Minimizing Movements for Anisotropic and Inhomogeneous Mean Curvature Flows - Archive ouverte HAL
Article Dans Une Revue Advances in Calculus of Variation Année : 2023

Minimizing Movements for Anisotropic and Inhomogeneous Mean Curvature Flows

Résumé

In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing and mobility, and show that the minimizing movements scheme converges to level set/viscosity solutions and to distributional solutions \textit{\`a la} Luckhaus-Sturzenhecker to such flows, the latter holding in low dimension and conditionally to a convergence of the energies. By doing so we generalize recent works concerning the evolution by mean curvature by removing the hypothesis of translation invariance, which in the classical theory allows to simplify many arguments.
Fichier principal
Vignette du fichier
Inhomogeneous_flows.pdf (594.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03894146 , version 1 (12-12-2022)
hal-03894146 , version 2 (06-12-2023)

Identifiants

Citer

Antonin Chambolle, Daniele de Gennaro, Massimiliano Morini. Minimizing Movements for Anisotropic and Inhomogeneous Mean Curvature Flows. Advances in Calculus of Variation, 2023, ⟨10.1515/acv-2022-0102⟩. ⟨hal-03894146v2⟩
71 Consultations
71 Téléchargements

Altmetric

Partager

More