An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings

Résumé

This paper proposes a patient-specific supervised classification algorithm to detect seizures in long offline intracranial electroencephalographic (iEEG) recordings. The main idea of the proposed algorithm is to combine a set of probabilistic classifiers, trained on a dataset of 1 s epochs, into a weighted ensemble classifier which can be used to analyze longer 5 s data segments. The method is trained and evaluated on 24 patients , all suffering from focal medically intractable epilepsy, from the Epilepsiae database. The evaluation of the method, conducted using an average of 113 hours (min: 32 h, max: 229 h) of iEEG data per patient, shows that the proposed algorithm improves upon existing methods for seizure detection with iEEG.
Fichier principal
Vignette du fichier
ICASSP.pdf (189.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01724272 , version 1 (06-03-2018)

Identifiants

  • HAL Id : hal-01724272 , version 1

Citer

Jean-Baptiste Schiratti, Jean-Eudes Le Douget, Michel Le van Quyen, Slim Essid, Alexandre Gramfort. An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings. ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, Apr 2018, Calgary, Canada. ⟨hal-01724272⟩
1347 Consultations
1175 Téléchargements

Partager

More