark 3.4. Let k be an algebraically closed field of characteristic zero, and let
k ⊂ L be an algebraically closed field extension. Let X be a pure (resp. groupless)
variety over k. Then XL is pure (resp. groupless) over L. This is proven in [40].

Definition 3.5. Let k be a field and let X be a finite type scheme over k. We
say that X is groupless over k (respectively pure over k) if there is an algebraically
closed field extension k ⊂ Ω such that XΩ is groupless over Ω (respectively pure over
Ω). In this case, X is groupless over any field extension of k. This is a well-defined
property of X over k by Remark 3.4.

We will need the following application of Zarhin’s trick for abelian varieties.

Lemma 3.6. Let X be a proper scheme over k. Then X is groupless over k if and
only if, for every principally polarizable abelian variety B over k, every morphism
B → X is constant.

Proof. Let A be an abelian variety over k, and let A → X be a morphism. To
prove the lemma, as X is proper over k, it suffices to show that A→ X is constant
(Remark 3.3). To do so, let B := A4 × A∨,4, where A∨ is the dual abelian variety
of A. Note that B is principally polarizable by Zarhin’s trick [71]. Therefore, by
assumption, the composed morphism B → A→ X is constant, where B → A is the
projection onto the first coordinate. Since B → A is surjective and B → A→ X is
constant, we conclude that A→ X is constant, as required. �

3.2. Hyperbolicity of the special fiber and the analytic generic fiber. Given
a proper finitely presented scheme over OK , we now relate the non-archimedean
hyperbolicity of its generic fiber to the “algebraic” hyperbolicity of its special fiber.
We begin with the following immediate consequence of Corollary 2.25.

Proposition 3.7. Let X be a proper finitely presented scheme over OK with a pure
special fiber over k. Then, for any rational curve C, every morphism Can → Xan

K is
constant. In particular, XK is K-analytically pure.

Proof. Since the special fiber of X → SpecOK is pure and proper, it has no rational
curves (Remark 3.3). Thus, the special fiber has no curves of genus at most zero.
Therefore, by Corollary 2.25, the generic fiber XK has no K-analytic curves of genus
at most zero. This concludes the proof. �

We now prove that purity of one fiber in a family of varieties is inherited by any
fiber that specializes to it.
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Corollary 3.8. Let X → S be a proper morphism of schemes. with S an integral
regular noetherian local scheme. Let s be the unique closed point of S, and let s′ ∈ S
be a point. If Xs is pure over k(s), then Xs′ is pure over k(s′).

Proof. Write S = SpecA. If dimS = 0, then the statement is clear. Thus, we may
and do assume that d := dimS > 1. We now proceed by induction on d.

If d = 1, we may and do assume that s′ is the generic point of S. Let K be
a complete algebraic closure of Frac(A) and note that K is naturally endowed a
valuation. Let OK be the associated valuation ring and write T := SpecOK . Note
that XT → T is a proper morphism and that its special fiber is pure. By Proposition
3.7, it follows that XK is K-analytically Brody hyperbolic, so that Xs′ is pure. This
proves the statement when d = 1.

Assume that d > 1. Let (x1, . . . , xd) be a minimal set of generators for the maximal
ideal of A. Note that (x1, . . . , xd) is a regular sequence and that B := A/(x1) is a
regular ring ring of dimension d − 1; see [65, Tag 00NQ]. Now, as the special fiber
of XB → SpecB is isomorphic to the special fiber of X → S, it follows from the
induction hypothesis that every fiber of XB → B is pure. Note that SpecB ⊂ S
is a closed subscheme. If s′ ∈ SpecB, then we are done. Otherwise, we have that
s′ ∈ SpecAx1

. Note that the special fiber of XAx1
→ SpecAx1

is the generic fiber
of XB → SpecB, and is thus pure. Therefore, since dimAx1

< d, by applying the
induction hypothesis to XAx1

→ SpecAx1
, we conclude that Xs′ is pure. �

Similarly to Proposition 3.7, the main result of this section (Theorem 3.13) says
that the grouplessness of the special fiber implies the analytic hyperbolicity of the
generic fiber. To prove our main result, we will use Theorem 2.18 and the follow-
ing “algebraic” lemmas. These lemmas will help us reduce to the case of “good
reduction” in the proof of our main result (Theorem 3.13).

Lemma 3.9. Let S be an integral regular noetherian scheme. Let X → S be a
proper morphism of schemes. Assume that the geometric fibers of X → S contain
no rational curves. Let Z be an integral smooth finite type scheme over S, and let
U ⊂ Z be a dense open. Then, every S-morphism U → X extends to a morphism
Z → X.

Proof. Let K be the function field of Z. The morphism U → X induces a K-section
of the morphism X ×S Z → Z. For any geometric point z in Z, its fiber Xz ⊗ k(z)
contains no rational curves. Therefore, by [30, Proposition 6.2], the morphism X×S

Z → Z has a section which is compatible with the given morphism U → X . �

Lemma 3.10. Let S be an integral regular noetherian scheme with K = K(S). Let
B → S be an abelian scheme and let X → S be a proper morphism whose geometric
fibers are pure. Let BK → XK be a non-constant morphism. Then ϕ extends uniquely
to a morphism B → X.

Proof. Since X → S is proper, by the valuative criterion of properness, there is a
dense open U ⊂ B whose complement is of codimension at least two and a morphism
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U → X which extends the morphism BK → XK . By Lemma 3.9, the morphism
U → X extends to a morphism B → X . �

Lemma 3.11. Let O be a valuation ring with algebraically closed fraction field K
and let S = SpecO. Let X → S be a finitely presented morphism of schemes.
Then there is an integral regular finite type scheme T over Z, a dominant morphism
S → T , and a finitely presented morphism X → T with X ×T S ∼= X over S.

Proof. Since X → S is finitely presented, we may descend X → S to a morphism
of finite type schemes over Z. Thus, let T1 be an integral finite type Z-scheme, let
X1 → T1 be a finitely presented morphism, let S → T1 be a dominant morphism, and
let X1×T1

S ∼= X be an isomorphism of schemes over S. Now, we use an alteration to
“resolve” the singularities of T1; see [24, Theorem 8.2]. Thus, let T → T1 be proper
surjective generically finite morphism with T an integral regular finite type scheme
over Z. Since K is algebraically closed, the point SpecK → S → T1 factors over
T → T1. Then, since O is a valuation ring, it follows from the valuative criterion of
properness [65, Tag 0A40] that the dominant morphism S → T1 factors over T → T1.
Let X := X1 ×T1

T . Then, X → T is a finitely presented morphism over an integral
regular finite type scheme T over Z with X ×T S ∼= X over S, as required. �

Lemma 3.12. Let O be a valuation ring with algebraically closed fraction field K
and let S = SpecO. Let B → S be an abelian scheme and let X → S be a proper
morphism whose geometric fibers are pure. Let BK → XK be a non-constant mor-
phism. Then ϕ extends uniquely to a morphism B → X. The morphism BK → XK

is constant if and only if Bk → Xk is constant.

Proof. We first descend “everything” to an integral regular noetherian base T using
Lemma 3.11. Thus, let T be an integral regular finite type affine Z-scheme, let S → T
be a dominant morphism, let X → T be a proper finitely presented morphism with
XS
∼= X over S, let B → T be an abelian scheme with BS ∼= B over S, and let

BK(T ) → XK(T ) be a morphism which agrees with BK → XK after base-change along
K ⊂ K(T ).

Let t ∈ T be the image of the (unique) closed points of S in T . Define T ′ =
SpecOT,t to be the spectrum of the local ring at t. Note that T is an integral regular
noetherian scheme, and that the morphism S → T factors over the natural morphism
T ′ → T . Indeed, write T = SpecA and let p = ϕ∗π, where π ⊂ O is the unique
maximal ideal of O and ϕ : A→ O is the (injective) morphism associated to S → T .
The morphism ϕ : A → O induces a morphism Ap → K. However, the image of
this morphism is contained inside O. Indeed, the ring Ap is mapped to Om, but the
latter equals O.

Note that the geometric fibers of X → S are pure (by assumption). Therefore,
the fiber of X → T ′ over the (unique) closed point is pure. Thus, by Corollary 3.8,
every geometric fiber of X → T ′ is pure. Therefore, by Lemma 3.10, the morphism
BK → XK extends uniquely to a morphism BT ′ → XT ′ over T ′. The morphism
B = BS := B ×T ′ S → XS = X clearly extends the morphism BK → XK . This
concludes the proof of the first statement of the lemma.
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To prove the second statement, let Y ⊂ X be the reduced scheme-theoretic image
of the morphism B → X . Note that Y is a closed subscheme of X . Since B → S
is an abelian scheme over S, the morphism B → S is surjective. Therefore, the
morphism Y → S is surjective. The fibers of Y → S are of the same dimension [65,
Tag 00QK]. This concludes the proof. �

Theorem 3.13. Let X be a proper finitely presented scheme over SpecOK . If the
special fiber Xk is groupless, then the generic fiber XK is K-analytically Brody hy-
perbolic.

Proof. Since the special fiber is groupless and proper over k, it is pure over k (Remark
3.3). Therefore, by Proposition 3.7, the variety XK is K-analytically pure. To
conclude the proof, let B be an abelian variety over K with good reduction over OK

and let B → X be a morphism. To prove the theorem, as we can test hyperbolicity
on algebraic groups with good reduction (Theorem 2.18), it suffices to show that this
morphism is constant.

Let S = SpecOK and let B → S be an abelian scheme over S with BK ∼= B. Since
the special fiber of X is pure, the first part of Lemma 3.12 implies that the morphism
B → X extends to a morphism B → X . Since the special fiber Xk is groupless, the
induced morphism Bk → Xk is constant. Therefore, by the second part of Lemma
3.12, the morphism B → XK is constant, as required. �

Proof of Theorem 1.3. This is Theorem 3.13. �

3.3. Evidence for the non-archimedean Green–Griffiths–Lang conjecture.

As we have already mentioned in the introduction, in light of the Green–Griffiths–
Lang conjecture, it seems reasonable to suspect that a projective groupless variety
over K is K-analytically Brody hyperbolic; see Conjecture 1.1. In this direction, we
first prove the following result for “constant” varieties.

Corollary 3.14. Let X be a proper scheme over an algebraically closed field k. Fix a
complete algebraically closed non-archimedean valued field K endowed with a section
k →֒ OK of the quotient map.

(1) X is pure over k if and only if Xan
K is K-analytically pure.

(2) X is groupless over k if and only if Xan
K is K-analytically Brody hyperbolic.

Proof. If Xk is pure (respectively groupless) then Xan
K is K-analytically pure (respec-

tively K-analytically Brody hyperbolic) by Proposition 3.7 (respectively Theorem
3.13). Conversely, a non-constant map Ak → Xk from an abelian variety A over k
induces a non-constant map AK → XK . �

Proof of Theorem 1.2. This follows from the second part of Corollary 3.14. �

Cherry’s theorem (Theorem 1.4) says that a closed groupless subvariety of an
abelian variety over K isK-analytically Brody hyperbolic, and thereby confirms that
the non-archimedean Green–Griffiths–Lang conjecture holds for closed subvarieties
of abelian varieties. We now prove the following two consequences of Cherry’s work.
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Proposition 3.15. Let X be a quasi-projective integral curve over K. Then X is
groupless if and only if X is K-analytically Brody hyperbolic.

Proof. Assume X is groupless. Since X is a curve, to prove that X is K-analytically
Brody hyperbolic, we may and do assume that X is smooth. Then, as X is a
groupless smooth quasi-projective curve over K, there is a finite étale cover Y → X
of X such that the smooth projective model Y of Y is of genus at least two. In
particular, Y is K-analytically Brody hyperbolic (Theorem 1.4). Therefore, the
open subset Y of Y is K-analytically Brody hyperbolic. Since Y → X is finite étale
and hyperbolicity descends along finite étale maps (Proposition 2.13), we conclude
that X is K-analytically Brody hyperbolic, as required. �

Following “standard” arguments (see for instance [50, 68]), we now prove the non-
archimedean version of the Green–Griffiths–Lang conjecture for symmetric powers
of smooth projective curves.

Proposition 3.16 (Non-archimedean Green–Griffiths–Lang conjecture for symmet-
ric powers of projective curves). Let d > 1 be an integer, and let X be a smooth
projective integral curve over K. Then Symd

X is groupless if and only if Symd
X is

K-analytically Brody hyperbolic.

Proof. We assume that Symd
X is groupless (the other implication is obvious). Let

J be the Jacobian of X over K. Fix a point P in X(K). Consider the morphism
Symd

X → J given by [x1, . . . , xd] 7→ x1 + . . . + xd − dP in J . The fibers of this
morphism are projective spaces [65, Tag 0CCT]. Thus, since Symd

X is groupless,
this morphism is injective. Let W d be its image in J , and note that the subvariety
W d ⊂ J is isomorphic to Symd

X . In particular, the closed subvariety W d of J
is a groupless closed subvariety. Therefore, by Cherry’s theorem (Theorem 1.4), we
conclude thatW d isK-analytically Brody hyperbolic, so that Symd

X isK-analytically
Brody hyperbolic, as required. �

Remark 3.17. Let A be a simple abelian surface over K with good reduction over
OK . Let X := A \ {0}. Since X is simple, we see that X is groupless. Interestingly,
if K = C, then the variety X is not Brody hyperbolic. However, if K is non-
archimedean, the groupless variety X is K-analytically Brody hyperbolic. Indeed,
since A has good reduction, any morphism Gan

m → A \ {0} ⊂ A is constant [16,
Theorem 3.6], so that X is K-analytically Brody hyperbolic by Proposition 2.16.

3.4. Application to the moduli space of abelian varieties. For an integer

N > 3 and integer g > 1, let A
[N ]
g be the fine moduli space of principally polarized

abelian varieties over Z[1/N ] with full level N -structure. Note that A
[N ]
g is a smooth

quasi-projective (non-proper) scheme over Z[1/N ]; see [56]. We let A
[N ],∗
g,K be the

Satake-Baily-Borel compactification of X over K.
We will show that in the equicharacteristic zero case, the smooth quasi-projective

scheme A
[N ]
g,K is K-analytically Brody hyperbolic; see Corollary 3.20. To do so, we

will combine Nadel’s theorem (over the complex numbers) with the results proven
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in this paper. In fact, our proof of the K-analytic hyperbolicity of A
[N ]
g,K given below

is modeled on the proof of Proposition 3.15.

Theorem 3.18 (Nadel). For every integer g, there is an integer ℓ > 3 such that

A
[ℓ]∗
g,C is Brody hyperbolic (and groupless over C).

Proof. We refer the reader to Nadel’s paper [57] for the first statement. The fact that
Brody hyperbolic varieties over C are groupless over C is well-known. This proves
the theorem. �

Theorem 3.19. Fix a complete algebraically closed non-archimedean valued field K
of characteristic zero endowed with a section k →֒ OK of the quotient map. For every

integer g, there is an integer ℓ such that A
[ℓ],∗
g,K is K-analytically Brody hyperbolic.

Proof. We first apply Nadel’s theorem (Theorem 3.18). Thus, let N > 3 be an

integer such that A
[ℓ],∗
g,C is groupless over C. In particular, by the Lefschetz principle,

the proper scheme A
[ℓ],∗
g,k is groupless over k. Therefore, as OK is endowed with a

section k →֒ OK of the quotient map, it follows from Corollary 3.14 that A
[ℓ],∗
g,K is

K-analytically Brody hyperbolic. �

Corollary 3.20. Fix a complete algebraically closed non-archimedean valued field
K of characteristic zero endowed with a section k →֒ OK of the quotient map. For

every integer N > 3, and for every integer g, the quasi-projective scheme A
[N ]
g,K is

K-analytically Brody hyperbolic.

Proof. By Theorem 3.19, there is an integer ℓ > 1 such that A
[Nℓ],∗
g,K is K-analytically

Brody hyperbolic. Since A
[Nℓ]
g,K is an open subscheme of A

[Nℓ],∗
g,K , it follows that A

[Nℓ]
g,K is

K-analytically Brody hyperbolic. Since A
[Nℓ]
g,K → A

[N ]
g,K is finite étale and K-analytic

hyperbolicity descends along finite étale maps (Proposition 2.13), we conclude that

A
[N ]
g,K is K-analytically Brody hyperbolic. �

3.5. Cherry’s semi-distance. In his thesis, Cherry introduces and studies a nat-
ural analogue of Kobayashi’s pseudometric in the non-archimedean setting. In this
section we gather three new observations on Cherry’s semi-distance. The main re-
sult is that Cherry’s semi-distance can “only” detect rational curves for “constant”
varieties (Theorem 3.24), and therefore fails to detect the hyperbolicity of the space
in general. We refer to [59] for related results.

Definition 3.21. Let X be a rigid analytic variety over an algebraically closed
complete valued field K.

(1) Let x, y ∈ X(K). A Kobayashi chain joining x and y is a finite sequence of
analytic maps

fj : B
1 → X j = 1, . . . , n

and points zj , wj ∈ B1(K) such that f(z1) = x, fn(wn) = y and fj(wj) =
fj+1(zj+1).



22 ARIYAN JAVANPEYKAR AND ALBERTO VEZZANI

(2) The Cherry-Kobayashi semi-distance on X(K) is defined by

dCK(x, y) = inf

n∑

j=1

|zj − wj| ∈ R>0 ∪ {+∞}, x, y ∈ X(K),

where the infimum is taken over all Kobayashi chains joining x and y.
(3) We will say that the Cherry-Kobayashi semi-distance d on X(K) is a distance

if, for all distinct x and y in X(K), we have that d(x, y) 6= 0. (Even if d is a
distance, d(x, y) can nonetheless be infinite [17, §2].)

We start by showing that Cherry’s semi-distance is a distance on an affinoid rigid
analytic variety.

Proposition 3.22. If X is an affinoid rigid analytic variety over K, then d is a
distance on X(K).

Proof. Let X be Spa(R,R◦) with R a Tate algebra R = K〈T1, . . . , Tn〉/I. We can
embed X as a Zariski closed subvariety of Bn. For any pair of points x, y ∈ X(K)
the set of Kobayashi chains joining them in X is smaller than the one in Bn. It then
suffices to show that the semi-distance on Bn is a distance, which is done in [17,
Example 2.9]. �

We now prove a generalization of [17, Lemma 2.13].

Proposition 3.23. Let X be a proper finitely presented scheme over OK. If the
special fiber Xk is pure, then the semi-distance on Xan

K (K) is a distance.

Proof. As we showed in Section 2.5, by the purity of Xk, any analytic map B1 → Xan
K

induces a constant map when composed with the specialization morphismXan
K → Xk.

In particular, any Kobayashi chain is constant on the special fiber, and therefore
factors over some open affinoid subvariety of Xan

K . The result then follows from the
fact that Cherry’s semi-distance on an affinoid is a distance (Proposition 3.22). �

We now show that Cherry’s semi-distance does not “see” the hyperbolicity of a
space in general. That is, roughly speaking, the next theorem says that the Cherry-
Kobayashi semi-distance on a constant proper variety over k((t)) is a distance if and
only if the variety is pure. Therefore, this semi-distance is not enough to detect the
hyperbolicity of a variety, as it only detects rational curves.

Theorem 3.24. Let k be an algebraically closed field of characteristic zero and let
X be a proper scheme over k. Fix a complete non-archimedean valued field K with
residue field k endowed with a section k →֒ OK of the quotient map. The following
are equivalent.

(1) X is pure over k.
(2) Xan

K is K-analytically pure.
(3) For every dense open C ⊂ P1

k, every morphism of K-analytic spaces Can →
Xan

K is constant.
(4) The semi-distance on Xan

K (K) is a distance.



NON-ARCHIMEDEAN HYPERBOLICITY 23

Proof. The equivalence of (1) and (2) follows from Corollary 3.14. The implication
(1) =⇒ (3) follows from Corollary 2.25 (with g = 0), and the implication (3) =⇒
(2) is clear. Proposition 3.23 proves that (1) implies (4). Conversely, suppose there
exists a non-constant map P1 → X . Note that this morphism induces a non-constant
map A1 an

K → Xan
K . Therefore, the semi-distance on Xan

K (K) is not a distance by [17,
Corollary 2.7]. This concludes the proof. �

4. Generizing and specialization of grouplessness

Let k be an algebraically closed field of characteristic zero.

Remark 4.1. Let us briefly say that a projective variety X over k is Kodaira-
hyperbolic if every integral subvariety of X is of general type. It is explained in [10]
that Kodaira-hyperbolicity “generizes” and “specializes”. To be more precise, let S
be a smooth integral curve over k, and let X → S be a projective family of varieties
over k. If there is an s in S(k) such that Xs is Kodaira-hyperbolic, then the generic
fiber XK(S) is Kodaira-hyperbolic over the function field K(S) of S. Furthermore, if
the generic fiber of X → S is Kodaira-hyperbolic and k is uncountable, then there
is a point s in S(k) such that Xs is Kodaira-hyperbolic.

Lang conjectured that a projective variety over k is groupless if and only if X
is Kodaira-hyperbolic; see [38, 49]. In particular, it predicts that the notion of
grouplessness generizes and specializes, as “being Kodaira-hyperbolic” generizes and
specializes (Remark 4.1). In this section, we prove these two predictions; see Theorem
4.3 and Theorem 1.6.

4.1. Purity and grouplessness generize. We start by proving the generization
property. We stress that our proofs rely on non-archimedean analytic methods, even
though the statements are “algebraic”.

Theorem 4.2 (Purity generizes). Let k be an algebraically closed field and let S be
an integral noetherian normal scheme of characteristic zero. Let X → S be a proper
morphism. If there is a point s in S(k) such that Xs is pure over k, then XK(S) is
pure.

Proof. We can first localize at the point s and assume that S is local. By standard
cutting arguments (see the proof of Corollary 3.8) we can replace S with the spectrum
of a valuation ring having residue field equal to k and a complete, algebraically closed
field of fraction K. We need to prove that if Xk is pure, then XK is also pure. Since
k is of characteristic zero, the latter statement follows then from Proposition 3.7. �

Theorem 4.3 (Grouplessness generizes). Let k be an algebraically closed field and
let S be an integral noetherian normal scheme of characteristic zero. Let X → S be
a proper morphism of schemes. If there is a point s in S(k) such that Xs is groupless
over k, then XK(S) is groupless over K(S).

Proof. As in the proof of Theorem 4.2, by localizing at the point s and by standard
cutting arguments (see the proof of Corollary 3.8) we can replace S with the spectrum



24 ARIYAN JAVANPEYKAR AND ALBERTO VEZZANI

of a valuation ring having residue field equal to k and a complete, algebraically closed
field of fraction K.

By assumption, the special fiber Xk ofX → S is groupless. Therefore, by Theorem
3.13, the proper scheme XK is K-analytically Brody hyperbolic. It follows readily
that XK is groupless over K. �

Proof of Theorem 1.5. This follows from (the more general) Theorem 4.3. �

4.2. Purity and grouplessness specialize. In contrast to our proofs for the fact
that purity and grouplessness “generize”, we will use only algebraic techniques to
verify that purity and grouplessness “specialize”.

Theorem 4.4 (Purity specializes). Let k be an uncountable algebraically closed field.
Let S be an integral variety over k. Let X → S be a projective morphism. Suppose
that the generic fiber of X → S is pure. Then there is an s in S(k) such that Xs is
pure over k.

Proof. Suppose that, for any s in S(k), the projective variety Xs is not pure over k.
To prove the theorem, it suffices to show that the geometric generic fiber of X → S
is not pure.

To do so, consider the scheme H := Homnc
S (P1

S, X) parametrizing non-constant
morphisms from P1

S to X ; see [32, Section 4.c, pp. 221-19 – 221-20]. Note that H is
a countable union H = ⊔d∈ZH

d of finitely presented schemes Hd over S. Let Sd be
the image of Hd(k) in S(k) ⊂ S. Now, as Xs is not pure over k for any s in S(k),
we have that S(k) = ∪d∈ZSd. The latter implies that

S = S(k) =
⋃

d∈Z

Sd.

Since k is uncountable and the right hand side is a countable union of closed subsets
of S, there is an integer e such that S = Se. Thus, Se is dense in S so that the
morphism He → S is dominant. Therefore, the generic fiber of He → S is non-
empty. This implies that the generic fiber of Homnc

S (P1
S, X) → S is non-empty, i.e.,

there is a non-constant morphism P1
K(S)a → XK(S)a where K(S)a is an algebraic

closure of K(S). Thus, the geometric generic fiber of X → S is not pure. This
concludes the proof. �

Corollary 4.5. Let k be an uncountable algebraically closed field. Let S be an integral
variety over k. Let X → S be a projective morphism. Suppose that the generic fiber
of X → S is pure. Then the set of s in S(k) with Xs pure is dense in S.

Proof. Let S ′ be the set of s in S(k) such that Xs is pure over k. Suppose that S ′ is
not dense. Let S◦ be the complement of the closure of S ′ in S. Then S◦ is a dense
open of S. Let X◦ → S◦ be the restriction of X → S to S◦. Then the generic fiber
of X◦ → S◦ is pure (as it equals the generic fiber of X → S). Thus, by Theorem
4.4, there is an s in S◦(k) such that Xs is pure over k. But then s is an element of
S ′ leading to a contradiction. �
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We are now ready to prove that grouplessness also specializes in families. That is,
let k be an uncountable algebraically closed field and let S be an integral variety over
k with function field K = K(S). Let X → S be a projective morphism of schemes.
We now show that, if XK is groupless over K, then there is an s in S(k) such that
Xs is groupless.

Proof of Theorem 1.6. Let Ag be the stack of principally polarized g-dimensional
abelian varieties over Z, and let Ug → Ag be the universal family. Note that the
Hom-stack HomS×Ag

(Ug, X ×Ag)→ S ×Ag is a countable disjoint union of finitely

presented algebraic stacks. More precisely, for every polynomial P in Q[t], let Hg,P =
HomP

S×Ag
(Ug, X × Ag) be the substack whose objects are morphisms from Ug × S

to X × Ag over S × Ag with Hilbert polynomial P . Note that Hg,P → Ag × S is a
finitely presented morphism of stacks [58]. Let Sg,P be the image of Hg,P (k) in S(k)
via Hg,P → Ag × S → S. (This map associates to a k-point s in S(k), a principally
polarized abelian variety A over k and a non-constant morphism A→ Xs the point
s in S(k).) Suppose that, for all s in S(k), the variety Xs is not groupless. Then,
by Lemma 3.6, for all s in S(k), there is a principally polarizable abelian variety A
over k and a non-constant morphisms A→ Xs. Therefore, we have that

S(k) =
⋃

(g,P )∈Z>0×Q[t]

Sg,P .

In particular,

S = S(k) = ∪(g,P )∈Z>0×Q[t]Sg,d =
⋃

(g,P )∈Z>0×Q[t]

Sg,P .

Since k is uncountable and the right hand side is a countable union of closed subsets
of S, there is an integer g and a polynomial P ∈ Q[t] such that Sg,P = S. This means
that the morphism of stacks Hg,P → S is dominant. In other words, its generic fibre
is non-empty. This means that XK(S)a admits a non-constant morphism from some
g-dimensional abelian variety, where K(S)a is an algebraic closure of K(S). This
proves the theorem. �

Corollary 4.6. Let k be an uncountable algebraically closed field. Let S be an
integral variety over k with function field K = K(S). Let X → S be proper. If XK

is groupless, then the set of s in S(k) such that Xs is groupless is dense in S.

Proof. This follows from the previous theorem (cf. the proof of Corollary 4.5). �

We note that the results of this section imply that, for S an integral noetherian
scheme over Q and X → S a projective morphism, the set of s in S such that Xs is
Zariski-countable open, as defined in [10].

5. A Theorem of the Fixed Part in mixed characteristic

In this section we let K be a complete algebraically closed non-archimedean valued
field of characteristic zero whose residue field is of characteristic p > 0.
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Recall that any complex analytic variety which is uniformized by some bounded
domain satisfies (a consequence of) the Theorem of the Fixed Part; see Theorem
1.7 in the introduction. In this section we prove a non-archimedean analogue of this
statement (Theorem 1.9). To do so, we start with a brief discussion of inverse limits
and fundamental groups in the category of adic spaces.

The category of adic spaces does not have arbitrary inverse limits (cf. [64, Def-
inition 2.4.1]). An adequate replacement of this notion in certain cases (without
appealing to diamonds [63]) is introduced in [37, Definition 2.4.2], and we recall it
here briefly.

Definition 5.1. let {Xm}m∈I be a cofiltered inverse system of adic spaces. We
say that an adic space X endowed with compatible maps X → Xm is similar to
the projective limit and we write X ∼ lim

←−X
Xm if on the underlying topological

spaces we have |X| ∼= lim
←−
|Xm| and if there is an open cover of X by affinoid subsets

Spa(A,A+) such that the map of rings lim
−→

Ai → A has a dense image, where the

limit runs over the affinoid open subsets Spa(Ai, A
+
i ) of some Xm over which the

map Spa(A,A+)→ Xm factors.

We will state our theorem using étale fundamental groups of analytic varieties.
We recall that if X is a connected noetherian scheme, then πet

1 (X) denotes the étale
fundamental group of X (with respect to the choice of some geometric base point
of X); see [33]. Analogously, if X is a connected rigid analytic variety over K, we

denote by πalg
1 (X, x) the algebraic étale fundamental group of X , i.e., the pro-finite

group attached to the category of finite étale covers of X with respect to some chosen
geometric point x (see [23, Theorem 2.9] and [4, Section III.1.4.1]). Note that, by
[4, Proposition III.1.4.4], the isomorphism class of the algebraic étale fundamental
group of X is independent of the choice of base-point. We will therefore omit the
base-point from our notation. If X is a connected finite type scheme over K, then
the analytification functor induces an isomorphism between πalg

1 (Xan) and the étale
fundamental group πet

1 (X) of X (see [54, Theorem 3.1]).

Example 5.2. If K is a non-archimedean complete algebraically closed field of char-
acteristic zero, then

πet
1 (Gm,K) = πalg

1 (Gm,K) = Ẑ.

Using the strategy sketched in the introduction, inspired by the complex case, we
now prove the following result.

Proposition 5.3. Let S → X0 be a morphism of connected reduced rigid analytic
varieties over K. Let {Xm}

∞
m=0 be a cofiltered inverse system of connected rigid

analytic varieties over K with finite étale transition maps. Assume that there is a
perfectoid space P over K such that P ∼ lim

←−m
Xm. Let Γm ⊂ πalg

1 (X0) be the sub-
group associated to Xm → X0, and suppose that the image of the induced morphism
on (algebraic) étale fundamental groups

πalg
1 (S)→ πalg

1 (X0)
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lies in
⋂

∞

m=0 Γm. Then S → X0 is constant.

Proof. By our assumption on the image of πalg
1 (S) → πalg

1 (X0), the morphism lifts
to every finite étale cover Xm of X0. Since S is reduced, hence stably uniform [15,
Section 3], we conclude by [53, Proposition 2.2] that the morphism lifts to a map
S → P . The latter is constant by Proposition 2.10, so that S → X0 is constant, as
required. �

We follow the notation of Section 3.4, and let Ag be the stack of g-dimensional
principally polarized abelian schemes over Z. Let N > 3 be coprime to the residue

characteristic of K. Let X := A
[N ]
g,K , and note that X is a smooth quasi-projective

scheme over K.
Consider the principal congruence subgroups

Γ(pn) =

{
γ ∈ GSp2g(Zp) | γ ≡

(
1 0
0 1

)
mod pn

}

If n > 1 is an integer, we let XΓ(pn) be the corresponding moduli space of principally
polarized g-dimensional abelian varieties with full level N -structure and with level
Γ(pn)-structure over K.

Theorem 5.4 (Scholze). There is a unique perfectoid space XΓ(p∞) such that

XΓ(p∞) ∼ lim
←−
n

Xan
Γ(pn).

Proof. This follows from [62, Theorem III.1.2]. �

As we show now, the Theorem of the Fixed Part for the moduli space of principally
polarized abelian varieties (Theorem 1.9) is a consequence of Scholze’s theorem and
Proposition 5.3.

Proof of Theorem 1.9. Combine Proposition 5.3 and Theorem 5.4. �

We conclude this section with other applications of Proposition 5.3.

Example 5.5. Let Tn be SpaK〈T±1
1 , . . . , T±1

n 〉, and let X be étale over Tn. Define
X0 := X . For m > 0, let fm : Tn → Tn be the mth power map, and define
Xm := X×Tn,fm Tn. Then the inverse limit of the cofiltered inverse system {Xm}

∞
m=0

is a perfectoid space [61, Lemma 4.5]. We conclude thatX is hyperbolic (Proposition
2.8), and satisfies the Theorem of the Fixed Part (Proposition 5.3).

Example 5.6. Consider the inverse system of rigid analytic varieties {Xm}
∞
m=0,

where Xm := Gan
m,K and the (finite étale) morphism Xm → Xm−1 is given by z 7→ zp.

There is a perfectoid space Gperf
m such that Gperf

m ∼ lim
←−m

Xm (see [60, Claim 1.4]);

we refer to Gperf
m as the perfection of Gm,K . Since Gperf

m is a perfectoid space, it is
K-analytically Brody hyperbolic (Proposition 2.10). Moreover, by Proposition 5.3,
the curve Gm,K satisfies the Theorem of the Fixed Part.

Now, the above shows that Gan
m,K is K-analytically Brody hyperbolic up to a

pro-finite étale cover. However, it is clear that Gm,K is not K-analytically Brody
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hyperbolic. This shows that an adic space which is K-analytically Brody hyperbolic
up to a pro-finite étale cover is not necessarily K-analytically Brody hyperbolic.
(Thus, the analogue of Proposition 2.13 for pro-finite étale morphisms fails.)

Example 5.7. We give an example similar to Example 5.6. Let A be an abelian
variety over K. Define the inverse system of rigid analytic varieties {Xm}

∞
m=0 by

Xm := Aan and the (finite étale) morphism Xm → Xm−1 to be multiplication by
p. Then, there is a perfectoid space Aperf such that Aperf ∼ lim

←−m
Xm; see [8, Theo-

rem 1]. In particular, the abelian variety A satisfies the Theorem of the Fixed Part
(Proposition 5.3), and is up to a pro-finite étale morphism a K-analytically Brody
hyperbolic variety. However, A is (clearly) not K-analytically Brody hyperbolic.

A complex analytic space which has a topological covering by a Brody hyperbolic
space is itself Brody hyperbolic. However, the last two examples above show that
an adic space over K which has a pro-finite étale cover by a K-analytically Brody
hyperbolic space (e.g., a perfectoid space) is itself not necessarily K-analytically
Brody hyperbolic. Therefore, the last two examples above show that “descending”
the K-analytic Brody hyperbolicity of XΓ(p∞) to the moduli space X is a non-trivial
endeavour. More precisely, to show that X is K-analytically Brody hyperbolic, one
has to show that the “monodromy” of every morphism Gan

m → Xan is trivial, and the
latter does not follow from the existence of a pro-finite étale cover by a perfectoid
space.
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