Spectral approach to Korteweg-de Vries equations on the compactified real line - Archive ouverte HAL
Article Dans Une Revue Applied Numerical Mathematics: an IMACS journal Année : 2022

Spectral approach to Korteweg-de Vries equations on the compactified real line

Résumé

We present a numerical approach for generalised Korteweg-de Vries (KdV) equations on the real line. In the spatial dimension we compactify the real line and apply a Chebyshev collocation method. The time integration is performed with an implicit RungeKutta method of fourth order. Several examples are discussed: initial data bounded but not vanishing at infinity as well as data not satisfying the Faddeev condition, i.e. with a slow decay towards infinity. (C) 2022 IMACS.

Dates et versions

hal-03892385 , version 1 (09-12-2022)

Identifiants

Citer

Christian Klein, Nikola Stoilov. Spectral approach to Korteweg-de Vries equations on the compactified real line. Applied Numerical Mathematics: an IMACS journal, 2022, 177, pp.160-170. ⟨10.1016/j.apnum.2022.02.015⟩. ⟨hal-03892385⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More