An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings
Résumé
This paper proposes a patient-specific supervised classification algorithm to detect seizures in long offline intracranial electroencephalographic (iEEG) recordings. The main idea of the proposed algorithm is to combine a set of probabilistic classifiers, trained on a dataset of 1 s epochs, into a weighted ensemble classifier which can be used to analyze longer 5 s data segments. The method is trained and evaluated on 24 patients , all suffering from focal medically intractable epilepsy, from the Epilepsiae database. The evaluation of the method, conducted using an average of 113 hours (min: 32 h, max: 229 h) of iEEG data per patient, shows that the proposed algorithm improves upon existing methods for seizure detection with iEEG.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...