Conjectures and results on modular representations of $\mathrm{GL}_n (K)$ for a $p$-adic field $K$ - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Conjectures and results on modular representations of $\mathrm{GL}_n (K)$ for a $p$-adic field $K$

Résumé

Let $p$ be a prime number and $K$ a finite extension of $\mathbb{Q}_p$. We state conjectures on the smooth representations of $\mathrm{GL}_n (K)$ that occur in spaces of mod $p$ automorphic forms (for compact unitary groups). In particular, when $K$ is unramified, we conjecture that they are of finite length and predict their internal structure (extensions, form of subquotients) from the structure of a certain algebraic representation of $\mathrm{GL}_n$. When $n = 2$ and $K$ is unramified, we prove several cases of our conjectures, including new finite length results.
Fichier principal
Vignette du fichier
2102.06188.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03883839 , version 1 (04-12-2022)

Identifiants

Citer

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, Benjamin Schraen. Conjectures and results on modular representations of $\mathrm{GL}_n (K)$ for a $p$-adic field $K$. 2022. ⟨hal-03883839⟩
61 Consultations
22 Téléchargements

Altmetric

Partager

More