LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014
LiDAR et SfM-MVS par drone du dôme volcanique du Merapi et du bord du cratère : changement entre 2012 et 2014
Résumé
Spatial approaches, based on the deformation measurement of volcanic domes and crater rims, is key in evaluating the activity of a volcano, such as Merapi Volcano, where associated disaster risk regularly takes lives. Within this framework, this study aims to detect localized topographic change in the summit area that has occurred concomitantly with the dome growth and explosion reported. The methodology was focused on two sets of data, one LiDAR-based dataset from 2012 and one UAV dataset from 2014. The results show that during the period 2012–2014, the crater walls were 100–120 m above the crater floor at its maximum (from the north to the east–southeast sector), while the west and north sectors present a topographic range of 40–80 m. During the period 2012–2014, the evolution of the crater rim around the dome was generally stable (no large collapse). The opening of a new vent on the surface of the dome has displaced an equivalent volume of 2.04 × 104 m3, corresponding to a maximum −9 m (+/−0.9 m) vertically. The exploded material has partly fallen within the crater, increasing the accumulated loose material while leaving “hollows” where the vents are located, although the potential presence of debris inside these vents made it difficult to determine the exact size of these openings. Despite a measure of the error from the two DEMs, adding a previously published dataset shows further discrepancies, suggesting that there is also a technical need to develop point-cloud technologies for active volcanic craters.
Les approches spatiales, basées sur la mesure de la déformation des dômes volcaniques et des bords de cratères, sont essentielles pour évaluer l'activité d'un volcan, tel que le volcan Merapi, où le risque de catastrophe associé fait régulièrement des victimes. Dans ce cadre, cette étude vise à détecter les changements topographiques localisés dans la zone du sommet qui se sont produits de manière concomitante avec la croissance du dôme et l'explosion signalée. La méthodologie s'est concentrée sur deux jeux de données, un jeu de données basé sur le LiDAR de 2012 et un jeu de données UAV de 2014. Les résultats montrent qu'au cours de la période 2012-2014, les parois du cratère se trouvaient à 100-120 m au-dessus du fond du cratère à son maximum (du secteur nord au secteur est-sud-est), tandis que les secteurs ouest et nord présentent une amplitude topographique de 40-80 m. Au cours de la période 2012-2014, l'évolution du bord du cratère autour du dôme était généralement stable (pas de grand effondrement). L'ouverture d'un nouvel évent à la surface du dôme a déplacé un volume équivalent de 2,04 × 104 m3, correspondant à un maximum de -9 m (+/-0,9 m) verticalement. Les matériaux explosés sont en partie tombés à l'intérieur du cratère, augmentant les matériaux meubles accumulés tout en laissant des " creux " à l'emplacement des évents, bien que la présence potentielle de débris à l'intérieur de ces évents ait rendu difficile la détermination de la taille exacte de ces ouvertures. Malgré une mesure de l'erreur des deux MNE, l'ajout d'un ensemble de données publiées précédemment montre d'autres divergences, ce qui suggère qu'il existe également un besoin technique de développer des technologies de nuages de points pour les cratères volcaniques actifs.
Domaines
GéomorphologieOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|