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MINIMIZING MOVEMENTS FOR ANISOTROPIC AND INHOMOGENEOUS
MEAN CURVATURE FLOWS

ANTONIN CHAMBOLLE, DANIELE DE GENNARO, AND MASSIMILIANO MORINI

ABSTRACT. In this paper we address anisotropic and inhomogeneous mean curvature flows with
forcing and mobility, and show that the minimizing movements scheme converges to level set/vis-
cosity solutions and to distributional solutions a la Luckhaus-Sturzenhecker to such flows, the
latter result holding in low dimension and conditionally to the convergence of the energies. By
doing so we generalize recent works concerning the evolution by mean curvature by removing the
hypothesis of translation invariance, which in the classical theory allows one to simplify many
arguments.

1. INTRODUCTION

In this paper we deal with the anisotropic, inhomogeneous mean curvature flow with forcing
and mobility. By inhomogeneous we mean that the flow is driven by surface tensions depending
on the position in addition to the orientation of the surface. The evolution of sets ¢ — E, C RV
considered is (formally) governed by the law

(1) V(1) = v(@,ve, (@) (~HE, (2) + f(z.1)), =€ 0B, te(0,T),

where V(x,t) is the (outer) normal velocity of the boundary OF; at x, ¢(x, p) is a given anisotropy
representing the surface tension, H? is the anisotropic mean curvature of OE; associated to ¢,
Y(x,p) is an anisotropy evaluated at the outer unit normal vg, (z) to OE; which represents a
velocity modifier (also called the mobility term), and f is the forcing term. We will be mainly
concerned with smooth anisotropies (and the regularity assumptions will be made precise later
on): in this case, the curvature H? is the first variation of the anisotropic and inhomogeneous
perimeter associated to the anisotropy ¢ (in short, ¢—perimeter) defined as

(2) Py(E) := $(a,vp(x)) dHY " (2)
o*E

for any set F of finite perimeter (where *F denotes the reduced boundary of E) and, if F is
sufficiently smooth, it takes the form

Hig(x) = div(V,6(z, vi(x))),
where with V,, we denote the gradient made with respect to the second variable. Note that
evolution (1) can be red as the motion of sets in R"V, when the latter is endowed with the Finsler
metric induced by the anisotropy (see Remark 4.13). Equation (1) is relevant in Material Sciences,
Crystal Growth, Image Segmentation, Geometry Processing and other fields see e.g. [1, 19, 28, 43,
44].

The mathematical literature for inhomogeneous mean curvature flows is not as extensive as
in the homogeneous case, mainly due to the difficulties arising from the lack of translational
invariance. Indeed, assuming that the evolution is invariant under translations allows to simplify
many arguments used in the classical proofs of, for example, comparison results and estimates
on the speed of evolution. In the homogeneous case the well-posedness theory is nowadays well
established and quite satisfactory, both in the local and nonlocal case, and even in the much more
challenging crystalline case (that is, when the anisotropy ¢ is piecewise affine) see [2, 3, 8, 12, 13,
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14, 16, 27, 36, 38, 41] to cite a few. Concerning the inhomogeneous mean curvature flow, we cite
[30, 31] where the short time existence of smooth solutions on manifolds is shown, and [26, 34],
where the viscosity level set approach (introduced for the homogeneous evolution in [16, 23]) is
extended, respectively, to the equation (1) and to the Riemannian setting.

In the present work we implement the minimizing movement approach & la Almgren-Taylor-
Wang (in short, ATW scheme) [3] to prove existence via approximation of a level set solution to
the generalized anisotropic and inhomogeneous motion (1). To carry on this scheme (which has
only been sketched in [8], but lacks a formal proof) we gain insights from [14]. We also show that,
under the additional hypothesis of convergence of the energies (4) and low dimension (14)(which
are nowadays classical for this approach), the same approximate solutions provide in the limit a
suitable notion of “BV-solutions”, also termed distributional solutions, see [38, 41].

There are many more concepts of weak solution for the mean curvature flow. In particular,
we cite the diffuse-interface approximation provided by the Allen-Cahn equation [22, 33, 29, 37]
and the threshold dynamic scheme [40, 20] (see also the relative entropy methods of [36]). Other
recent results concern the weak-strong uniqueness problem, which consists in proving that weak
solutions coincide with the smooth ones as long as the latter exist. After classical works concerning
viscosity solutions, a new definition of “BV-solution” (whose existence is proved via the Allen-Cahn
approximation scheme) allows the authors in [29, 37] to prove weak-strong uniqueness for isotropic
and anisotropic mean curvature flows. This result is based upon the so-called optimal dissipation
inequality satisfied by their weak solution. In general, it is very difficult to say if the ATW
scheme could satisfy such a property, mainly because of the “degeneracy” of the dissipation term
in the incremental problem defined via the distance function. Even if all these results concern the
translationally invariant case, a study of some of these properties in the inhomogeneous setting
seems very interesting and challenging.

Other remarks on possible research directions are the following. To begin with, the new argu-
ments which are used to compensate the lack of translation invariance are based on the locality
of the anisotropic curvature H? associated with a smooth anisotropy ¢. This implies that the
proofs are not straightforwardly adaptable to the so-called “variational curvatures” considered in
[14], which are non-local in nature. On the other hand, since the crystalline curvatures are highly
nonlocal and degenerate operators (see e.g. [12, 10]), they do not fall in the theory constructed
in the present work. In principle, it would be possible to follow the same perturbative study
conducted in [12] in order to prove at least existence for an inhomogeneous and crystalline mean
curvature flow. However, a satisfactory characterization of the limiting motion equation bearing a
comparison principle is lacking so far.

This work can be seen as a first step towards constructing a general theory of motions driven
by non-translationally invariant and possibly nonlocal curvatures, in the spirit of [14].

1.1. Main results. Now briefly recall the minimizing movements procedure in order to state the
main results of the paper. Given an initial bounded set Ey and a parameter h > 0, we define the
discrete flow Et(h) = Th,t_hEt@h for any ¢ > h and Et(h) = Ey for t € [0, h), where the functional
Ty,+ is defined for ¢ > 0 as follows: for any bounded set E we set T}, E (or, sometimes, T, ) as
the minimal solution to the problem

0 [£1h+h
(3) min {P¢(F) —|—/F (MEh(w) +]{ " f(z,s) ds> dHN"Yz) : Fis measurable} ,

Flh

where sd}g (z) is the signed geodesic distance between x and E induced by the anisotropy v (see
(10) for the precise definition) and [s] = max{n < s, n € NU{0}} denotes the integer part of a
non-negative real number s € [0, +00). We will then define T}j’ . as the maximal solution to the

problem above. Any L!—limit point as & — 0 of the family {E\"},>o will be called a flat flow. In
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the whole paper we will assume that

¢ € & (see Definition 2.2) and v is an anisotropy as in Definition 2.1,

(HO) .
Vvt € [0,+00) it holds f(-,t) € CORN), ||l Lo &Y x[0,400)) < 0

With more effort one could weaken the hypothesis and require f(f f(-,s)ds to be continuous (see
[15]). For the sake of simplicity we will require the global-in-time boundedness. We prove existence
and H older regularity for flat flows.

Theorem 1.1 (Existence of flat flows). Let Ey be a bounded set of finite perimeter and ¢,v, f

satisfy (HO). Fiz T > 0. For any h > 0, let {Et(h)}te[(),T) be a discrete flow with initial datum Fy.
Then, there exists a family of sets of finite perimeter {E;}iejo.r) and a subsequence hy, 0 such
that

EM S5 B, in LY,
for a.e. t €10,T). Such flow satisfies the following regularity property: there exists a constant c,
depending on T, such that for every 0 < s <t < T,

|E;AEy| < et — s|Y/2,
Py(Ey) < Py(Ep) + c.

Subsequently, we will show that flat flow s are distributional solutions, as defined in [38]. We
will require additional hypothesis: firstly, low dimension (14) (linked to the complete regularity of
the ¢—perimeter minimizer, compare [38, 41]), moreover

(H1) Jey > 0s.t. [P(x,0) —d(y,v)| < cylr —yl, Va,y e RN ve SN
(H2) feCoRN x [0,00)]).
Theorem 1.2 (Existence of distributional solutions). Assume (H0), (H1), (H2) and (14). For
any T > 0, if
T T
(4) lim [ Py(E™) = / Py(Ey),
k—oo Jq 0

then {Ei}ieio,1) s a distributional solution (1) with initial datum Eq in the following sense:

(1) for a.e. t €[0,T) he set E; has weak ¢— curvature Hgt (see (19) for details) satisfying

T
/ / HE 2 < oo
* By 3

(2) there exist v : RN x (0,T) — R with fo Joe, v ZAHN T dt < 0o and v(
for a.e. t €1[0,T), such that

(5) // ondHN " dt = // H‘ﬁf nd’H,N’ldt
*F, *F,

T
©) [ omasars [ weode=—[" [ utupyomantrar
0 Ey Ey 0 8% By

for every n € CLRYN x [0,T)).

‘BE Q(aEt)

The definitions 1),2) extend to our case the definition of BV-solutions of [38] and the dis-
tributional solutions of [41]. We recall that hypothesis (4) ensures that the evolving sets avoid
the so-called “fattening” phenomenon. It is known that this hypothesis is satisfied in the case of
evolution of convex or mean-convex sets, see e.g. [10, 17, 24], but in general is not known under
which general hypothesis it is valid. We also remark that the proof of the theorem above provides
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a detailed proof of [10, Theorem 3.2], which had only been sketched. Moreover, we bypass the use
of a Bernstein-type result (which is usually employed) by a double blow-up technique.

In the second part of the work we will focus on the level set approach. Briefly, given an initial
compact set Ey, we set ug such that {up > 0} = Fy and we look for a solution w in the viscosity
sense (in a sense made precise in Definition 4.5) to

- {&u + ¥ (x, —Vu) (divV,é(z, Vu(z)) — f(z,t)) =0

u(,t) = Ug.-

Classical remarks ensure that any level set {u > s} is evolving following the mean curvature flow
(1). To prove existence for (7) we use an approximating procedure. For h > 0 and t € (0, 4o00) we
set iteratively uf(, t) = ug for t € [0,h) and for t > h

uyf (z,t) := sup {s €ER : zeTy, {uf(t—h)> s}}
uy, (x,t) := sup {5 €ER : xeTy, {u, (t—h)> s}} ,

where the operator Thit has been previously introduced. We remark that these are maps piecewise
. . . + + . . . .
constant in time, since T}°, = Th,[t Jh]h which are only upper and lower semicontinuous in space

respectively. Then, we will pass to the limit A — 0 on the families {uf} » to find functions u™, u~
which are viscosity sub - and supersolution respectively of equation (7). Passing to the limit as
h — 0 in our case is not straightforward. The main issue is that we do not have an uniform
estimate on the modulus of continuity of the functions u, (compare [14]) and thus we can not
pass to the (locally) uniform limit of the sequence. (More precisely, our best estimate contained in
Lemma 4.8 decays too fast as h — 0 to provide any useful information). Nonetheless, motivated
by [6, 5, 7] we can define the half-relaxed limits

ut(z,t):==  sup  limsupu; (zp,t)
(8) (zn,tn)—=(z,t) h—0

_ :: - i inf u—

u”(z,1) o o iy (zn,tn),

and prove that the functions defined above are sub - and supersolutions, respectively, to (7). The
main difficulty in this regard is that we need to work with just semicontinuous functions in space,
as in the translationally invariant setting one can easily prove the uniform equicontinuity of the
approximating sequence. We prove the following.

Theorem 1.3. Assume (HO0), (H1) and f € CO(R™ x [0, +00)). The function u™ (respectively u~)
defined in (8) is a viscosity subsolution (respectively a viscosity supersolution) of (7).

Thanks to the results of [16] we then prove that, under the additional hypothesis
VoVpoé(-,p) and V§¢(~,p) are Lipschitz, uniformly for p € SV ~!

(H3) V§¢2 (z,p) is uniformly elliptic in p, uniformly in
¥(+,p) Lipschitz continuous, uniformly in p

f(-,t) Lipschitz continuous, uniformly in ¢,
the following uniqueness result holds.

Theorem 1.4. Assume (HO) and (H3). If ug is a continuous function which is spatially constant
outside a compact set, equation (7) with initial condition ug admits a unique continuous viscosity
solution u given by (8). In particular, u™ = u™ = u is the unique continuous viscosity solution to
(7) and u,jf —u as h — 0, locally uniformly.
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The previous result yields a proof of consistency between the level set approach and the mini-
mizing movements one to study the evolution (1). We recall that it has been established for the
classical mean curvature flow in [11], in the anisotropic but homogeneous case in [21] and in a very
general nonlocal setting in [14].

2. PRELIMINARIES

We start introducing some notations. We consider 0 € N. We will use both B,(z) and B(zx,r)
to denote the Euclidean ball in RY centered in z and of radius r; with BY~!(x) we denote
the Euclidean ball in RY~! centered in z and of radius r; with SN¥~! we denote the sphere
0B;(0) C RY; with Symy the symmetric real matrices of size N x N. In the following, we will
always speak about measurable sets and refer to a set as the union of all the points of density 1
of that set i.e. E = EM. If not otherwise stated, we implicitly assume that the function spaces
considered are defined on RV, e.g L™= = L>(RY); the space C° denotes the space of continuous
functions. Moreover, we often drop the measure with respect to which we are integrating, if clear
from the context.

Definition 2.1. We define anisotropy (sometimes defined as an elliptic integrand) a function 1
with the following properties: v (x,p) : RN x RY — [0,+00) is a continuous function, which is
convex and positively 1-homogeneous in the second variable, such that

1
—|p| < Y(x,p) < cylpl
Cy

for any point x € RY and vector p € RY.

We remark that, as standard, we define a real function f positively 1-homogeneous if for any
A > 0, it holds f(Ax) = Af(x). In particular, the anisotropies that we will consider are not
symmetric. In the following, we will always denote the gradient of an anisotropy with respect to
the first (respectively second) variable as V1 (respectively V1), We then recall the definition of
some well-known quantities (see [8]). Define the polar function of an anisotropy ¢, denoted with

P°, as
(9) P &) = sup {&-p : Y(-,p) <1}

pERN
Using the definition it is easy to see that for all p, & € RN it holds
VW) 2 p-& U, —p)P°(h8) <p- &
Furthermore, one can prove that (see [8]) for p # 0
PU(Vpy) =1, 9(Vp®) = 1, (¥°)° = ¢
We define for any z,y € RY the geodesic distance induced by 1, or 1)—distance in short, as

distw(x,y) := inf {/0 VO (y(t),5(t))dt = v e WHL([0,1;RY), 7(0) = z,7(1) = y} .

We remark that this function is not symmetric in general. We define the signed distance function
from a closed set £ C RV as

10 sd% () := inf dist? — inf dist¥

(10) sdp(z) Jnf_ dis (y,z) Jnf dis (. v),

so that Sd% > 0 on E¢ and sd}ii < 0 in E. We remark that the bounds stated in Definition 2.1
imply

1
(11) —dist < dist? < cydist,
Cy
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where here and in the following we will denote with dist,sd the Euclidean distance and signed
distance function respectively. We define the ¢)—balls as the balls associated to the y—distance,
that is
P — N . Jiat?
BY(z) :=={y € RY :dist"(y,z) < p},

which in general are not convex nor symmetric.

Definition 2.2. We say that an anisotropy ¢ is a regular elliptic integrand, and write ¢ € &,
if there exists two constants A > 1,1 > 0 such that if ¢(z, ')|SN—1 € C*Y(SN=1) and for every

z,y,e € RY v, v/ € SN~1 one has:
Y

|+ [Vpd(a,v) = Vpo(y, v)| < e -y
IV3e(x,v) = Vig(, /)]
v —v/|

2
e—(e-v)v
e Vo)l 2 I
Given any set of finite perimeter E, one can define the ¢—perimeter Py as follows

> =

|¢(.Z‘, V) - ¢(y7 v

Voo, )] + V36 (z, )|+

~—

<A

Py(E) := g ¢z, vp(2)) dHY " (z),
“E
where 0*F is the reduced boundary of E and vg is the measure-theoretic outer normal, see [39]
for further references on sets of finite perimeter. The ¢—perimeter of a set of finite perimeter F
in an open set A is defined as

Py(E; A) = / oz, vp(z)) dHN " (2).

0*ENA
We remark that, by definition of regular elliptic integrand, for any set F of finite perimeter it holds

LP(E) < Py(B) < AP(E).

Some additional remarks on this definition can be found in [18]. We just recall the submodularity
property of the ¢—perimeter, which can be proved for instance by using the formulae for the reduced
boundary and measure-theoretic normal of union and intersection of sets of finite perimeter (see
[39]).

Proposition 2.3 (Submodularity property). For any two sets E, F C RY of finite perimeter, one
has

(12) Py(EUF)+ Py(ENF) < Py(E)+ Py(F).
Moreover, by homogeneity, (9) and recalling that for any set E of finite perimeter it holds
Dxp = —vpdHN ! | o We have the following equivalent definitions
(13) PoB) =sw{ [ D¢ ¢ CURVRY). 079 <1
RN

=sup{[Ediv£d’HN—1 : «5603<RN;RN>,¢°<~,£)S1}.

Concerning the regularity property of the ¢—perimeter minimizers, we refer to [42]. We just recall
the following results. Given two anisotropies ¢, 1 € &, we define the “distance” between them as

dists (¢, 1) := sup{|¢(x, p) — ¥ (x, p)|
+ |Vpo(z,p) — (. p)| + |Vig(z,p) — Vip(z,p)| i x € RN ;pe SN}
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where | - | denotes the Euclidian norm. Given ¢ € &, we recall that E is a 0O—minimizer for the
¢—perimeter if for any x € RV, r > 0

Py(E; Br(2)) < Py(F; By ()
for every F C RY such that FAE CC B,. Then, some regularity properties of minimizers of

¢—perimeter can be found in the theorems of part I1.7 and 1.8 in [42], which are recalled below.

Theorem 2.4. Assume ¢ € &. Then, for any 0-minimizer E of the ¢—perimeter, the reduced
boundary 0*E of the set E is of class CY'/2 and the singular set ¥ := OF \ 0*F satisfies
HNT3(D) = 0.
Theorem 2.5. Let m > 0, € (0,1). Then, there exists € = e(m,a) > 0 with the following
property: let ¢ = ¢(p) € &, ¢ € C3>*(RN \ {0}) with
lolsn-1]lcs.e < m and distg(o,]|-]) <e.
Then, for any 0-minimizer E of the ¢—perimeter, the reduced boundary O*E of the set E is of
class CYY/? and the singular set ¥ := OE \ 0*E satisfies
HNTT(D) =0.
We sum up these hypotheses that yield the complete regularity of minimizers of parametric
elliptic integrands:
either ¢ € & and N < 3,

14
(14) or N < 7 and the hypotheses of Theorem 2.5 are satisfied.

2.1. The first variation of the ¢—perimeter. In this section we compute the first variation of
the ¢-perimeter and define some additional operators associated to it.

Assume E is of class C2. Let X be a smooth and compactly supported vector field and assume
U(z,t) =: Us(x) is the associated flow. To simplify the notation, we write

v(z,t) = Vesdy (g (2).
By classical formulae (see e.g. [9]) we can compute the following. For the sake of brevity, we avoid
writing the evaluation ¢ = ¢(x, vg(z)), if not otherwise specified, and assume that all the integrals
are made with respect to the Hausdorff (N — 1)-dimensional measure H~ 1.
d d
—|  Py(E)=— v v t))JU
dt li—o s (Et) dr E¢( t(x),v(Vi(2), 1)) J ¥y

(15) = /BE Vit X +Vpd- (=V(X-v)+ Dv[X]) + ¢div, X

t=0 Jg

- /8E Vo X + Vb (—VA(X -v) + Dv[X]) + div, (6X) — Vé - X + (V- v)(X - 1)

= | Vi - X+V,0- (=V(X v)+ DV[X]) = Vad- X — Dv[V,¢] - X
OF

+div, (6X) + (Vo - 1)(X -v)

= | =V Vo (X - v) + (Vg - v)(X - v) + (Dv[Vyo] - v) (X - v) + dive (¢X)

_ /8E div, (Vpd(X 1)) = V- Vo (X - 1) + (X - 0)(Vap- )

_ /BE(divTVp@(X D)+ Vb V(X ) = Vb Vo(X 1) + (Vad - v)(X - 1)

= / (X -v)(div, Vo + Vyo-v) = / (X -v)divV,e
OFE

OF
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where the last equality follows from the definition of div, and the fact that ¢ is 1—homogeneous
with respect to the p variable, since

divVye = div,V,é + Y v; (02,V,0) V]

=div, Vo + Z viVp(0z,0) - v+ v- (V?)(ZSDI/) [V]

= div, V¢ + Voo - 1.

Therefore, we define the first variation of a C2—regular set E, induced by the vector field X, as

(16) IPy(B)[X - v] = /3 (X)) dive o, v(@) ARV (2)

and the ¢p—curvature of the set E as
(17) HY(x) := divV,é(z, v(z)).
If we now consider equation (15), we develop the tangential gradient to find
V¢ (=V (X -v)+ Dv[X]) =Vyo- (-V,.X[v] - Dv[X]+ Dv[X]) = 0.
This shows that for any set E of class C? it holds

SPy(E)[X -v] = /8E (Voo X + ¢div, X) dHN 1,

where we dropped the evaluation of ¢ at (z,vg(x)). We remark that the expression on the right
hand side makes sense even if the set E is just of finite perimeter. Defining the ¢—divergence
operator divyg as

(18) divyX := Voo - X + ¢div, X,

we are led to define the distributional ¢—curvature of a set E of finite perimeter as an operator
HY e LY(DE) (if it exists) such that the following representation formula holds

(19) / divg X dHVN 1 = | Hpve-XdHN™!, VX € C°RY;RY).
OE )

The previous computations allow to say that the distributional ¢—curvature can be expressed as

(17) if the set is of class C2. Finally, since ¢ is a regular elliptic integrand, one can prove the

following monotonicity result.

Lemma 2.6. Let E, F be two C? sets of finite ¢—perimeter with E C F, and assume that x €
OF NOE: then Hgi(x) < Hg(:zz)

Proof. Since the anisotropy is smooth, we can expand the curvature formula (17) as
(20) H? = tr (V,Vyé(z,v) + Vap(z,v)Dv)

and compare Hg with H? We consider separately the two terms appearing in (20). The first
one depends on v just by the value it has at the point x. Therefore, since vg(z) = vp(z) we have
the equality. The second one falls in the classical framework of smooth anisotropies that do not
depend on the space variable. Since Dvp < Dvg (as matrices) one concludes the proof. O

3. THE MINIMIZING MOVEMENTS APPROACH

In this section we follow the work of [41] (see also [3, 38]) to prove the existence for the mean
curvature flow via the minimizing movements approach. We recall that in the whole paper we will
assume the hypothesis (HO).
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3.1. The discrete scheme. In this subsection we will define the discrete scheme approximating
the weak solution of the mean curvature flow, and we shall study some of its properties.

We define the following iterative scheme. Given h > 0, f € L>®(RY x [0,00)) and t > h, and
given a bounded set of finite perimeter F', we minimize the energy functional

1
(21) T (E) = Py(E) + E/ sd¥(z) dz — / Fy(z,t)dz
E E
in the class of all measurable sets E C RY, and where we have set

t+h
Fp(z,t) := ][ f(z,s)ds.

Equivalently, we could define the energy functional as
1
FEE) =PuB)+ 1 [ lstil - [ Fuwt)ds,
' h Jear E

which agrees with (21) up to a constant. Then, we denote
ThF = F € argmin ﬁ,ﬁt.

We will refer to this minimizing procedure as the incremental problem. It is well-known (compare
(16) and [39, Proposition 17.8]) that a minimimum of (21) of class C? satisfies the Euler-Lagrange
equation
1

(22) HYX -vgdHN—! = - / <sdﬁ(x) — Fh(:c,t)> X(x) - vp(z)dHN ()

OF or \
for all X € C°(RY;RY). We can then define the discrete flow, which can be seen as a discrete-
in-time approximation of the mean curvature flow starting from the initial set Ey. We define
iteratively the discrete flow by setting Et(h) = Fy for t € [0, h) and

(23) B = TounE"), = Ty qg-on Bl ¢ € [hy+00),

where [] denotes the integer part of a real number. This section is devoted to recall and prove
some estimates on the discrete flow. The first one is a well-known existence result.

1
locy

Lemma. For any measurable function g : RN — R such that min{g,0} € L the problem

min {P(E) —|—/ g : E is of finite perimeter}
E
admits a solution.

Consider now F' as a bounded set of finite perimeter. Then, the function g = Sdﬁ /h — Fy is
coercive, thus min{g,0} € L'. Therefore, by the previous result and by classical arguments see
[14, Proposition 6.1] for a proof, one can prove the following result.

Lemma 3.1. For any given set F of finite perimeter, the problem (21) admits a solution E, which
satisfies the discrete dissipation inequality

1

P+ [ sapl < Py [

Fy(z,t) dxf/ Fy(z,t)dx.
E\F

F\E

Moreover, the problem (21) admits a minimal and a mazimal solution.

We define T,j:tF (respectively 7}, ,F') as the maximal (respectively minimal) solution to (21)
having as initial datum F'. In the following, whenever no confusion is possible, we shall write T}, ;
instead of T .

A comparison result holds. We will consider just bounded sets as datum for the problem (21),
but the same result holds in general for unbounded sets (see also Section 4.1 for the case of
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unbounded sets with bounded boundary). The proof of this result is classical (see e.g. [14]) and it
is based on the submodularity of the perimeter (12). We will omit it.

Lemma 3.2 (Weak comparison principle). Assume that Fy, Fy are bounded sets with Fy CCFy and
consider g1, g2 € L™ with g1 > go2. Then, for any two solutions E;, 1 = 1,2 of the problems
sd?.
. F; . . .
min § P,(E) + / L + g, : E is of finite perimeter » ,
E

h

we have By C Es. If, instead, Fy C Fy, then we have that the minimal (respectively maximal)
solution to (21) for i =1 is contained in the minimal (respectively mazimal) solution to (21) for
1= 2.

We now prove the volume-density estimates for minimizers of problem (21). This result is
based on the minimality properties of almost-minimizers for perimeters induced by regular elliptic
integrands (see [18, Remark 1.9] for further results). These estimates have the disadvantage that
the smallness condition on the radius depends on the parameter h. Subsequently, we will recall a
finer result in the spirit of [38], where we can drop this dependence by making some restrictions
on the balls considered.

Lemma 3.3. Let g € L* and assume E minimizes the functional
FE) = PuF)+ [ g
F

among all measurable subsets of RV. Then the density estimate
o™ < Bylw) N E| < (1 - 0)p"
(24) op™N T < Py(E; By(x)) < (1—0)p™ ™!
holds for all x € *E, 0 < p < (2\||g|lec) ™t := po, for a suitable 0 = o (N, cy, N).
Proof. By minimality,
Ps(E) < Py(F) + llglloo| EAF|  ¥F CRY,
thus [18, Lemma 2.8] implies the thesis. O

Remark 3.4. We remark that the previous result allows us to choose the minimal solution to (21)
to be an open set, and the maximal one to be a closed set. This follows from the fact that the
density estimates imply that the boundary of any minimizer has zero measure.

We now recall [12, Lemma 3.7], which is an anisotropic version of [38, Remark 1.4]. It provides
volume-density estimates for minimizers of (21) starting from F, uniform in ¢ and h, holding in
the exterior of E. We remark that, even if in the reference the anisotropy ¢ considered did not
depend on x, all the arguments hold with minor modifications also in our case. We recall the proof
of this result, as similar techniques will be used later on.

Lemma 3.5. Let E be a bounded, closed set, h >0 , and g € L>°(RY). Let E' be a minimizer of
sd?
PyF)+ | =E+g.
r h
Then, there exists o > 0, depending on X, and o € (0,1), depending only on N, \,G := ||g| 1o (r),
with the following property: if T is such that |E' N Bs(Z)| > 0 for all s > 0 and B.(Z)NE = 0 with
r <rg, then

(25) |E' N B,.(z)| > or™.
Analogously, if T is such that |Bs(Z) \ E'| > 0 for all s > 0 and B,(Z) C E with r < rg, then
|B.(z) \ E'| > or™.
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Proof. For all s € (0,7), set E'(s) := E"\ Bs(Z). Note that, for a.e. s we have
Py(E'(s)) = Py(E') — Py(E' 1 By(x)) +/ o5 (0(z, v(x)) + oz, —v(x))) AHV " (2),
E'NOB, (%

where v denotes the outer normal vector of the set E' N dB(Z). Since E’' N By(Z) C E° and
sdﬁ >0 in E°, one has fE’ﬁBS(i) Sd% > 0, and therefore the minimality of E’ implies

P¢(E/ N Bq(i‘)) + /

E'NB.(z)

9= [ (@) + oo -vla)) MY o)
E'N&B,(z)

By the bound on the ¢—perimeter and using the classical isoperimetric inequality (whose constant
is denoted Cn) we obtain

2AHN"YHE' N OB,(%)) > ~P(E' N By(%)) +/ g

E'NB.(7)

> =

N-—1

1 —1 C
> LowlE n B@*F — lgllul 0 Bu@)] > X 1B 0 Bu(a)

provided |E’ N Bs(Z)|"Y < Cn/(2\||gls), which is true if 7o is small enough. Since the rhs is
positive for every s, we conclude

Cn
4NN
The thesis follows by integrating the above differential inequality. The other case is analogous. [

d
(26) d7|E’ N Bs(g‘;)ﬁ > for a.e. s € (0,r).
S

Remark 3.6. Requiring that the anisotropy 1 is bounded uniformly from above and below ensures
that the results of the previous Lemmas 3.3 and 3.5 can be read in terms of the ¢)—balls. For
example, for any r > 0 and 2 € RY, equation (25) could be read as |[E' N By (z)| > oc; N1,
provided Z is such that |[E' N BY(z)| > 0 for all s > 0 and BY(z) N E = (), and holds for all
r < ro/cy. Here, 0 is as in Lemma 3.5 and depends only on A. Analogous statements holds for

Lemma 3.9.

We now provide some estimates on the evolution of balls under the discrete flow. We start by
a simple remark concerning the boundedness of the evolving sets.

Remark 3.7. A simple estimate on the energies implies that the minimizers of (21) are bounded
whenever F' is bounded. Indeed, assume F' C Bg and consider B,(x) N (E \ Br) # 0: testing the
minimality of E against F' we easily deduce

" ad}

slB@nE < [

7 S Po(F) + [ Fn( D)oo EAF] < Po(F) + [| flloo (|1F] + | E1).-
ENB,(x)

Employing the density estimates of Lemma 3.5 and sending R — co, we get a contradiction, as
the isoperimetric inequality implies that |E| is bounded since ﬁ{ (F) < oo.

We now want to prove finer estimates on the speed of evolution of balls. These estimates are
classically a crucial step in order to prove existence of the flow. In the case under study, the main
difficulties come from the inhomogeneity of the functionals considered, as in the homogeneous case
convexity arguments easily yield the boundedness result, for example. We will use a “variational”
approach in the spirit of [14] (but see also [41, Lemma 3.8] for a different proof relying more on
the smoothness of the evolving set).

Lemma 3.8. For every Ry > 0 there exist ho(Rp) > 0 and C(Ry, ¢,v, f) > 0 with the following
property: For all R > Ry, h € (0,hg), t >0 and x € RY one has

(27) Th(Br(x)) O Br-cn().
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Proof. We divide the proof into three steps. In the following, the constants o,ry are those of
Lemma 3.5. We will assume z = 0 for simplicity. We fix R > R, and denote E := T}, ;Bg.

Step 1. We prove that, given a € (0,0),e € (0,1), we can ensure |Bg—q) \ E| < aRN(1 —¢e)N
for h small enough. Indeed, assume by contradiction |Bgi_c) \ E| > a RN (1 —)". Testing the
minimality of E against Bg, we obtain

jsdp,| 1
/ %Sﬁ/ |Sd%R|§P¢(BR)7/ Fh+/ Fh,
(Br(1—¢)\E)U(E\BR) BrAE Bgr\E E\Br

and estimating |sd}§R| > Re/cy on Bra—) \ E, we get

Re lde |
EgﬁBR“%”\E|SP%Q%”**””“(WNRN+WBRQH>\BRD*1/ (P%i?% :
N E\BR(1+e)
Taking h < e/(cyl| flls), the last term on the rhs is negative, thus
Re
@'BRU*E) \ E| < Ps(Bg) + || fllo R (wn + 27T e).

We employ the hypothesis to obtain

e(1—e)VRNT < cy Ny RN + cRY,
hC¢
a contradiction for h < cae (1—¢)" min{1, R?}, where c is a constant depending on N, &, 1, || f|| -
Step 2. Using Step 1, we prove that Bg/; C E for h small. Assume that R < ro: by following
the second part of the proof of Lemma 3.5 we obtain equation (26), which reads
Cn
= 4N2N
Applying the previous step with ¢ = 1/4,a = o/3", it holds |Bsrsa \ E| < oRN /4N for all
h < c¢(N,p,, f)R. Therefore, one deduces the existence of a positive extinction radius

3R |Bsgss\ E|"V S R
T am 23
such that |Bg+ \ E| = 0, which proves the claim. Clearly, taking h < cRy the smallness assumption
on h is uniform for R > Ry.
If R > ry one simply uses a covering argument. For any = € Br_,,, applying the previous result

to the ball B, (z) and using the comparison principle of Lemma 3.2, we conclude that Vh < crg
it holds

—|B \ E|VN > =o'N foraese (0,R).

(28) R* =

U Brjpl@)ccE.

ZGBR_TU
Step 3. We conclude the proof. By the previous two steps and Remark 3.7, taking h small enough,
we see that
p:=sup{r >0 : |B.\ E| =0} € (R/2,+0).
We can assume p < R, otherwise the result of the lemma is trivial. Consider the vector field
vp¢( , m) € CL(RN,RV). Then, recalling (13), we get Py(G) > — [, Dxa - Vpo(a, /|z]) for

all G set of finite perimeter and

Py((1+¢)B / Dxa+es, - <—Vp¢ (33, |:f,|)> .

Setting W, = (14 ¢)B, \ E, by submodularity on (1 + ¢)B,, E and exploiting the minimality of
E, we obtain

X
D \Y L) (Dxisors. — DX(1se
/RN ( To |> XW. /RN p® (96, |x|> (DX(14¢)B, X(14¢)B,NE)
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< Py((1+¢e)B,NE) — Py((1+¢)B,))
< Py(E) — Py((1+¢)B, UE)

1
< —/ sd%R—/ Fp(z,t)da.
h Jye w,

€

We conclude, using the divergence theorem |,

1
/. dww( |) f/ sdfy + | Fllool Wl

Dividing by |W¢| and sending £ — 0 we obtain

1 R
f —divqus( ) a¥ < LR
- Tl o

Exploiting the regularity assumptions on ¢, we remark that

AN,00 = fr (79,0 + V20 /la)) < € (141 ).

2|
- <]_ + 1> S ﬂ,
P h
which implies that p € (0, 1) U (p2, R) for p1o = (R— Ch+ \/(R—Ch)? - 4Ch) /2, as long

as h < RZ%/(4C). Since the choice p < p; < R/2 is not admissible, we conclude the proof by
estimating

Thus, we obtain

- 4
P 0h< Ch Ch

2 ~ (R—Ch)? R—Ch’
from which the thesis follows. O

—1) >R—-Ch—

The proof of the previous result can be employed to prove an estimate from above of the
evolution speed of the flow, as the following result shows. Since the proof follows the same lines
and is easier in this case, we only sketch it.

Lemma 3.9. Fiz T > 0 and Ry > 0. Then, there exist positive constants C = C(¢,v, f, Ro) and
ho = ho(Ro) such that, for every R > Ry and h < hg, if Eg C Bg, then Et(h) C Brycr for all
€ (0,7).
Proof. Choose h small as in the previous result and set
=inf{r >0 : |E\ B, =0} € (R/2,+00).

We can assume p > R, otherwise the result is trivial. Defining W, = E \ (1 — €)B,, and reasoning
as before we obtain

X
/ Vp ( ) Dx- =/ Vo (% ) - (Dx(1-e)B,uE — DX(1-¢)B,)
RN e RN |z

> —Py((1-¢)B, UE) + Py((1 - ¢)By)
> —Py(E) + Py((1 —¢)B, N E)

P
P
1
E/ sd}gR—/ Fy(z,t) dz.
we W

M<C<1+1>,
h p

Y

As in the previous proof, we arrive at
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which implies that p < py = (R +Ch+/(R+ Ch)? + 4Ch> /2 < R+ Ch, up to changing C. O

3.2. Existence of flat flows. In the following, we will prove that the discrete flow (defined in
(23)) defines a discrete-in-time approximation of a weak solution to the mean curvature flow, which

is usually known as a “flat” flow (because the approximating surfaces 6*Et(h) converge in the “flat”
distance of Whitney to the limit 0* Ey, see [3]).

We start by proving uniform bounds on the distance between two consecutive sets of the dis-
crete flow and on the symmetric difference between them. We introduce the time-discrete normal
velocity: for all £ > 0 and = € R, we set

%sdww (z) for t € [h, +00)
vp(z,t) = Eih
0 for t € [0, h).
The following result provides a bound on the L°°—norm of the discrete velocity. Since the proof

is essentially the same of [38, Lemma 2.1], we will omit it. The only difference is that we use the
upper and lower bounds of (11) to work with Euclidean balls.

Lemma 3.10. There exists a positive constant cs, depending only on N,v with the following

property. Let Ey be a bounded set of finite perimeter and let {Et(h)}tE(O,T) be a discrete flow
starting from Egy. Then,

sup  |on(,t)] < cooh Y2
PN
for all h sufficiently small.

The following result can be found in [41, Proposition 3.4] (see also [25, Lemma 2.2]): it provides
an estimate on the volume of the symmetric difference of two consecutive sets of the discrete flow.
The proof is analogous to the one in the reference.

Lemma 3.11. There exists a constant C' such that for every t > h the discrete flow Et(h) satisfies
for all h sufficiently small

1
(29) E® AEM| < o [1PyEM) + 2 / sd? || W< eV,
! e asgy, "5

where ¢ is a positive constant depending on N, .

We are now able to prove an uniform bound on the perimeter of the evolving sets. The proof
follows [25, Proposition 2.3].

Lemma 3.12. For any initial bounded set Ey of finite ¢p—perimeter and h small enough, the
discrete flow {Et(h)} satisfies

Py(EM) < Cr Ve (0,7),
for a suitable constant Cr = Cp(T, Eq, f, ¢, ).

Proof. By testing the minimality of Et(h) against Et(f)h we obtain Vt € [h,T)

h 1 h h h
(30) Py(EM) + 5 [sd% ) | < Po(BL)) + [ Fllocl BV AED, |
h Ef(,h)AEt(}i)h Eion

Combining this estimate with (29) for I = 2Ch||f| s~ < Vh, where C is the constant appearing in
equation (29), we obtain for h sufficiently small

1

(h)y L & Y 2 2 (h)
() PB4 31 [ 05,1 < (4 20°RI71) Po((1)
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Iterating the previous estimate, we find
h ] h
Po(EM) < (1+2C2 | fllom)H 7 Py (EL).

In order to estimate P¢(E(h)) we start by observing that Remark 3.7, for h = h(Fp) small enough,
implies E( ) B, where Ey C B,. Therefore, by (30) for t = h we obtain P,(E (h)) < Py(Ep)+c
and we conclude P¢(E ) < Cr(Py(Ep) +1). O

We then present a sketch of the proof of the local Hélder continuity in time of the discrete flow,
uniformly in h, which can be deduced as in [25, Proposition 2.3]. We highlight the main differences.

Proposition 3.13. Let Ey be an initial bounded set of finite ¢p—perimeter and T > 0. Then, for
h small enough, for a discrete flow {Et(h)} starting from Eq it holds

[EMAED| < Crlt—s|'V? Vh<t<s<T,
for a suitable constant Cr = Cr(T, Ey, f, ¢, ).

Proof. Following the previous proof, employing again (31) we find
1 1
PyEMY 4+ = L2h)| + = " h
s (Eap’) + 2 o p g0 [on (-, 2h)| + 2 o p o [on (-, B)]
2h h h 0
1

- - h
5/ g 1)

< (1+ch) <P¢<E§ﬁ>> Lo |vh|<-7h>> < (1+ ch)>Py(Eo).

< (14 ch)Py(EMM)

Iterating, we conclude as before
(T/h]

(32) Z /E<h>AE<h) [n (-, kh)| < Or(Py(Eo) +1).

(k=1)h

Therefore, combining the previous results and applying (29) with [ = h < v/h, we obtain

T [T/h]
) [ IEPAES <o YT (arEi) + [ [on (k)| | < Cr (P(Fo) +1).
" = B AR,

The proof then follows the one of [25, Proposition 2.3], from equation (2.5) onward. |
We finally prove the main result of this section, the existence of flat flows.

Proof of Theorem 1.1. The proof is classical and we only sketch it. By the uniform equicontinuity
of the approximating sequence of Proposition 3.13 and compactness of sets of finite perimeter (by
Lemma 3.9 and 3.12) we can use the Ascoli-Arzela theorem to prove that the sequence (Et(h’“))keN
converges in L' to sets E; for all times ¢ > 0 and that the family {F}};>o satisfies the 1/2—Hélder

continuity property, locally uniformly in time. The other property is then easily deduced. O

3.3. Existence of distributional solutions. From Theorem 1.1 we deduce the existence of a
subsequence (hg)r>0 such that

(34) Dx o = Dxg, Yt >0.
t
We will also assume (4), remarking that it implies

(35) Jim Py (B} E)Y = Py(E,)  for ac. t €[0,400).
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Our aim is to derive (5) and (6) from the Euler-Lagrange equation (22) and passing to the
limit h — 0. To achieve this, we will prove that the discrete velocity is a good approximation
(up to multiplicative factors) of the discrete evolution speed of the sets. Notice that (5) is a weak
formulation of (1), while (6) establishes the link between v and the velocity of the boundaries of
E;. Indeed, law (1) can be interpreted as looking for a family {E; };>0 of sets, whose normal vector
vg, and ¢—curvature Hgt are well-defined objects and a function v : [0,00) x RY — R such that
for every ¢ € [0,400) and = € OF,;

{v(%t) = —Hj, (x) + f(,t)
V(Ivt) :¢<x’VEt(x))v($7t)a

where V represents the normal velocity of evolution, obtained as the limit as h — 0 (in a suitable
sense) of the ratio

(36)

XEy = XEqi_p
—
In this whole section we will assume that hypothesis (14) holds. In particular, the sets defining
the discrete flow are smooth hypersurfaces in RY. Moreover, we require hypotheses (H1) to hold.
We start by estimating in time the LZ—norm of the discrete velocity. The proof is the same as
the one presented in [41, Lemma 3.6], up to using the density estimates on the ¢—perimeter of
Lemma 3.3 and considering the i)—balls instead of the Euclidean one.

Proposition 3.14. Let {Et(h)}tzo be a discrete flow starting from an initial bounded set Ey of
finite p—perimeter. Then, for any T > 0 and for h small enough, it holds

T
/ / vi dHN Tt < Cr,
o Jog™

for a suitable constant Cp = Cp(T, Ey, ¢,v, f).

Recalling now the Euler-Lagrange equation (22) and Lemma 3.12 we conclude

T
o [ L) [ [ nreen

We now prove an estimate on the error between the discrete velocity (-, vg,)vp (-, t) and the
discrete time derivative of xp,. The proof of this result is based on a double blow-up argument, and
the smoothness of sets (locally) minimizing the ¢—perimeter is essential. We will split the proof
in various lemmas: the first one concerns the composition of blow-ups, and is a well-known result
to the experts. We present a simple proof since we could not find a reference.

Lemma 3.15 (Composition of blow-ups). Consider 0 < < ' < 1. Assume that (Ap)pefo,] is @
family of measurable sets such that the following blow-ups converge as h — 0
Ah — Xp
hB

h_(ﬁ/_’g)Al — A2 m Llloc,

— Ay in L},

where xj, € DAy, for all h € [0,1]. Then, if the composition of the blow-ups h=% (A, — x3) converges

in L} ., the limit coincides with As.

Proof. We can assume wlog x;, = 0. Denote with A3z = LllOC — limy,_,g h=P" A,. We fix a ball By,
and € > 0. There exists h* such that Vh < h* it holds

|(h=F AR AAs) N By <&, |(R P HPA)AA) N Byl <e.
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We fix h and wlog assume MhP' =8 <1. Taking h<h suitably small (depending on h, ), we can
ensure

|(R~PAR)AAL) N By| < ehNE =P,
Since h™Ph=("=F) > p=F" there exists h < h such that A% = h=Ph~(#' =5 We can then estimate
|(A3sAAs) N Byg| < [(AsAR™ AR) 0 Bag| + |(F T2 A, AR A1) N By
+ (PP A1) AAs) 0 Bl
<2+ h N (A AP AL)) N By s
<2+ NE = (A AP AR)) N By| < 3e.
0

We now compute some estimates on the normal vector on the boundary of the evolving sets,
following the proof of [41, Lemma 4.2] (see also [38, Proposition 2.2]). We fix ¢ as the constant
appearing in Lemma 3.10.

In the sequel, we will denote by w(h) a modulus of continuity, that is a continuous increasing
function w : [0,1] — R with w(0) = 0, which can possibly change from statement to statement and
line to line to absorb constants independent of A.

Lemma 3.16. Assume (HO) and (H1). For given constants 1/2 < ' < a <1 and T > 2, there

exists a modulus of continuity w with the following property. Consider t € [2h,T] and xj, € 8Et(h)
such that

(38) on (L)l <hOTY Yy € B, p(zn) N (BMAENM),).
Then, there exists v € SN~ such that
()= v| <w(h) in B,y (xp) NOE"

|I/Et(h)

(39) |1/Et<;_L)h(-) —v| <w(h) in By (zp)N aEt(f)h

Proof. We fix % <p<pf <aand < R< h%*ﬁ/cw. Testing the minimality of Egh), s=t,t—h,
we find

1
(10)  Py(EM, By (1)) < PG Brno o)) + sl [+ [ 1B,
anp Bk GAEM

for any set G of finite perimeter such that GAEM CCBpgps(zp). Using Lemma 3.10, the 1—Lipschitz
regularity of sd¥ and (38), we deduce |vx(s,y)| < ey R~ + cooh™ /2 < (1 4 coo)h™ /2 for any
Yy € Brps(zp) N (Eéh)AF). Plugging this inequality in (40), we find
1+e¢

FAEM| + | flls|GAEM.
TEIPAED)|+ /1 GAE)
We then introduce the blown-up sets for s = t,t — h, defined as

EM = n 7 (B —a)

(41) Py(EY, Brys (21)) < Py(G, Brps (zn)) +

Rescaling equation (41), we easily find that EM P isa (Ap, r,)—minimizer of the ¢(zj,+h?-,-)—perimeter,
with A, = (14 ¢)h?~Y/2, r, = h'/2=P. Moreover, scaling the density estimates (24) we have a
uniform bound on the perimeters of the sets Egh)’ﬁ in each ball Bg. By compactness, there exist

two sets Ef , EQB such that

M? B!, EM? 5 EB) L},
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Then, by scaling and (38) we find

|Sd,¢' ()I S Coohafﬁ on Bh1/2—[5 (0) ﬁ (th);ﬁAElt(ﬁ)l—zﬂ%

(h).B
Et—h

thus we easily conclude that EB = EP = E2’B By Lemma 3.9 we can assume that x, — xg as

h — 0, up to subsequences. Moreover, by closeness of Aj—minimizers under L;, —convergence

(see e.g. [18, Theorem 2.9]), one can see that EX is a O-minimizer for the ¢(z¢,-)—perimeter.
Thus, by complete regularity, it is a smooth C? set. We can then employ the classic blow-up
theorem to deduce that, for a fixed 8’ € (8, «), the blow-up h—(8'=P) pf converges to a half-space
H = {z - v < 0} as h — 0. Finally, the blow-ups

h
B . EM — 2
s T hﬁ/

admit a converging subsequence by compactness of sets of finite perimeter and by rescaling equation
(41). Thus, the previous Lemma 3.15 implies

EMFA S H in L,

as h — 0. To conclude, the e—regularity Theorem for A—minimizers (see e.g. [18, Theorem 3.1])
ensures that Egh)’ﬁ are uniformly CL'3 sets in B1(0) for s=t,t —h as h — 0. O

We recall here an approximation result proved in [38] (see also [41] for a more detailed proof).
We remark that the proof of this result is purely geometric and does not rely on the variational
problem satisfied by the sets Et(h), Et@h

Corollary (Corollary 4.3 in [41]). Under the hypotheses of Lemma 3.16, fir 0 < § < « and let
C,s be the open cylinder defined as
hB
_a

N—-1
’/ (XEfw) — Xpm )dz —/ . sdym dH ‘
C;LB/Q(Ih,l/) g t—h OE; ﬂChﬁ/z(mh,u) t—h

< W(h)/ IX ) — Xpw |-
C}LB/Z(I;I,,U) Et Et—h

Carefully inspecting the proof, one indeed proves that there exists a geometric constant C' such
that for any y € Bﬁﬁé (zn)

(42)  Jsdpon (0 S GV 1+ VI W2 = (57 W) = 15 w) | < 0@ ) = 10wl

where we set

hB
Cis(xp,v):= {x eRN :|(z—xp)-v| < TR

(x—xp) — ((x —xp) - V)V

Then, it holds

OB NC = {(y, fM(y) e RN xR, |y| < hP/2},
for s =t,t — h.
We briefly recall some classical results. Consider an anisotropy , independent of the position.
It is well-known that, for any closed set G C R, setting sdg as the distance from G induced

by ¢°, then the gradient of Sdg exists almost everywhere and satisfies the eikonal equation (for a
proof see for instance [10, Remark 2.2])

(43) P(Vsdl) =1
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almost everywhere. Moreover, in this particular case, in the definition of dist¥ we can consider
just straight lines as follows from a simple application of Jensen’s inequality: for any curve « as in
the definition of dist¥, we have

/w ))dt > ° (/01 )W’(yw)-

Proposition 3.17 (Estimate on almost flat sets). Under the hypotheses of Lemma 3.16 and with
the same notation, fix B € (0,a) and let Cys be the open cylinder defined as
hB
o
Then, it holds

hB
(X m(m) — X () )dx—/ Wz, v, m)sd?,, dHN—lj
‘/Chﬁﬂ(xh’y) o i 8Et(h)ﬂchﬁ/2(-”fh7'/) By Eii)h

Cps(zp,v) = {x c RN . [(x —zp) v < - (x—2xp) — ((x —zp) - V)V
< w(h)/ IXpm = X |-
Chg/z(a:h 1/) Et Et—h

Proof. We recall that the modulus of continuity w may change from line to line to absorb constants
independent of h.

From the previous Lemma 3.16 we know that, for h suitably small, both 3E(h) and 8E(hh in

Cps/2(xh,v) can be written as graphs of functions of class Cls. Up to a change of coordinates,
we can assume wlog that x5 = 0,v = ex. For simplicity, we set C = Cps/5(0,en). We thus find

OEM N C={(y, fM(y) e RN xR, |y| < hP/2}

for s = t,t — h, where f" B}leﬁ/% — R are C1'2 functions with

||st(h)|\Loo(Bh,3/2) < w(h).

We want to prove the following slightly stronger pointwise inequality: namely, that for any point
e = (y. f"(y) € 9B N C, it holds

(#1) [t ()00 @Y1 IV A0 = (1700 = 12 0)| < w0 - 550

Integrating the previous inequality over C yields the thesis. Clearly, it is enough to prove (44)
at each point x such that |sd1é(h) (z)] > 0. We thus fix = (y, ft(h)(y)) € 8Et(h) N C and denote
t—h

by =’ = (y, (f) (y)). We remark that these points depend on h, but we drop the subscript to

ease notation. It can be assumed without loss of generality that = ¢ Et(ﬁ)h, as the other case is
analogous.
Step 1 We now prove that, with the notation previously introduced, it holds

h h
(45) sy, () = s (@) < WM W) = £5,0))
where sd’ denotes the signed distance function induced by the anisotropy (z’,-). Let v be a
smooth curve, with v(0) = z,v(1) € 8Et(ﬁ)h to be used in the definition of the geodesic distance

sd;ii(h) . Firstly, we remark that one could assume
t—h

(46) 1([0,1)) € Bz, 2¢3 | £ (y) — £, w)])
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Indeed, if it were not the case, the lower bounds contained in (11) and (42) allow us to estimate

t—h

h h)
(47) / 0 (7,4) dt > 7/ (i1t > 26y £ (9) — S 0] 2 20 sd g () > 250%,, (2),
a contradiction for h small. We can reason analogously for sd’ B - In particular, we can consider

just curves having length fol |9 < ¢ ft(h)( ) — (h) ()| Therefore, we obtain (by homogeneity)

L (@) /w A dt</ W ) dt - sup |¢<v<t>,u>—w<x',u>|/0 41

veSN-1 ¢€[0,1]
< / W) dt + cwm) P @) — 1)),

and, taking the inf,, we obtain sd? B (z) < sdE(h (x) + w(h)\ft(h) (y) — ft(fal(y)\ The converse

inequality can be proved analogously, yleldlng (45).
Therefore, in what follows vve will consider always the anisotropy frozen in 2/, and use sd’ instead
of sd¥. Finally, let p € aEt ,, & minimizer for the definition of sdE(h) (). In the following, with

1Tz, lIgz we denote respectively the projection on the hyperplane H of z along the direction v
and the orthogonal projection of z on H.

Step 2. In this step we assume that E(h N C coincides with the halfspace HH = p + {z-v < 0}
intersected with the same cylinder and prove claim (44).
To this aim, we start noticing that by translation we may assume p = 0 and that sdj;(z+&) = sdy(z)
for all z € RY and for all ¢ orthogonal to v. Hence, in fact,

(48) sdy(2) = sdy((z - v)v) = (2 - v)sdy(v) .
Therefore, sdy is differentiable everywhere, with Vsdy = sdj(v)v. Recalling the eikonal equation
(43), it must hold sdy(v) = 1/4(2’,v) and in turn, from (48), and choosing z = x, we have

(49) sdy(z)y(2',v) = z - v = sdu(z).
We remark that sdj(z) = de(;L (z) by (38), thus we conclude (44) by combining (49) with (42).

Step 3. We now conclude 1n the general case. With the notation introduced at the end of
Step 1, set v = vpm (P (p), and consider the half-space H=p+ {z-v <0} and w := 2’ — IIg(z’) as

depicted in Flgure 1. We shall prove that
ol < w(B) £ (4) = S W)I-
To see this, we start by remarking that (39) implies

lexy —en(en - VEt(;_L)h)| < w(h) in BEt@h NnC,

implying ex - vy > 1 —w(h), and thus, for any versor v tangent to aEt(f)h NC one has |[v-ey| <
t—h
w(h). Therefore, we have (' — p) - ey < w(h)|z’ — p| and also
' —p ' —p
v = (en(v-en)+v—en(v-en)
ol T ) : e
<wh) +|v—env-en)|=wh)+ (1—|v-en|?)

< 3v/w(h),

by choosing h small. Up to defining v/w as w, using the previous estimate and the bounds (46)
we see that

(50) jwl = o’ — pl (m‘; ~ ) < w()le’ - p| <o) - 19 )]

1/2
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Figure 1. The situation in the proof of the lemma.

We now remark that sd’ = sdj;(x) (by convexity of the anisotropy (2, -)) and so, applying
H

E(h
the previous step to H and using also (45), we get

sd oy (2) (@, vm @)1+ VA ()] |2 - T el < w(h)le - T al.
t—h

We conclude (44) by estimating

ud () 1) = 51

where we used (50). We conclude the proof by a simple change of coordinates and using (44) to

IE,I/ (h,)( )) d ) ( )dHN ! /
‘ /SE(h)ﬁC e B, Byg s

/B O 1 0D g (s 17 @) sy (o IV L+ IVEY )2 = (7 () = 175, 0) dy

nB /2

o — 11~ 2| - <o’ TG o] = fwl /|- en] < <

1) — 19y )dy‘

< w(h) / £~ 1)y,

BhB /2

O

Finally, we are able to prove that the error generated by approximating the discrete velocity
with vy, goes to zero as h — 0. We follow the lines of [38, Proposition 2.2].

Proposition 3.18 (Error estimate). Under the hypothesis of Lemma 3.16, the error in the discrete
curvature equation vanishes in the limit h — 0, namely

1 T T N1
E/o (/Egh>”dx_/E§ﬁ>hndm> dt_/o /8E,§h) (@, v Jonn dHTT(z) dt) =

for alln € CHRYN x [0,T)).

1 1i
(51)  lim,

Proof. We fix t € [2h,00) and a € (3, QNJfQ) For any point xz;, € 8Et(h) we define the open set
A, defined as follows:

(i) if (38) holds, we set A, = Cps/o(wn,v), with the notations of Corollary 3.17;

(ii) otherwise we set A,, = B(xn, cooV'h), where ¢4, is the constant of Lemma 3.10.
By Lemma 3.10, the family {A,, : 2, € aE§h>} is a covering of Et(h)AEt(i)h. By a simple application
of Besicovitch’s theorem (see e.g. [39]), we find a finite collection of points I C 8E§h) such that
{As, }u,er is a covering of Et(h)AEt(ﬁ)h with the finite intersection property. We proceed to estimate
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(51) on each A,, belonging to this family.

FEstimate in case (i) We use Proposition 3.17 to deduce

- dx — , 1dw dHN_l
‘/Amh (XEEM XE§’j>h)77 T AEﬁ’L)mAmh ¢($ Z/Et(h))b B n

t—h

s|n<xh,t>|\ [ i —xem)— | v om)sd®,, dHN
Asy, E; E BE(h)ﬂAmh E; (h)

t—h

th

_ _ _ _ N—-1
+ ‘/Amh(Xth) Xgow ) —=n(xn,t)) /<9E§h)ﬁAmh(77 n(wn, ) (@, vpm) s sd” o dH
(52)
< Clw(h)[Inlle + hﬁllvnlloo)/A X — XE§g>h|dHN’1 + ch? ||Vl P(E, Ay

zp
Estimate in case (ii) By assumption 3y € B, () N (Et(h)AEéf)h) such that |vy(¢,y)| > h*1L.
We can assume wlog y € Et(h). We then have B(y, h®/(2¢y)) C RN\ Et(ﬁ)h and sdzm) > ha/(QCfl))
t—h

on B(y,h*/(2¢cy)). Since h® << h'/2, we can use the density estimates of Lemma 3.3 to deduce

ch(NFDa—1 < / |vp| d.
B(y,he/(2cy))N(ESY AEM),)

Analogously, recalling also Lemma 3.10, we deduce

N‘Z

¥ N-1(,\ <
/B(:vmcoo\/ﬁ)ﬂaEf”') W(x’yEt“—L)h)SdEf’j)JdH (z) <ch

Combining the two previous equations and B(y, h*/(2¢y,)) € B(y, cV'h), we infer

_ N-1
/xh |XEt(h) XEEE)J " /AzhﬁaEt(’U W(I’I/Ef,}i)h) B dH
N
(53) < ch?> (N“)““/ o oy @ V0 JUR.
A, N(EM AEM,) th

Summing over xj, € I both (52) and (53), and using the local finiteness of the covering, we get

) — de — 0)sd? . ndHN 1

<X

el

< ¢ ()l + BVl + B E DR ).

_ _ N-1
/A (Xth) XEif)h)ndx /BEt(")ﬂAI, (=, E(h)) sd!] EM, ndH

Th

h h h
: (P(E§ N+ | ED AR ),L|+/(h) " |th>
Et AEt;h

where the last constant ¢ depends on N, 1. We then use Lemma 3.12, (32) and (33) to conclude

T
_ o N-1
‘ /M (E(h) dz /E Eh)hnc1x> /h /8 Et(h)w(x,VE;m)vhndH

< e (W)lloe + B2 Tnlloo + BE D)

where ¢ = ¢(FEy, f,T,%) and T is chosen such that sptyCCRY x [0,7]. The conclusion follows
using the definition of o and taking the limit & — 0.
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O

The proof of our main theorem of this section is now a consequence of the previous results.
In particular, hypothesis (34) and (35) imply that the discrete flow converges to the flat flow in
the sense of varifolds and this allows to prove (5), while (6) is a consequence of Proposition 3.18.
In order to prove the convergence of the approximations in time of the forcing term, we need to
require additionally that (H2) holds.

Proof of Theorem 1.2. Firstly, combining [32, Theorem 4.4.2] with the bounds contained in (37)
and in Proposition 3.14, we conclude the existence of functions ’U7H¢,f : RY x [0,00) = R
satisfying

T
// ol + |HOP + [P anN " dt < Cr
0 OFE;

and the following properties

T T
lim/ / v, ndHN 1 dt :/ / ndHN "t dt
k Jo Jopiw o Jog,
T T -
lim/ / Fhk(x,t)ndHN_ldt:/ / nfdHN~tde
BE(h’“) aEt

(54) hm/ / - E(hk)ndHN Lt — / / nH® AHN 1 dt,
OE,"* IE,

for any € CO(RYN x [0,T)). We now employ an approximation procedure to prove that H?(-,t)
is the ¢—mean curvature of E; for a.e. ¢t € [0, 00), following the lines of [38, 41]. Fixed t € [0, +00)
and € > 0, set v. a continuous function such that [, (vs, — ve)>dHN "' < e. Then, by (34) one

B0~ ve)2dHN ! < e. Considering test functions in (54) of

the form n(x,t) = a(t)g(z), one has for a.e. ¢t € [0, +00)

could prove that limy_, o faEuLk)(z/
t

li H? dHN-1 = H?gdHN -1,
II?I (')Ef(hk) Et(hk)g 7t OF, g 7

Thus, for a.e. t € [0,+00) and for any X € C2(RY;RY) it holds

X dAHN T = Hovp, - X dHN !
[2Jon

: ¢
hI?l 8E£hk) HEt(hk)yEf(,hk)
by approximating the normal vectors of Et(h"' ) with V.. Furthermore, by the convergence (34) and
the hypothesis (35) we can use the Reshetnyak’s continuity theorem (see e.g. [4, Theorem 2.39]),
ensuring

/ L(z,v om0) dHN 1 - L(z,vg,)dHN !

oEK) t E,

as k — oo, for any L € CO(RY x RY). We choose L(z,v) = divyX for some X € CHRY;RY) to
obtain

/ divy X dHN ! = lim divy X dHN 1
O, ko Jophw

= lim X v moH?,  dHN
k (hg) Ey B,k
OE, t

= X -vp, H? dHN 1,
OF;
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which shows that H?(-,t) is the ¢—mean curvature of the set E; for a.e. ¢ € [0, +00). Moreover, we
remark that F}, (x,t) — f(z,t) for every (z,t), thus for any test function n € C2(RY x [0, +00))

and ¢ € [0, 4+00) we have
/ Fhkn_/ Fr,n +/ |Fhk_f|77
oEM OB, OE,

< lelinloe (PES) = PED) + [ 1By, = fln =0

‘ /Z?E(") Fy, (z, t)n(z, t) dHY ' — . fndHY 7 <

applying the dominated convergence theorem and recalling Lemma 3.9. Thus, f = f. We then
prove (5) by passing to the limit in the Euler-Lagrange equation (22).

To prove (6) we employ Proposition 3.18: for every n € CO(RY x [0,T)), by a change of variables
we have that

T T
/h l/Eih)ndx—/Et(h)hndx] dt:/h /th) (n(z,t) —n(z,t — h)) dxdt—h/Eondx

where we have used that Et(h) = Ey for t € [0, h). Therefore, a simple convergence argument yields

T T
%%EA ./EE")ndx_/E"” ndx] dt——/h 8t77(ac,t)dxdt—/EOn.

t—h
Combining the previous estimate with Proposition 3.18 and passing to the limit, we obtain (6). O

4. VISCOSITY SOLUTIONS

In this section we will prove the existence of another weak notion of solution for the mean
curvature flow starting from a compact set. We will follow the so-called level set approach based
on the theory of viscosity solution. We recall that in the first part we work with the standing
assumptions of the paper (H0). Additionally, we require (H1).

4.1. The discrete scheme for unbounded sets. In this short subsection we will define the
discrete evolution scheme for unbounded sets having compact boundary. The idea would be to
define this evolution simply as the complement of the evolution of the complementary set, but
since the anisotropies we are considering are not symmetric, we need additional care.

We recall that, given an anisotropy ¢, we define ¢(x,v) := ¢(x, —v). This anisotropy has
all the properties of the original one, concerning regularity and bounds. We start remarking
the following simple fact. One can see that dist"/’(x,y) = distw(y,x), since for any curve v €
Whi([0,1];RY),v(0) = 2,7(1) = y, a simple change of variable yields

Lo ' Lo d . .
[ eaoama= [ (-0 aa-n) a= [ @0
for n(t) = v(1 — t), once one sees that

(W) v) = sup &-(—v)= sup (=§)-v=()°(v)
(<1 B —€)<1

Therefore, by definition of signed distance we have
(55) sd%(z) = —sdl. ().

For every compact set F' and h > 0,t > 0, we will denote by T, hitF the maximal and the minimal
solution to problem (21), according to Lemma 3.1 with Py and sd?, respectively, replaced by P
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and sd”. Finally, for every set E with compact boundary we define

(56) T E = (TT,E)

As in the case for compact sets, we set T}, +E 1= T, .E. Given an open, unbounded set Ey having
compact boundary, we can then define the discrete flow {Et(h)}tzo as follows: Et(h) = Ey for
t €[0,h) and

EM =1, ,E™, |Vt € [h, +00).
One easily checks that analogous results to Lemmas 3.2, 3.9 and 3.8 hold also for this problem.
We state the corresponding results.

Lemma 4.1. Let F; C Iy be open, unbounded sets with compact boundary and fix h > 0,t > 0.
Then, Th,tFl g Th)tFQ.

Lemma 4.2. For any T > 0 there exists a constant Cp(¢,, f,T) such that for every R > 0 the
following holds. If the initial open set E D B, then Et(h) D B¢, g forallt €[0,T].

Lemma 4.3. For every Ry > 0 there exist ho(Rp) > 0 and C(Ry, ¢,v, f) > 0 with the following
property: For all R > Ry, h € (0,hg), t >0 and x € RY one has

Tht((Br(2))%) € (Br-cn(z))".

We now state a comparison principle between bounded and unbounded sets, following the line
of [14, Lemma 6.10].

Lemma 4.4. Let Ey be a compact set and let E5 be an open, unbounded set, with compact boundary,
and such that By C Ey. Then, for every h € (0,1),¢t > 0 it holds ThitEl - ThitEQ.

Proof. We fix h € (0,1),t € [0,T] for T > 0. Set R > 0 such that E1, ES C Bg and note that by
Lemmas 3.2 and 3.9 (applied to P; instead of Py) we get

(57) (T5iB2) € TryB5 € Ty Br € Bogn,
for some Cr (¢, ¢, f,T). Since T,;tEg is the minimal solution of
. 1 )
min {P(;(E) + E/ sd}iig(a:) dz — / Fy(z,t) dm} ,
E E

considering the change of variables E = E° and using (55), we easily conclude that Thf JFa =

~ c
(T}; tEg) is the maximal solution of
. - 1 b 1 o 1 P
min ¢ Py(E) + — sdp, — — sdp, — Fy(z,t)dx p — — sdp, .
h . 2 h Jge 2 Fe h . 2

we then note that
/ sdlé2 = /~ Sd%QXBCTR +/ sdlé27
Berr E Ee

for every E such that E° C Be,g. By (57), we conclude that T}-:_tEQ is the maximal solution of

~ 1 =
(58) min{P¢(E)+h/Esd}§2XBCTR—/E Fp(z,t)dz : ECQBCTR}-

Analogously, one proves that T} ,F> is the minimal solution of (58). Finally, we remark that
sd}ésx Begpr < sd}gl and that Thi’tEl U T,;ftEg, T,ftEl N T,ftEg are both admissible competitors for
(58), one argues exactly as in the proof of Lemma 3.2 to conclude T,ftEl - T,ftEg. O
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4.2. The level set approach. We recall that in this section we assume (HO0), (H1). Consider a
function u : RY x [0, +00) — R whose spatial superlevel sets {u(-,t) > s} evolve according to the
mean curvature equation

V($,t) = *7/)(% V{u(~,t)23}) (H?u(yt)zs}(x) - f(lL',t)) for x € 8{u('7t) > s}'
The function u then satisfies (recalling that —Vu/|Vu| is the outer normal vector to the superlevel
set {u(-,t) > u(z,t)}) the equation
Ou = [Vu|V(z) = —¢(z, —Vu) (H?u(.’t)zu(x’t)}(x) - f(%ﬂ)
= —(x, —Vu) (divV,é(z, —Vu) — f(z,t))

= —(z, —Vu) (Z O, Op (2, —Vu) — Vog(x, —Vu) : Vu — f(x,t)>

L= _w(xa _vu) (H(.I‘, VU,, VQU) - f(xvt)) )
where we defined the Hamiltonian H : RY x RV \ {0} x Symy — R as

(59) H(x,p,X) =) 05,0p,8(x,~p) = Vyo(z,—p) : X.
We therefore focus on solving the parabolic Cauchy problem

(60) {atu + (x, —Vu) (H(z, Vu, V2u) — f(z,1)) =0

u(-,t) = up.

The appropriate setting for this type of geometric evolution equations is the one of viscosity
solutions, in the framework of [26, 35] (see also [14]). We will focus on the evolution of sets
with compact boundary on compact time intervals of the form [0,7]. We now define the notion
of admissible test function. In the following, with a small abuse of language, we will say that a
function u : R™ x [0, T] — R is constant outside a compact set if there exists a compact set K C RY
such that u(-,t) is constant in RN \ K for every t € [0, T] (with the constant possibly depending
on t).

Definition 4.5. Let 2 = (i,#) € RY x (0,T) and let A C (0,T) be any open interval containing .
We will say that n € CO(RY x A) is admissible at the point # if it is of class C2 in a neighborhood
of 2, if it is constant out of a compact set, and, in case Vn(2) = 0, the following holds: for all
(x,t) € RN x A, and there exist numbers a,b > 0 such that

In(@,t) = n(2) — ()t — )] < alo — & + blt —
We then recall one of the equivalent definitions of viscosity solutions.

Definition 4.6. An upper semicontinuous function u : RY x [0,7] — R (in short, u € usc(RY x
[0,77)), constant outside a compact set, is a viscosity subsolution of the Cauchy problem (60)
if u(-,0) < ugp and for all 2z := (z,t) € RY x (0,T) and all C>°—test functions 7 such that 7 is
admissible at z and u — 7 has a maximum at z (in the domain of definition of 7) the following
holds:

i) If Vn(z) = 0, then it holds
(61) ne(2) <0
ii) If Vn(z) # 0, then
(62) 0i(2) + ¥ (z, = Vn(2)) (H(z, Vn(2), V?n(2)) — f(,1)) <0.
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A lower semicontinuous function u : RY x [0,7] — R (in short, u € Isc(RY x [0,7T])), constant
outside a compact set, is a viscosity supersolution of the Cauchy problem (60) if u(-,0) > ug and
for all z := (z,t) € RY x [0,T] and all C>®—test functions 1 such that 7 is admissible at z and
u — 1 has a minimum at z (in the domain of definition of 7) the following holds:

i) If Vn(z) =0, then n:(z) > 0;

ii) If Vi # 0 then

0in(z) + (2, —Vn(2)) (H(z, Vi(2), V?n(2)) = f(2,1)) 0.
Finally, a function w is a viscosity solution for the Cauchy problem (60) if it is both a subsolution
and a supersolution of (60).

Remark. By classical arguments, one could assume that the maximum of u — n is strict in the
definition of subsolution above (an analogous remark holds for supersolutions).

Remark. We remark that, if —u is a subsolution to (60) with initial datum —ug, then u is a
supersolution for (60) for the initial datum wg and where ¢, are replaced by ¢, ¥ respectively, as
defined in Section 4.1.

We will first prove existence for viscosity solutions of (60) via an approximation-in-time tech-
nique, and then prove uniqueness of solutions to (60) to link the approximate solution to the mean
curvature flow equation. We would like to proceed with the classical construction of e.g. [11, 14,
21], but in our case the lack of continuity of the evolving functions forces us to be particularly
careful with the procedure.

We use the shorthand notation of Isc for lower semicontinuous and usc for upper semicontin-
uous. Given a bounded, usc function v which is constant outside a compact set, we define the
transformation

(63) Thftv(x) = sup{s NS T,jft{v > s}}

Firstly, we see that ;" v(x) € R, as v is bounded. Moreover, it turns out that the function T} ,v
is usc, bounded and constant outside a compact set. Indeed, definition (63) is equivalent to

Thftv(x) = inf {s 2 T,jft{v > s}} = SlIelng (s + ]l(Thft{st})C(x)) )

where 1 4(z) is the indicatrix function of a set A, being 0 on the set and 400 outside. By definition,
1,4 is an usc function for any open set A. Thus, recalling Remark 3.4, in the equation above we
are taking the infimum of a family of usc functions, which is then a usc function. The other two
properties follows from the previous study of the discrete evolution. Analogously, given a bounded
lsc function g, we define

(64) T}, ,9(x) = sup {s rxeT, {g> s}} = ilelg (s - ]lT}:t{g>S}) ,

which is now a bounded [sc¢ function (as sup of lsc functions), constant outside a compact set.
We are now ready to give the definition of the discrete-in-time approximations of sub - and super
solution to (60). Given an initial compact set Ey, set ug as a (uniformly) continuous function,
spatially constant outside a compact set, such that {ug > 0} = Ey. We remark that for every
s € R, the superlevel set {ug > s} is either compact or it is unbounded with compact boundary.
Then, for h > 0 we introduce the following family of maps as u,f(, t) = up for ¢t € [0, h) and

(65) (- t) = T,ft_hu,f(-,t —h) fort>h.
We easily see that the maps above are functions (as implied by the comparison principle contained
in Lemmas 3.2, 4.1 and 4.4) piecewise constant in time (as Thi75 = Thi[t/h]h). Moreover, by the

previous remarks, we have that u (-, t) is an usc function, while u;, (-, t) is a Isc function, for every
t € [0,+00). Some further properties of the approximating scheme are listed below.
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Lemma 4.7. For any h > 0, t > 0 we have the following. It holds

(66) up (1) < uf (1),
Furthermore, given any A € R and t > h 4t holds
(67) [uf (1) > A} C Ty {uf (ot — h) = A} C {uf () = A}

{u, () > A} STy fuy, (58 = h) > AF C {uy (1) 2 A}

Proof. Fix x € RN, t € [0,h). For any given o < u; (z,h) we have that there exists a sequence
(sn) /o sothat x € T}, {uo > s} C T;ftfh{uo > s, }. Thus, u) (z,t) > 0. We then conclude
by induction. Then, (67) follows easily by the definition (65). O

We then prove that the half-relaxed limits (in the spirit of [6], see also the references therein)

of the families of functions uf

ut(z,t):== sup  limsupu) (zp,tp)
(68) (zh,t;j)%(a:,t) . h—.>0
u”(x,t) = (mh,tgli(m,t) h}zn—igf uy, (zh,th),

are (respectively) sub - and supersolutions in the viscosity sense of (60), see Theorem 1.3 (note
that, by definition, ™ is usc, while u™ is Isc). The proof of this result is the subject of the following
section and we recall that the hypothesis required are (HO0), (H1) and f € C°(RY x [0,c)) only.
Once the existence of sub - and super-solutions to the equation is settled, we need to properly define
the notion of level-set solution to the mean curvature flow. To do so, we first prove uniqueness for
(60) via a comparison principle and under additional hypothesis. Then, we show that the evolution
of the zero superlevel set of the solution does not depend on the choice of the initial function wug.

We start with a comparison result between u*, 4~ and ug at the initial time: it will ensure that
the classical hypothesis for the comparison principle are satisfied. We first prove an estimate for
the speed of decay of the level sets of the evolving functions. While it will only be needed in the
following section, in the proof of the forthcoming Lemma 4.9 we will use similar techniques, so we
preferred to state it here.

Lemma 4.8. Let u™(z,t) be the function defined in (68), let o € R. Assume that, for a suitable
xo and R > 0, it holds B(xg, R) C {u™(-,t9) > o} . Then, there exists C = C(R, ¢,1, f) such that
B(zo, R — C(t —tg)) C {u*(-,t) > o} for every t < to+ R/(2C). An analogous statement holds
for u™ by considering its open sublevel sets.

Proof. We focus on the case {ut(-,t9) > o} bounded, the other case being analogous. By as-
sumption, for any Ry < R, if h is small enough, we have B(zg, Ry) C {uZ(~,t0) > o}. Set
C = C(Ro/2,¢,¢, f) as the constant of Lemma 3.8. Let R, be defined recursively following
law (27), that is R,41 = R, — Ch, as long as R, > Ry/2. By simple iteration we find that
R, = Ry—nCh, as long as R,, > Ry/2, which can be ensured enforcing hn < Ry/(2C'). Therefore,
for any ¢ > to such that ¢t — tg < Ry/(2C), we set n = [(t — t9)/h] and send h — 0 to deduce
(recalling also Lemma 3.2)

{u*(-,t) > o} D B(zo, Ro — C(t — to)).
Since the choice of Ry is arbitrary, we conclude. O

We are now ready to prove a comparison result for the functions u* and a continuity estimate
at the initial time ¢ = 0.

Lemma 4.9. For any (z,t) € RY x [0, +00) it holds
u” (z,t) < ut(z,t).
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Moreover u™ (-,0) = u™(-,0) = ug, so that there exists a modulus of continuity w such that Va,y €
RN
ut(,0) = u (y,0) < w(lz — y).

Proof. The proof of the first inequality essentially follows from (66) and the definition of u®. To
prove the equality at the initial time ¢ = 0, we start by remarking that 4™ (-,0) > ug as can be seen
taking sequences of the form (xp,0) in (68). Then, consider w as a continuous, strictly increasing
modulus of continuity for uy. We can also see that Ve > 0 {ug < ug(z) + ¢} 2 B(x,w™1(e)) by
uniform continuity. Thus, reasoning iteratively as in Lemma 4.8 and using (67), we obtain that
there exists ho(e) such that Vh < hg it holds

{wh (1) < uf (z,0)+e} D (Thft_h{uo > uo(z) + g})c = Ty, _p{uo < uol@)+e} 2 Bz, w ' (¢/2)),

as long as t < (w™'(e) — w'(¢/2))/(2C) =: t., and where we recalled that ui(-,0) = wuo.
Now, fix ¢ > 0,z € RY such that u(x,0) > o and a sequence (zp,,tn,) — (z,0) such that
limy, uzk(xhk,thk) > 0. Then, for k large enough (xp,,tn,) € B(z,w™1(g/2)) x [0,t.) and so we
conclude

o< liglu;[(a:hk,thk) < up(x,0) +e.

Letting e — 0 we conclude u(-,0)" < ug. The proof for v~ is essentially the same. The last claim
follows from the previous one, recalling that w is a modulus of uniform continuity for wug. O

In order to prove a comparison principle for (60), we will need to assume (H3). Under these
additional hypotheses, we are able to prove uniqueness for the parabolic Cauchy problem (60). The
proof of this result follows from [26, Theorem 4.2]: we will just show in detail that the assumption
of the aforementioned theorem hold in our case, following [8, Proposition 6.1] and [26, pag. 463].

Proof of Theorem 1.4. The proof of this result essentially follows from [26, Theorem 4.2], combined
with the existence result of Theorem 1.3. Referring to the notation of [26], we firstly remark that
in our case 2 = RY, thus the parabolic boundary of U = Q x [0,T] is simply 9,U = RY x {0}.
Therefore, the initial conditions (A1) — (A3) are all verified by Lemma 4.9. We then define the
continuous Hamiltonian F : [0, 7] x RN x (RN \ {0}) x MN*N — R as follows

(69) F(taxaan) = T/)(% 7p) (Zamlapq¢(x7 7p) + v§¢(xa 7p) : X + f(l',t)) 9

and focus on the conditions (F'1), (F3) — (F5), (F6'), (F7),(F9),(F10) that F must satisfy. The
assumptions (F1), (F3)—(F5), (F9) are easily checked. (F6') follows from the Lipschitz regularity
of ¢ and ¢, as Vt € [0,T],z € RN, |p| > p,|q| + |X| < R one has

|F(t,z,p, X) — F(t,x,q,X)| < cylp —q|

+ 1/J(557 _q)

- Z (893181% ¢($7 _p) - azLaP1¢(x7 _q)) + (V?)(ﬁ(l‘, _p) - V?)¢(x7 _q)) : X‘

7
1
< cglp —4q| (1 + |p) +crlp —q] < crplp —ql.

For (F'7), we remark that the first term in the parenthesis in (69) is 0—homogeneous in p, while
the second one is (—1)—homogeneous in p but 1—homogeneous in X. Lastly, we sketch how to
prove (F'10). Since it concerns the X-terms, we focus simply on

Vig(z,—p): X = tr (Vig(a—,p) XT).
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Multiplying by ¢(x, —p), we rewrite ¢(z, —p)tr (Vf,(b(:r—,p) XT) = tr(A(z, —p)XT), where A =
B — (Vp¢p ® V,¢), with B being the uniformly elliptic operator %V%qﬁz. We can then factorize

B=LLT, with L being a nondegenerate, lower triangular matrix. Then, following the proof of [8,
Proposition 6.1] and [26, pg. 463], we obtain (F'10). O

Once uniqueness is settled, one can finally define the notion of level set solution to the mean
curvature flow as follows.

Definition 4.10. Let Fy be a compact initial set. Define a uniformly continuous, bounded function
ug : RY — R such that {ug > 0} = Ey. Then, let u : RY x [0, 4+00) — R be the unique continuous
viscosity solution to (60) given by Theorem 1.4. Then, the family E; := {u™(-,t) > 0}¢>¢ will be
called the level set solution to the mean curvature flow.

This definition is well posed since the Hamiltonian defined in (59) satisfies the so-called geo-
metricity condition. Namely, one can easily check that for any A # 0,p € RV \ 0,¢ € RY and any
symmetric N x N matrix X one has

A
H(z,Ap,AX +p®q+q®p) = WH(x,p,X)

Thus, one can prove by classical arguments (see e.g. [14, Remark 3.9]) the following result.

Lemma 4.11. Let ug, tip two initial data for (60) such that {ug > 0} = {@p > 0}. Then, denoting
by u, @ the corresponding solutions to (60), one has

{u(-,t) >0} ={a(,t) >0} forallte[0,T],
and the same identity holds for the open superlevel sets.

4.3. Proof of Theorem 1.3. In this section we will prove that the limiting functions u* are

respectively a viscosity sub - and supersolutions to (60). We remark that we work assuming (HO),
(H1) and that f € C°(RY x [0,4+00)). We will be following the structure of the proof of [14,
Theorem 6.16], but taking into account the weaker definition of u* holding in our case. We will
be using the O, o notations with respect to h — 0 and focus on proving that u™ is a subsolution.
The proof for u~ is analogous.

Proof of Theorem 1.3. Consider u™ as defined in (8): we need to prove that it is a subsolution.
In the following, we will denote u := u™ and uy, := u). Let n(x,t) be an admissible test function
in 7 := (z,)€ RN x (0,T) and assume that (z,f) is a strict maximum point for u — 7. Assume
furthermore that w —n = 0 in such point. We need to show that either (61) or (62) holds at Z.
Case 1. Let us first assume that Vn(z) # 0. By classical arguments, we can assume that z
is a strict maximum point and that n is smooth. By the definition of u, there exists a sequence
Zk i= (Zp,,, th, ) — Z such that limy, up,, (2,) = u(2). We remark that we can substitute the functions
up, for t > 0 with their usc envelope in time, without changing the value of u. Indeed, the usc
envelope of uy, is the function at all discrete times (hy, is given by

max{uhk ('7 (l - 1)hk)7 Uhy, ('v lhk)}
and coincides with uy, elsewhere. Since now uy, is usc in time and space, by standard arguments
(compare e.g. [5, Lemma 6.1]), there exists a radius p > 0 such that all functions wup, — n achieve

a local maximum in B,(Z) at points 2 = (,tx). Then, passing to a further subsequence we can
ensure that z;, = w € B,(Z), and we use the definition of u to obtain

(u=n)(w) 2 limsup(up, —n)(2) > lmsup(un, —n)(%) = (u = n)(2).
Therefore, w = Z by maximality. Thus we can assume that each function up, — n achieves a local

maximum in B,(Z) at a point 25, =: (z,tx) and that us, (2, ) — u(Z) as k — oo. Finally, we can
assume also that Vn(x, tr) # 0 for k large enough.
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Step 1. We start defining an appropriate set which is then used as a competitor for the minimality
of the level sets of the functions u,. From the previous computations, one has in particular that

(70) un(,t) < n(z,t) + cx
where ¢y, 1= up, (g, tx) — n(zk, tr), with equality if (z,t) = (zg, tx). Let 0 > 0 and set
g g 2
M, () = n(z, t) + ek + §|x — xp°.
Then, for all z € RV,
Uhy, (w,tg) < ng (2)

with equality if and only if © = x. We set I, = up, (zk, tr) = .. (zx). We fix € > 0, to be chosen
later, and write Eg j := {un, (-, tx — hg) > lx —e}. We define?

(71) W, = (T;tk ny, Pe k) \ {nhk ) > Uk +5}
We immediately see that W, — {z}} in the Kuratowski sense as e — 0 since by (67)

(72)  {un, (o tw) > e —e}\{nf, () > le +e} SWe C {up, (tr) 2 e —ed\ {07 () >l + €},

see also (78) below. Then, we check that |W.| > 0 for all € small enough. By the continuity of
n? and |Vn(z)| # 0, for any e there exist a radius r. such that W, 2O B(xg,r.) N T,itk_thak.
Furthermore, for any € > 0, using (67) again yields xy € Tﬁ:)tk_hk {un, (-stx — hi) >l — €}, and
the latter set coincides with the closure of its points of density 1 by Lemma 3.3. Thus, xj satisfies
lower density estimates and so we conclude that |WW,| > 0. Now, assume E. j is bounded. By
minimality we have

1
P¢(Tij:tk_ths,k) hk: /

h st —hg

. Sd%&k(x) d$+/ Fy, (x,ty, — hy)da
e,k €

1
(73) <Py ((Tifon, Ben) N 107, > b+ e}) + hk/( R, }sdgm.
ht —hy, ek Mhy, =tk

Adding to both sides the term P ({n,‘{k >, +¢etU Tijtk—hk Eak) and using the submodularity
(12), we obtain

g (o 1
Py({n7, >l + e} UW.) = Py({nf, > lx +}) + T / Sdl}és,k(x) dz

€

-‘r/ Fhk(x,tk—hk)dxgo.
By (70), {un, (st — hi) >l — e} C{n( tx — hx) >l — ¢ — €}, therefore it holds
Pulof, > le+ e OW) = Pl > ot )+ g [ st ()

(74) + / Fy, (2, tp — hy) dz < 0.
If instead E. j is an unbounded set with compact boundary, we replace inequality (73) by

1
Py(Tht)—ny, Ee k) + T /( Sd%g,k(l‘) dx + / Fp, (z,t — hy) dx

T}Ttk ny, Bk )QBR W,
1
<P¢>((Thtk thgk>m{nhk>lk+€})—|—h—/ quéek,
k (T}jtk ths,k)m{”]Zk>lk+€}ﬂBR ’

e need to define the sets W in this way (compare the different definition in [14]) since firstly, we can not rule
out that the inclusions in (72) are strict, and secondly it is not clear if otherwise |W¢| > 0.
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for R > 0 sufficiently large, see (58). Then, one can argue as before to obtain (74).

Step 2. We estimate the first two terms in (74). The quantity Pys({nf, > lp +e} U W;) —
Py({nf, > lx + €}) can be estimated as done in Lemma 3.8. Indeed, we consider the vector field
v = Vyé(z,Vnj, ) in (13) and we use the divergence theorem to get

(75)

Py({n7, >lk+€}UWE)—P¢({nZkZlk—l-a})z/ v-l/—/ vV
a({ng, >lk+eyUW.) d{ng >le+e)

= |W¢| div v,
We
where v denotes the unit outer vector to the set we are integrating on. We then remark that
fWE dive — H?ﬂﬁk >l,€}(xk) and st Fy, (z,ty — hg)dz — Fy, (zk,tx — hy) as € — 0 by continuity.
Step 3. We bound the distance term in (74) by showing that
1 on(z, tk) — O(hy)
76 —sd¥ > : :
( ) hks {n(stk—hg)=lx—cr—c} (Z) - qp(y7 —qu](y7tk — hk)) + O(hk)

For any z € W,, we have

(77) 77(Z7tk)+0k+z|z—$k|2 <l +e.
2

Since, in turn, n(z,tx) + ¢, > I — ¢ it follows that o|z — xx|? < 4¢ and thus, for ¢ small enough,
(78) W, C Bc\/g(ZEk).

By a Taylor expansion, for every z € W, we have

1
(79) Nzt — hi) = (2, tk) — hiOm(z, ) + hi/ (1 — 8)97n(z, tx — shy)ds.
0

Then, we consider y,y. € {n(:-,tx — hr)(y) = lx — cx — €} being respectively, a point of minimal
1p—distance and Euclidean distance from z.
Claim: We claim that it holds

(80) |z =yl = O(hx).
In order to prove this result, we start remarking that for K — oo and choosing € < hy, one has
Sd?ﬁ(',tk*hk)zlkfckfs}(Z) — 0 (as z — xy for e — 0 and z € {n(-,tx) > lx — ¢ }). In particular,
recalling the bounds (11) one has
|z — ye| < ci|z —y| < cfp|sdf{/’n(.7tk_hk)2lk_0k_a}(z)\ -0

as k — oo. By (77) we deduce in particular n(z,t;) + cx < I + €, that is,
(81) 0 < n(zte) = 0y, te — hi) < 2,
and the same inequality substituting y. to y. Thus, one has

(2, tk) = 1Yes te — hie) = Vn(y, te — h) - (2 = ye) — heden(y, te — hi) + Oz — ye|* + i)

which we combine with Vn(y,tr — hi) - (2 — ye) = £|Vn(y, tx — hi)| |2 — ye| (see [14] for details)
and (81) to get
2 = ye| Vn(y, tr — hi)| < 26 + O(hx) + O(|z = ye|?).
Recalling that |Vn(y,tx — hi)| > ¢ > 0 for hy small enough, we divide by |Vn(y,tr — hi)| to
conclude |z — yo| = O(hg) as € < hy. Finally, employing again (11), we prove the claimed (80).
Then, we consider a geodesic curve for the definition of Sd’f{/}"]('ytk*hk)>lkfck*€} (z): if this distance

is positive, we choose 7 : [0,1] — R with v(0) = z,7(1) = y, with y as before, otherwise we take
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~ such that v(0) = y,v(1) = z. In the following, we will assume Sdz[pn(-,tkfhk)zlkfckfe}(Z) > 0, the
other case being analogous. Recalling (9), we have

1
n(z,tk — hi) = n(y, tr. — hi,) +/ Vn(y,t, — hy) -y dt
0

1
> 1y, b — he) — /0 By (7, b — b)) 0 (7, 5) dt
>y, te — hie) = (Y, =Vn(y, te — b)) sdf, o s o (2)
1
- / (s — (st — h)) — (s~ b — b)) 62 (7, 3) dt

> 0y, te — hi) = (0, =Vn(y, i — b)) +elz = y1) sA0 ooty —en e ()5
where in the last line we reasoned as in (47) to obtain the bound sup, |y(¢) —y| < ¢|z—y|. Recalling
(80) one has
(82) T](Z, le — h’k) > n(yv ty — hk) - 77[1(9, *V"](’]J, lg — h’k)) Sd,f{bn(.7tk_hk):lk_ck_5}(Z) + O(hk)'
Combining (79) with (82) and using (81), we deduce

$AY (1 (stnm )=t —cn—e} (2) Y (W, =Vn(y, tr — hi)) + o(hx)
1
> —2e + hiOm(z, tr) — hi/ (1 — 8)0in(z, ty — shy) ds.
0

Note that, in view of (77) and (11), |n(z,tx) — n(y, tr)| < ce + chy = O(hy), provided € < hy, and
small enough. We then conlude (76) by combining the previous inequality with (78),(80) as
on(z, tg) — % — O(hg) — Op, (1)
Uy, =Vn(y, te — hw))

Oy, tr) + O(VE) = 3= = O(hy) — Op, (1)

P, —Vn(ek, te — ) + O(VE) + O(hy)
Step 4. We conclude the proof by employing (74), (75) and (76), dividing by |W,| and sending
€ — 0 to obtain

In(zp, tr) — On, (1)
U(@e, =Vn(@e, tr)) + O(hr)

Letting simultaneously ¢ — 0 and k — oo, recalling the continuity properties of H?, we deduce

(62). Indeed the sets {n7 > 77 (zx)} are converging in C* to the set {n > n(x)}, x — x and
thus

1
b
hkad{n("tkfhk):lkfckfs} (Z) >

Hye g, oy @8) = oo (@e th — hi) < 0.

— H?

H {nn(a)y (2):

o, 07, oy (@)
and we conclude the proof of this step.
Case 2. Now we consider the case Vn(z,?) = 0 and we show that 9;n(z,t) < 0. The proof follows
the line of the one in [14], we just highlight the differences.

Since Vn(z) = 0, there exist a,b > 0 such that

n(z,t) = n(z) = dm(z)(t = )] < alz —z° + bJt — 12,
thus, we can define

fi(z,t) = Om(2)(t — 1) + 2alx — z|* + 2bJt — £

1) = (e, 0) + -
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We remark that u — 7 achieves a strict maximum in z and the local maxima of u — 7j, in RY x [0, 7]
are in points (zy,tx) — z as k — oo, with ¢, < ¢. From now on, the only difference from [14]
is in the case zx = T for an (unrelabeled) subsequence. We assume z; = T Vk > 0 and define

br =t —t; > 0 and the radii
e == 2\/ Cbk,

where C' is the constant of Lemma 4.8. Taking k large enough, by Lemma 4.8 the balls B(-,ry)
have an extinction time greater than 2(¢f — t;). We then have

B(@,rx) C {i (- tr) < i (T, tx) + 2ari}
C {u(- ty) < u(z, ty) + 2ar3},
by maximality of u — 7, at zx. Since the balls B(-,7x) are not vanishing, we conclude
7 € {u(-, 1) < u(z,tg) + 2ary}.

Finally, we use again the maximality of u — n at z and the choice of r; to obtain

) n(E) _ nle ) ~n(E) _ et —u(ed) _ drd o
tp —1 —by, —bg, —by,

Passing to the limit & — oo, we conclude that 9;n(z) < 0. O

We conclude with two remarks concerning some possible generalizations of the results presented.

Remark 4.12. The results presented in this work can be immediately extended to unbounded
initial open sets Ey, whose boundary is compact. Indeed, defining the discrete flow as Et(h) = FEy
if t € [0, h), otherwise by induction Et(h’) = T}:tEt(ﬁ)h, where the operator T, is the one defined in
(56), this evolution is uniquely characterized 7by the one of the complemen‘uz. Thus, all the results
presented in this paper can be extended to this particular unbounded case.

Remark 4.13. Following the lines of [8] (in the spirit of [3]) one can see that the results of this
paper may be extended to prove existence of flat flows and level set solutions to the mean curvature
flow on RY endowed with the geometric structure induced by a Finsler metric ¢°. For example,
the perimeter functional in this setting is defined as follows. Given a set E of finite perimeter, its
(intrinsic) perimeter is

Poo(B) = | e, vp(x)) dHy (2),

O*E
where the Hausdorff measure ’Hf;{)_l is the one induced by the metric ¢°. In particular, one can
compute d?—li{,_l(m) = wy|B? (z)|7 dHN Y (z) (see [8]), thus this approach is equivalent to
consider in our framework a slightly different (but still regular) anisotropy, namely ¢*(z,v) =
wn|B?" (x)|~1¢(x,v). In particular, this approach leads to considering the evolution of hypersur-
faces F; moving according to the evolution law

Vgo(x,t) = —Hp, () + f(z,t) x€dE, te (0,T)

where now Vo represents the speed of evolution along the anisotropic normal outer vector ngo (z) =
V,é(x,vg(x)) and H is the “intrinsic” mean curvature, thus the first variation of the perimeter
Pyo. Recalling that ngo(z) - ve(z) = ¢(z,ve(z)), we see that the hypersurfaces are evolving with
a normal (in the Euclidean sense) velocity given by the law

V(w,t) = é(w,ve, (@) (~HE, (@) + f(2.1)) -

After this transformation, we can apply the results previously proved.
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