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Conjectures and results on modular representations
of GLn(K) for a p-adic field K

Christophe Breuil∗ Florian Herzig† Yongquan Hu‡

Stefano Morra§ Benjamin Schraen¶

Abstract

Let p be a prime number and K a finite extension of Qp. We state conjec-
tures on the smooth representations of GLn(K) that occur in spaces of mod
p automorphic forms (for compact unitary groups). In particular, when K is
unramified, we conjecture that they are of finite length and predict their inter-
nal structure (extensions, form of subquotients) from the structure of a certain
algebraic representation of GLn. When n = 2 and K is unramified, we prove
several cases of our conjectures, including new finite length results.
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1 Introduction

1.1 Preamble

Let p be a prime number and K a local field of residue characteristic p. In the
early nineties, Barthel and Livné had the fancy idea to start classifying irreducible
(admissible) smooth representations of GL2(K) over an algebraically closed field of
characteristic p ([BL94], [BL95]). They found four nonempty distinct classes of such
representations: 1-dimensional ones, irreducible principal series, special series, and
those which are not an irreducible constituent of a principal series that they called
supersingular. In 2001, one of us classified supersingular representations of GL2(Qp)
with a central character ([Bre03a]) and showed that they are in “natural” bijection
with 2-dimensional irreducible representations of Gal(Qp/Qp) in characteristic p. This
was one of the starting points of the mod p and p-adic Langlands programmes for
GL2(Qp), which was developed essentially during the decade 2000-2010 (see for in-
stance [Bre03b], [Bre10], [Eme10b], [Kis10], [Col10], [Ber10], [Paš13], [Eme], [CDP14],
[CEG+18], . . . ).

There are two main novel features of the mod p local Langlands correspondence
for GL2(Qp) (compared to previous Langlands correspondences). The first one is that
it involves reducible representations of GL2(Qp). More precisely, the representation
of GL2(Qp) is irreducible (resp. semisimple, resp. indecomposable) if and only if its
corresponding 2-dimensional representation of Gal(Qp/Qp) is, and, in the reducible
case, is given (at least generically) by an extension between two specific principal
series. The second one, found by Colmez in [Col10], is that the correspondence can be
made functorial by an exact functor from finite length representations of GL2(Qp) to
étale (ϕ,Γ)-modules, i.e. to finite length representations of Gal(Qp/Qp) by Fontaine’s
equivalence. Thanks to this exact functor, one can extend the correspondence first
to extensions of representations, and then to deformations on both sides.

When K is not Qp, trouble comes from supersingular representations. Contrary
to the case K = Qp, they can be more numerous than 2-dimensional irreducible rep-
resentations of Gal(K/K) ([BP12]) and they cannot be described as quotients of a
compact induction by a finite number of equations ([Hu12, Cor.5.5], [Sch15, Thm.0.1],
[Wu, Thm.1.1]), justifying a posteriori the terminology “very strange” that was used
to describe them in the introduction of [BL95]. As a consequence, no classification of
supersingular representations of GL2(K) is known so far, which has hitherto made im-
possible to find a definition of a hypothetical local mod p correspondence for GL2(K)
by purely local (either representation theoretic or geometric) means.

Fortunately, the global theory comes to the rescue. If a local correspondence
exists, there is a place where it should be realized: the mod p cohomology of Shimura
varieties. Let us assume now that K is a finite unramified extension of Qp with residue
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field Fpf and let K1
def= 1 + pM2(OK) ⊆ GL2(OK). Following the pioneering work of

[BDJ10] on Serre weight conjectures, a series of articles ([BP12], [EGS15], [HW18],
[LMS], [Le19]) led to a complete description of the K1-invariants of the GL2(K)-
representations carried by Hecke isotypic subspaces in such mod p cohomology groups.
Although these invariants are only a tiny piece of the representations of GL2(K),
combined with weight cycling this turned out to give a strong hint on the form of
these representations, as well as being a useful technical result. Indeed, very recently,
building on this description and on results of [BHH+], Hu and Wang could prove
that, at least when K is quadratic unramified and the representation of Gal(Qp/K)
is a nonsplit extension between two (sufficiently generic) characters, these GL2(K)-
representations are indecomposable of length 3 (in particular are of finite length), with
similar principal series as in the case K = Qp in socle and cosocle, and a supersingular
representation “in the middle” ([HW, Thm.10.37]).

These recent results maintain the hope of a local Langlands correspondence for
GL2(K). They also prompted us to make public some conjectures we had in mind for
many years on the form of the GLn(K)-representations carried by Hecke isotypic sub-
spaces, and on a functorial link to representations of Gal(Qp/Qp) via (ϕ,Γ)-modules.
We state such conjectures in the present work (Conjecture 2.1.3.1, Conjecture 2.1.4.5,
Conjecture 2.5.1) and we prove some special cases in the case n = 2 and K unram-
ified, including some new finite length results (Theorem 3.4.4.3, Theorem 3.4.4.6,
Corollary 3.4.4.7). Moreover, when n = 2 and K is unramified, we also define (and
use in the proofs!) an abelian category C of smooth admissible representations of
GL2(K) in characteristic p (containing the representations coming from the global
theory) together with an exact functor from C to a new category of multivariable
(ϕ,Γ)-modules.

1.2 Conjectures

Let us first describe our conjectures with some details. As usual, we mostly work in
the setting of compact unitary groups (except in §2.1.4), so that we do not (yet) mix
delicate representation theoretic issues with difficult geometric problems (ultimately,
we think that the representations of GLn(K) should not change from one global
setting to another). We fix F a CM-field, i.e. a totally imaginary quadratic extension
of a totally real number field F+, and we assume for simplicity in this introduction
that p is inert in F+. We also assume (not for simplicity) that the unique p-adic place
v of F+ splits in F . We fix a continuous absolutely irreducible representation

r : Gal(F/F ) −→ GLn(F),

where F is a (sufficiently large) extension of Fp and we assume that r is automorphic
for a unitary group H over F+ that is compact at all infinite places and becomes GLn

5



over F . Equivalently there exists a compact open subgroup Uv ⊆ H(A∞,v
F+ ) such that

S(Uv,F)[m] def= {f : H(F+)\H(A∞
F+)/Uv → F locally constant}[m] 6= 0,

where [m] means the Hecke-isotypic subspace associated to r (one has to choose a
finite set of bad places Σ in the definition of m, but we forget this issue here, see
§2.1.3 below).

Let ṽ|v in F , K def= Fṽ the corresponding completion and rṽ the restriction of
r to a decomposition subgroup at ṽ. Then S(Uv,F)[m] is an admissible smooth
representation of GLn(K) over F by the usual right translation action on functions.
Our main conjecture gives the form of this GLn(K)-representation (assuming it is
of finite length) as well as a functorial link to rṽ. But to state it we need a few
preliminaries on certain algebraic representations of GLn over F.

Let us first assume for simplicity that K = Qp. We let Std be the standard n-
dimensional algebraic representation of GLn over F and define the following algebraic
representation of GLn over F:

L
⊗ def=

n−1⊗

i=1

∧i
F
Std.

We fix P ⊆ GLn a parabolic subgroup containing the Borel B of upper-triangular
matrices, and let MP be its Levi subgroup containing the torus T of diagonal matrices.
We fix P̃ ⊆ P a Zariski closed algebraic subgroup containing MP and we consider the
algebraic representation L

⊗
|
P̃

of P̃ over F.

Definition 1.2.1 (Definition 2.2.1.3). A subquotient of L
⊗
|
P̃

is a good subquotient
if its restriction to the center ZMP

of MP is a (direct) sum of isotypic components of
L

⊗
|ZMP

.

Note that an isotypic component of L
⊗
|ZMP

carries an action of MP (Lemma

2.2.1.2). Hence, viewing an isotypic component of L
⊗
|ZMP

as a representation of

P̃ via the surjection P̃ ։ MP , one can see L
⊗
|
P̃

as a successive extension of such
isotypic components (Lemma 2.2.1.5). On the GLn(Qp)-side, the isotypic compo-
nents of L

⊗
|ZMP

will play the role of irreducible constituents. Note that the isotypic

components of L
⊗
|ZMP

are by definition all distinct.

To an isotypic component C of L
⊗
|ZMP

, we associate a parabolic subgroup P (C)
of GLn containing B as follows. Let λ ∈ X(T ) = HomGr(T,Gm) be any weight such
that C is the isotypic component of λ|ZMP

and define (see (36))

λ′ def=
1

|W (P )|

∑

w′∈W (P )

w′(λ) ∈ X(T )⊗Z Q,
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where W (P ) is the Weyl group of MP . Let θ be the highest weight of L
⊗
|T and w

in the Weyl group of GLn such that w(λ′) is dominant with respect to B. Then one
can check that (see Proposition 2.2.2.6)

θ − w(λ′) =
∑

α∈S
nαα,

where S is the set of simple roots of GLn (with respect to B) and the nα are in
Q≥0. Then P (C) is by definition the parabolic subgroup of GLn corresponding to the
subset {α ∈ S, nα 6= 0} of S. We denote by P (C)− its opposite parabolic subgroup.

We now go back to the above global setting. Assuming a weak genericity condition
on rṽ, one can replace rṽ by a suitable conjugate so that the image of rṽ is contained
in the F-points of a Zariski closed algebraic subgroup P̃rṽ of a parabolic Prṽ as above
which is “as small as possible” (see Definition 2.3.2.3 and Theorem 2.3.2.5). The
following conjecture is part of Conjecture 2.5.1 (see Definition 2.4.2.7 and Definition
2.4.1.5).

Conjecture 1.2.2. Assume that rṽ has distinct irreducible constituents and that the
ratio of any two 1-dimensional constituents is not in {ω, ω−1}, where ω is the mod
p cyclotomic character. Then we have a GLn(Qp)-equivariant isomorphism for some
integer d ≥ 1:

S(Uv,F)[m] ∼=
(
Πṽ ⊗ (ωn−1 ◦ det)

)⊕d
,

where Πṽ is an admissible smooth representation of GLn(Qp) over F of finite length
with distinct irreducible constituents such that there exists a bijection Φ between the
(finite) set of subquotients of Πṽ and the (finite) set of good subquotients of L

⊗
|
P̃rṽ

satisfying the following properties:

(i) Φ respects inclusions, and thus extends to a bijection between the sets of all
subquotients on both sides;

(ii) Φ−1 sends an isotypic component C of L
⊗
|ZMPrṽ

to an irreducible constituent of

Πṽ of the form IndGLn(Qp)
P (C)−(Qp) π(C), where π(C) is a supersingular representation

of MP (C)(Qp) over F.

When K is not necessarily Qp, the conjecture is completely analogous, defining
L

⊗
by

L
⊗ def=

⊗

Gal(K/Qp)

( n−1⊗

i=1

∧i
F
Std

)
,

replacing P̃ by P̃Gal(K/Qp) def= P̃ × · · · × P̃︸ ︷︷ ︸
Gal(K/Qp)

and taking isotypic components of L
⊗
|ZMP

for the diagonal embedding ZMP
→֒ Z

Gal(K/Qp)
MP

in the definition of good subquotients
of L

⊗
|
P̃Gal(K/Qp).
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Example 1.2.3. (i) If rṽ is irreducible, then P̃rṽ = GLn = MPrṽ
and there is only one

isotypic component C in L
⊗
|ZGLn

. It is such that P (C) = GLn: the representation
Πṽ in Conjecture 1.2.2 is irreducible and supersingular.
(ii) If rṽ is semisimple, then P̃rṽ

= MPrṽ
, and since the direct sum decomposition

of L
⊗
|ZMPrṽ

into isotypic components for the (diagonal) ZMPrṽ
-action is a direct sum

decomposition as a P̃rṽ = MPrṽ
-representation, we see that the representation Πṽ in

Conjecture 1.2.2 is also semisimple.
(iii) If K = Qp and n = 2, we have L

⊗
= Std. When rṽ is irreducible, by (i) the rep-

resentation Πṽ of GL2(Qp) in Conjecture 1.2.2 is supersingular. When rṽ is reducible
split, then P̃rṽ = T = MPrṽ

, and L
⊗
|T = Fλ1 ⊕ Fλ2, where λi : diag(x1, x2) 7→ xi,

i ∈ {1, 2}. There are two isotypic components C = Fλ1 or C = Fλ2, both with
P (C) = B: the representation Πṽ in Conjecture 1.2.2 is a direct sum of two irre-
ducible principal series. Finally, when rṽ is reducible nonsplit, then P̃rṽ = B, L

⊗
|B is

a nonsplit extension of Fλ2 by Fλ1 and Πṽ is a nonsplit extension between two irre-
ducible principal series. Note that Conjecture 1.2.2 is known in that case ([CS17b],
[CS17a] for rṽ irreducible, [BD20, Cor.7.40] for arbitrary rṽ, all generalizing methods
of [Eme]).
(iv) For K arbitrary (unramified) and n = 2, see Example 2.2.2.9 and Example 1 of
§2.4.3.

Conjecture 1.2.2 only gives part of the picture. For instance there should be
reducible subquotients of Πṽ which are also parabolic inductions IndGLn(Qp)

P (C)−(Qp) π(C)
with π(C) of the form π(C) ∼= π1(C) ⊗ · · · ⊗ πd(C), where the (reducible) πi(C)
have themselves the same form as Πṽ but for the smaller GLni

(K) appearing in
the Levi MP (C)(K) (which gives a “fractal” flavour to the whole picture!). In fact,
it is possible that, in the end, this “fractal” picture will automatically follow from
property (ii) in Conjecture 1.2.2 (i.e. from the statement for irreducible subquotients
only), as one can already see in many of the examples of §2.4.3 using the work of
Hauseux ([Hau18], [Hau19]), see Remark 2.4.1.6(iv). Also some parabolic (possibly
reducible) inductions as above should be deduced from others by a permutation on
the factors πi(C). Tracking down all these internal symmetries (with the various
twists by characters that occur) and all the implications between them is not really
difficult but a bit tedious, as the reader will see from the technical lemmas in §2.4.1
(see e.g. Proposition 2.4.1.8). The interested reader should maybe first have a look
at the various examples in §2.4.3 before going into the full combinatorics.

Finally, the full picture has to take into account the Galois action. There is a
simple way to extend Colmez’s functor from representations of GL2(Qp) to represen-
tations of GLn(K) that we recall now (see [Bre15] or §2.1.1). Let ξ : Gm → T be the
cocharacter x 7→ diag(xn−1, xn−2, . . . , 1) and N1

def= Ker(N0
ℓ
−→ OK

trace
−→ Zp), where

N0 is the unipotent radical of B(OK) and the map ℓ is the sum of the entries on
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the first diagonal (following the notation of [SV11]). Let π be a smooth representa-
tion of GLn(K) over F and endow the algebraic dual (πN1)∨ of πN1 with the residual
FJN0/N1K ∼= FJXK-module structure (where X def=

[(
1 1
0 1

)]
− 1), an action of Z×

p and
an endomorphism ψ which commutes with the Z×

p -action by




(xf)(v) def= f(ξ(x−1)v), x ∈ Z×
p , f ∈ (πN1)∨, v ∈ πN1

ψ(f)(v) def= f
(∑

N1/ξ(p)N1ξ(p)−1 n1ξ(p)v
)
, f ∈ (πN1)∨, v ∈ πN1 .

Then one defines a covariant left exact functor V from the category of smooth repre-
sentations of GLn(K) over F to the category of (filtered) direct limits of continuous
finite-dimensional representations of Gal(Qp/Qp) over F by

V (π) def=
(

lim
−→

D

V∨(D)
)
⊗ δ, (1)

where the inductive limit is taken over the continuous morphisms of FJXK-modules
h : (πN1)∨ → D, where D is an étale (ϕ,Γ)-module of finite rank over F((X)) and
h intertwines the actions of Z×

p (recall Γ ∼= Z×
p ), commutes with ψ and is surjective

when tensored by F((X)). (Here V∨ is Fontaine’s contravariant functor associating a
representation of Gal(Qp/Qp) to D and recall that any étale (ϕ,Γ)-module is endowed
with an endomorphism ψ which is left inverse to the Frobenius ϕ.) In (1), δ is a
certain power of ω which is here for normalization issues (see Example 2.1.1.3, see
also the end of §2.1.4). In general, one doesn’t know when V (π) is nonzero or if it is
finite-dimensional.

Using (1), one can strengthen Conjecture 1.2.2 (when K = Qp) so that it takes
into account the action of Gal(Qp/Qp) as follows.

Conjecture 1.2.4 (see Definition 2.4.1.5 and Conjecture 2.5.1). There is a bijection
Φ as in Conjecture 1.2.2 that moreover commutes with the action of Gal(Qp/Qp) in
the following sense: for each subquotient Π′

ṽ of Πṽ one has V (Π′
ṽ) = Φ(Π′

ṽ)◦rṽ. (Recall
that Φ(Π′

ṽ) is an algebraic representation of P̃rṽ
over F and that rṽ takes values in

P̃rṽ(F).)

If K is not necessarily Qp, then by definition Φ(Π′
ṽ) is an algebraic representation

of P̃Gal(K/Qp)
rṽ

and there is a completely analogous conjecture replacing Φ(Π′
ṽ) ◦ rṽ by

Φ(Π′
ṽ) ◦ (rσṽ )σ∈Gal(K/Qp), which is again a representation of Gal(Qp/Qp).

In particular the functor V , when applied to Πṽ and its subquotients Π′
ṽ, should

behave like an exact functor. Note that Conjecture 1.2.4 is known when K = Qp and
n = 2 by the same references as in Example 1.2.3(iii). In the special case Π′

ṽ = Πṽ,
Conjecture 1.2.4 implies in particular

Conjecture 1.2.5 (Conjecture 2.1.3.1). The functor V induces an isomorphism

V
(
S(Uv,F)[m]⊗ (ω−(n−1) ◦ det)

)
∼=
(

ind⊗Qp

K

( n−1⊗

i=1

∧i
F
rṽ
))⊕d

,
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where ind⊗Qp

K is the tensor induction from Gal(Qp/K) to Gal(Qp/Qp).

The statement in Conjecture 1.2.5 makes sense even if K is ramified, and we
conjecture it for an arbitrary finite extension K of Qp and an arbitrary representation
rṽ (see Conjecture 2.1.3.1). In fact, using C-parameters ([BG14]), it can even be
formulated in a more intrinsic way and in a more general global setting, see Conjecture
2.1.4.5.

Remark 1.2.6. Assuming K = Qp, the first appearance of the Gal(Qp/Qp)-represen-
tation on the right-hand side of the isomorphism in Conjecture 1.2.5 is in [BH15],
where its “ordinary part” was related to the “ordinary part” of S(Uv,F)[m] (see
Theorem 2.5.9 for an improvement). Note that the algebraic representation L

⊗
of

GLn is not irreducible for n > 2. One could have thought about using the irreducible
algebraic representation of GLn of highest weight θ instead of the reducible L

⊗
to

make predictions (at least for p big enough the latter strictly contains the former as
a direct factor). However, we chose the representation L

⊗
. One reason is that it

can also be seen as a representation of GLn× · · · ×GLn (n− 1 times) in an obvious
way – in which case a better notation is L

⊠ def= ⊠
n−1
i=1

∧i
FStd – and one can hope to

state a stronger variant of Conjecture 1.2.4 replacing L
⊗

by L
⊠

and Φ(Π′
ṽ) ◦ rṽ by

Φ(Π′
ṽ)◦ (rṽ, rṽ, . . . , rṽ) (see [Záb18b], [Záb18a] where such a possibility is mentioned).

However one has to be careful with defining a “multivariable” functor V in that
context (there is a tentative definition in [Záb18b] when K = Qp generalizing (1), but
see Remark 3.1.2.12 when n = 2 and K 6= Qp).

If a representation Πṽ as in Conjecture 1.2.4 exists, we do hope that it will realize
a mod p local Langlands correspondence for GLn(K).

1.3 Results

Let us now describe our main results when n = 2 and K = Qpf is unramified. For
a finite place w̃ of F we denote by R�

rw̃
the (unrestricted) framed deformation ring

of rw̃
def= r|Gal(F w̃/Fw̃) over W (F). We let IK ⊆ Gal(Qp/K) be the inertia subgroup

and ωf ′ for f ′ ∈ {f, 2f} be Serre’s fundamental character of level f ′. We make the
following extra assumptions on F , H , r and Uv =

∏
w 6=v Uw (recall we assumed p inert

in F+ for simplicity):

(i) F/F+ is unramified at all finite places of F+;

(ii) H is quasi-split at all finite places of F+;

(iii) r|Gal(F/F ( p√1)) is adequate ([Tho17, Def.2.20]);
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(iv) rw̃ is unramified if w̃|F+ is inert in F ;

(v) R�

rw̃
is formally smooth over W (F) if rw̃ is ramified and w̃|F+ 6= v;

(vi) rṽ|IK
is, up to twist, of one of the following forms:





rṽ|IK
∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
,

rṽ|IK
∼=


ω

(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
pf (same)
2f


 ,

where the ri satisfy the following bounds:
{

max{12, 2f−1} ≤ rj ≤ p−max{15, 2f+2} if j > 0 or rṽ is reducible,
max{13, 2f} ≤ r0 ≤ p−max{14, 2f+1} if rṽ is irreducible;

(2)

(vii) Uw is maximal hyperspecial in H(F+
w ) if w is inert in F .

(We also need to fix a place v1 which splits in F , where nothing ramifies and Uv1 is
contained in the Iwahori subgroup at v1, we forget that here along with the set Σ of
bad places and the definition of the ideal m.)

Theorem 1.3.1 (Theorem 3.4.4.3). Assume n = 2, K/Qp unramified, and the above
conditions (i)–(vii). Then Conjecture 1.2.5 holds.

We sketch the proof of Theorem 1.3.1. We denote by I1 the pro-p Iwahori subgroup
in GL2(OK) and set

ρ
def= rṽ(1) Π def= S(Uv,F)[m].

Note that the central character of Π is det(ρ)ω−1 (Lemma 2.1.3.3). There are two
main steps in the proof which involve quite different arguments:

(i) one proves a Gal(Qp/Qp)-equivariant injection (ind⊗Qp

K ρ)⊕d →֒ V (Π);

(ii) one proves dimF V (Π) ≤ 2fd (= dimF(ind⊗Qp

K ρ)⊕d).

We first sketch the proof of (i). Arguing as in the proof of [BHH+, Thm.1.2(i)],
there is an integer d ≥ 1 and a GL2(OK)K×-equivariant isomorphism ΠK1 ∼= D0(ρ)⊕d,
where D0(ρ) is defined as in [BP12, §13] (see Corollary 3.4.2.2). Taking into account
the action of

(
0 1
p 0

)
on ΠI1 ⊆ ΠK1 , one can promote this isomorphism to an isomor-

phism of diagrams:
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Theorem 1.3.2 ([DL, Thm.1.3] when d = 1, Theorem 3.4.1.1 when d > 1). There
is a diagram D(ρ) = (D1(ρ) →֒ D0(ρ)) only depending on ρ such that one has an
isomorphism of diagrams:

D(ρ)⊕d ∼= (ΠI1 →֒ ΠK1).

Theorem 1.3.2 can actually be made stronger, i.e. one can show that certain
constants νi ∈ F× associated to the weight cycling on D1(ρ) ∼= D0(ρ)I1 as in [Bre11,
§6] (up to suitable normalization) are as predicted in [Bre11, Thm.6.4]. When d = 1,
Theorem 1.3.2 (and its strengthening) is entirely due to Dotto and Le ([DL, Thm.1.3]).
When d > 1, we check from their proof that the action of

(
0 1
p 0

)
on ΠI1 ∼= (D0(ρ)I1)⊕d

“respects” each copy of D0(ρ)I1. Note that Theorem 1.3.2 holds under much weaker
bounds on the ri than the bounds (2), see §3.4.1.

Then item (i) above follows from the following purely local result.

Theorem 1.3.3 (Theorem 3.2.1.1). Let π be an (admissible) smooth representation of
GL2(K) over F such that one has an isomorphism of diagrams D(ρ)⊕d ∼= (πI1 →֒ πK1).
Then one has a Gal(Qp/Qp)-equivariant injection (ind⊗Qp

K ρ)⊕d →֒ V (π).

The proof of Theorem 1.3.3 is a long and technical computation of (ϕ,Γ)-modules
that is given in §3.2. It uses the previous computations in [Bre11] and the bounds
(2) (though one can slightly weaken them, see (125)).

We now sketch the (longer) proof of (ii). We let Z1 be the center of I1 (or
of K1) and mI1/Z1

the maximal ideal of the Iwasawa algebra FJI1/Z1K. The main
idea is to focus on the structure of the (algebraic) dual π∨ as FJI1/Z1K-module
and to use the results of [BHH+]. Recall that the graded ring gr(FJI1/Z1K) for
the mI1/Z1-adic filtration (we use the normalization of [LvO96, §I.2.3]) is not com-
mutative, but contains a regular sequence of central elements (h0, . . . , hf−1) such
that R def= gr(FJI1/Z1K)/(h0, . . . , hf−1) is a commutative polynomial algebra in 2f
variables F[yi, zi, 0 ≤ i ≤ f − 1] (see [BHH+, §5.3] and (100), (116)). We let
J

def= (yizi, hi, 0 ≤ i ≤ f − 1) (an ideal of gr(FJI1/Z1K)) and define

R
def= gr(FJI1/Z1K)/J ∼= F[yi, zi, 0 ≤ i ≤ f − 1]/(yizi, 0 ≤ i ≤ f − 1). (3)

Then p0
def= (zi, 0 ≤ i ≤ f − 1) is one of the 2f minimal prime ideals of R. If N is any

finite type gr(FJI1/Z1K)-module killed by a power of J , one can define its multiplicity
mp0(N) ∈ Z≥0 at p0, see (122).

For π a smooth representation of GL2(K) over F with a central character,
we endow π∨ with the mI1/Z1-adic filtration and we let gr(π∨) be the associated graded
gr(FJI1/Z1K)-module.
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Theorem 1.3.4 (Theorem 3.3.2.3). Let π be an (admissible) smooth representation
of GL2(K) over F satisfying the following two properties:

(i) there is a GL2(OK)K×-equivariant isomorphism D0(ρ)⊕d ∼= πK1;

(ii) for any character χ : I → F× appearing in π[mI1/Z1
] there is an equality of

multiplicities
[π[m3

I1/Z1
] : χ] = [π[mI1/Z1 ] : χ].

Then gr(π∨) is killed by J and one has mp0(gr(π∨)) ≤ 2fd.

By the proof of [BHH+, Cor.5.3.5], property (ii) in Theorem 1.3.4 implies that
gr(π∨) is killed by J . By an explicit computation (using both properties (i) and (ii)),
one proves in Theorem 3.3.2.1 that there is a surjection of R-modules

(⊕λ∈PR/a(λ))⊕d
։ gr(π∨),

where P is a combinatorial finite set associated to ρ (in bijection with the set of χ
appearing in π[mI1/Z1

], see §3.3.1) and the a(λ) are explicit ideals of R containing
the image of J (see Definition 3.3.1.1). Then Theorem 1.3.4 follows from the equality
mp0(⊕λ∈PR/a(λ)) = 2f which is an easy computation.

Arguing as in [BHH+], the representation Π satisfies all assumptions of Theorem
1.3.4, see Corollary 3.4.2.2 and Theorem 3.4.4.1. Hence the upper bound in item (ii)
below Theorem 1.3.1 follows from Theorem 1.3.4 combined with the next result:

Theorem 1.3.5 (Corollary 3.1.4.5). Let π be an admissible smooth representation of
GL2(K) over F with a central character such that gr(π∨) is killed by some power of
J . Then one has dimF V (π) ≤ mp0(gr(π∨)).

We prove Theorem 1.3.5 by first associating to π an “étale (ϕ,O×
K)-module over

A” (Definition 3.1.3.1). This is the “multivariable (ϕ,Γ)-module” mentioned at the
end of §1.1. Though one could probably give a more direct proof without explicitly
introducing them, these étale (ϕ,O×

K)-modules are important for our finite length
results below and are likely to play a role later, so we describe them now.

We start with the ring A. Let FJN0K ∼= FJOKK be the Iwasawa algebra of the
unipotent radical N0 of B(OK). Then FJN0K ∼= FJY0, . . . , Yf−1K, where the Yi are
eigenvectors for the action of the finite torus on FJN0K (see (100)). Let S be the
multiplicative system in FJN0K generated by the Yi. The filtration on FJN0K by powers
of its maximal ideal mN0 naturally extends to a filtration on the localized ring FJN0KS
and we define A to be the completion of FJN0KS for this filtration ([LvO96, §I.3.4]).
The ring A is not local, but it is a regular noetherian domain (Corollary 3.1.1.2) and
a complete filtered ring in the sense of [LvO96, §I.3.3] with associated graded ring
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gr(A) ∼= gr(FJN0KS) (see Remark 3.1.1.3(iii) for a concrete description of A). Most
importantly, the natural action of O×

K on FJN0K ∼= FJOKK by multiplication on OK
extends by continuity to A (Lemma 3.1.1.4) and any ideal of A preserved by O×

K is
either 0 or A (Corollary 3.1.1.7).

Let π be an admissible smooth representation of GL2(K) over F with a central
character and recall that π∨ is endowed with the mI1/Z1-adic filtration (which, in
general, strictly contains the mN0-adic filtration). We endow (π∨)S

def= FJN0KS⊗FJN0Kπ
∨

with the tensor product filtration and define DA(π) as the completion of (π∨)S. Then
DA(π) is a complete filtered A-module such that gr(DA(π)) ∼= gr((π∨)S) (Lemma
3.1.1.1). The action of O×

K on π∨ extends by continuity to DA(π), as well as the map

ψ : π∨ −→ π∨, f 7−→ ψ(f) def=
(
v ∈ π 7→ f(ξ(p)v) = f

((
p 0
0 1

)
v
))

(Lemma 3.1.2.5). The latter can be linearized into an A-linear morphism

β : DA(π) −→ A⊗φ,A DA(π),

where φ is the usual Frobenius on the characteristic p ring A (see (115)).

We let C be the abelian category of admissible smooth representations π with a
central character such that gr((π∨)S) is a finite type gr(FJN0KS)-module. It follows
from (3) that
(

gr(FJI1/Z1K)/J
)
[(y0 · · · yf−1)−1] ∼= F[y0, . . . , yf−1][(y0 · · · yf−1)−1] ∼= gr(FJN0KS)

which easily implies that, if gr(π∨) is killed by a power of J , then π is in C (Proposition
3.1.2.11). In particular the representation Π is in C. Note that any finite length
admissible smooth representation π of GL2(Qp) over F with a central character is
such that gr(π∨) is killed by a power of J (Corollary 3.3.3.5), hence is in C.

For π in C, by general results of [Lyu97], there exists a largest quotient DA(π)ét of
DA(π) such that the map β induces an isomorphism β ét : DA(π)ét ∼

→ A⊗φ,ADA(π)ét

(see the beginning of §3.1.2). We let ϕ : DA(π)ét → DA(π)ét such that Id⊗ϕ =
(β ét)−1. Then DA(π)ét equipped with ϕ and the induced action of O×

K is our étale
(ϕ,O×

K)-module over A associated to π in C.

Theorem 1.3.6 (Corollary 3.1.2.9, Theorem 3.1.3.3 and Corollary 3.1.4.5).

(i) If π is in C, then DA(π) and DA(π)ét are finite projective A-modules and
rkA(DA(π)ét)≤ mp0(gr(π∨)).

(ii) The (contravariant) functor π → DA(π)ét is exact on the abelian category C.
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One key ingredient in the proof of Theorem 1.3.6 (cf. the proof of Proposition
3.1.1.8) is that if the annihilator of an A-module endowed with an A-semilinear O×

K-
action is nonzero, then this annihilator is A (since there are no proper nonzero ideals
of A which are preserved by O×

K , see above) and hence the A-module must be 0.

For a smooth representation π of GL2(K) over F such that dimF V (π) < +∞,
we denote by D∨

ξ (π) the unique étale (ϕ,Γ)-module over F((X)) such that V (π) =
V∨(D∨

ξ (π))⊗ δ (see (1)). We denote by tr : A→ F((X)) the ring morphism induced
by the trace tr : FJN0K→ FJZpK ∼= FJXK.

Theorem 1.3.7 (Theorem 3.1.3.7). If π is in C, then we have an isomorphism of
étale (ϕ,Γ)-modules over F((X)):

DA(π)ét ⊗A F((X)) ∼
−→ D∨

ξ (π).

In particular, dimF V (π) = rkA(DA(π)ét) < +∞ and the functor π 7−→ V (π) in (1)
is exact on the category C.

The proof essentially follows by a careful unravelling of all the definitions and
constructions involved. The last statement follows from the first and from Theorem
1.3.6.

Theorem 1.3.7 and Theorem 1.3.6(i) imply in particular the bound on V (π) in
Theorem 1.3.5, which finally proves Theorem 1.3.1.

We see that the multivariable (ϕ,O×
K)-module DA(π)ét plays an important role in

the proof of Theorem 1.3.5. One natural question therefore is to understand more
the internal structure of DA(Π)ét (at least conjecturally): does DA(Π)ét only depend
on ρ? Does it determine ρ? We plan to come back to these questions, as well as
generalizations in higher dimension, in future work.

The modules DA(Π)ét and D∨
ξ (Π) are also crucial tools in the proof of our finite

length results on the representation Π which provide evidence to Conjecture 1.2.2 and
Conjecture 1.2.4 and that we describe now.

Theorem 1.3.8 (Theorem 3.4.4.5). Assume moreover d = 1, i.e. ΠK1 ∼= D0(ρ)
(the so-called minimal case). Then the GL2(K)-representation Π is generated by its
GL2(OK)-socle, in particular is of finite type.

Note that the last finiteness assertion in Theorem 1.3.8 (with ΠK1 instead of the
GL2(OK)-socle) was known for ρ non-semisimple (and sufficiently generic) by [HW,
Thm.1.6], but the proof there doesn’t extend to the semisimple case.

We sketch the proof of Theorem 1.3.8. Let Π′ ⊆ Π be a nonzero subrepresen-
tation and Π′′ def= Π/Π′. As gr(Π∨) and hence its quotient gr(Π′∨) are killed by J ,
the representations Π, Π′, Π′′ are all in C, thus Theorem 1.3.6(i) and Theorem 1.3.7
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imply dimF V (Π′) ≤ mp0(gr(Π′∨)) and dimF V (Π′′) ≤ mp0(gr(Π′′∨)). Since V (Π′′) ∼=
V (Π)/V (Π′) by the last statement in Theorem 1.3.7, and since mp0 is an additive func-
tion by Lemma 3.3.4.4 (and Definition 3.3.4.1), we deduce dimF V (Π′) = mp0(gr(Π′∨))
and dimF V (Π′′) = mp0(gr(Π′′∨)) as we have seen that dimF V (Π) = mp0(gr(Π∨)) (=
2f). On the other hand, by computations analogous to the ones used in the proofs of
Theorem 1.3.3 and Theorem 1.3.4, we also have inequalities

mp0(gr(Π′∨)) ≤ lg(socGL2(OK)(Π′)) ≤ dimF V (Π′)

and thus we deduce

mp0(gr(Π′∨)) = lg(socGL2(OK)(Π′)) = dimF V (Π′) 6= 0. (4)

Now take Π′ to be the nonzero subrepresentation generated over GL2(K) by the
GL2(OK)-socle of Π. We wish to prove Π′′ = 0. As

lg(socGL2(OK)(Π′)) = lg(socGL2(OK)(Π)) = 2f = dimF V (Π)

we already have by (4) and the exactness of V that

mp0(gr(Π′′∨)) = dimF V (Π′′) = 0. (5)

To deduce Π′′ = 0 from (5), we need the following key new ingredient: Π is essentially

self-dual of grade (or codimension) 2f , i.e. ExtjFJI1/Z1K

(
Π∨,FJI1/Z1K

)
= 0 if j < 2f

and there is a GL2(K)-equivariant isomorphism

Ext2f
FJI1/Z1K

(
Π∨,FJI1/Z1K

)
∼= Π∨ ⊗ (det(ρ)ω−1), (6)

where Ext2f
FJI1/Z1K(Π

∨,FJI1/Z1K) is endowed with the action of GL2(K) defined by
Kohlhaase in [Koh17, Prop.3.2]. This follows by the same argument as in [HW,
Thm.8.2] (using Remark 3.4.4.2). We then define Π̃ as the admissible smooth repre-
sentation of GL2(K) over F such that

Π̃∨ ⊗ (det(ρ)ω−1) ∼= Im
(

Ext2f
FJI1/Z1K

(
Π∨,FJI1/Z1K

)
→ Ext2f

FJI1/Z1K

(
Π′′∨,FJI1/Z1K

))
,

and by (6) Π̃ is a subrepresentation of Π. By (6) and general results on ExtjΛ(−,Λ)
for Auslander regular rings Λ, Π′′∨ ⊆ Π∨ is also of grade 2f if it is nonzero, and hence
Ext2f

FJI1/Z1K(Π
′′∨,FJI1/Z1K) is nonzero if and only if Π′′ 6= 0. From the short exact

sequence

0→ Π̃∨⊗(det(ρ)ω−1)→Ext2f
FJI1/Z1K

(
Π′′∨,FJI1/Z1K

)
→Ext2f+1

FJI1/Z1K

(
Π′∨,FJI1/Z1K

)
(7)

and the fact that the last Ext2f+1 has grade ≥ 2f + 1, we finally obtain:

Π̃ is nonzero if and only if Π′′ is nonzero. (8)

We now use the following general theorem.
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Theorem 1.3.9 (Theorem 3.3.4.5). Let π be an admissible smooth representation
of GL2(K) over F with a central character such that gr(π∨) is killed by a power of
J . Then the gr(FJI1/Z1K)-module (for the mI1/Z1-adic filtration on

Ext2f
FJI1/Z1K(π

∨,FJI1/Z1K)):

gr
(

Ext2f
FJI1/Z1K

(
π∨,FJI1/Z1K

))

is also finitely generated and annihilated by a power of J , and we have

mp0(gr(π∨)) = mp0

(
gr
(

Ext2f
FJI1/Z1K

(
π∨,FJI1/Z1K

)))
.

From the injection in (7) and from Theorem 1.3.9 applied to π = Π′′ we have
mp0(gr(Π̃∨)) ≤ mp0(gr(Π′′∨)), hence we obtain

mp0(gr(Π̃∨)) = mp0(gr(Π′′∨))
(5)
= 0.

This implies Π̃ = 0 by (4) (applied to the subrepresentation Π′ = Π̃) and thus Π′′ = 0
by (8), finishing the proof of Theorem 1.3.8.

The following corollary immediately follows from Theorem 1.3.8 and from [BP12,
Thm.19.10(i)].

Corollary 1.3.10 (Theorem 3.4.4.5). Assume moreover d = 1 and ρ irreducible.
Then the GL2(K)-representation Π is irreducible and is a supersingular representa-
tion.

When ρ is reducible (split), we can prove the following result.

Theorem 1.3.11 (Theorem 3.4.4.6). Assume moreover d = 1 and ρ reducible, i.e.

ρ =

(
χ1 0
0 χ2

)
. Then one has

Π = IndGL2(K)
B(K) (χ1 ⊗ χ2ω

−1)⊕Π′ ⊕ IndGL2(K)
B(K) (χ2 ⊗ χ1ω

−1),

where Π′ is generated by its GL2(OK)-socle and Π′∨ is essentially self-dual of grade
2f , i.e. satisfies (6). Moreover, when f = 2, Π′ is irreducible and supersingular (and
hence Π is semisimple).

The fact that the two principal series in Theorem 1.3.11 occur as subobjects of Π
was already known (and is not difficult). To prove that they also occur as quotients
(and that the obvious composition is the identity), we again crucially use the essential
self-duality (6). The rest of the statement follows from Theorem 1.3.8 and [BP12,
Thm.19.10(ii)].

The following last corollary sums up the above results.
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Corollary 1.3.12 (Theorem 3.4.4.7). Assume (i) to (vii) as at the beginning of §1.3
and assume d = 1 as in Theorem 1.3.8. Then Conjecture 1.2.4 holds for n = 2 and
ρ irreducible, or for n = 2, K quadratic and ρ semisimple.

Note finally that when f = 2, ρ is non-semisimple (sufficiently generic) and d = 1,
Conjecture 1.2.2 at least is known and follows from [HW, Thm.10.37].

1.4 Notation

We finish this introduction with some very general notation (many more will be
defined in the text).

Throughout the text, we fix Qp an algebraic closure of Qp and K an arbitrary
finite extension of Qp in Qp with residue field Fq, q = pf (f ∈ Z≥1). The field K is
unramified from §2.2 on. We also fix a finite extension E of Qp, with ring of integers
OE , uniformizer ̟E and residue field F, and we assume that F contains Fq. The finite
field F is the main coefficient field in this work. We denote by ε the p-adic cyclotomic
character of Gal(Qp/Qp) and by ω its reduction mod p. We normalize Hodge–Tate
weights so that ε has Hodge–Tate weight 1 at each embedding K →֒ E. We normalize
local class field theory so that uniformizers correspond to geometric Frobeniuses.

If H is any split connected reductive algebraic group, we denote by ZH the center
of H and by TH a split maximal torus. If PH is a parabolic subgroup of H containing
TH , we denote by MPH

its Levi subgroup containing TH , NPH
its unipotent radical

and P−
H its opposite parabolic subgroup with respect to TH (so PH ∩ P−

H = MH).

We let n ≥ 2 be an integer and denote by G the algebraic group GLn over Z. The
integer n is arbitrary in §2 and is 2 in §3.

Irreducible for a representation always means absolutely irreducible.

Finally, though we mainly work with the group GLn, several proofs in §2 can be
extended more or less verbatim to a split connected reductive algebraic group over Z
with connected center, and §2.1.4 deals with possibly nonsplit reductive groups.
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2 Local-global compatibility conjectures

We state local-global compatibility conjectures (Conjecture 2.1.3.1, Conjecture 2.1.4.5
and Conjecture 2.5.1) which “functorially” relate Hecke-isotypic components with
their action of GLn(K) in spaces of mod p automorphic forms to representations
of Gal(Qp/Qp). Conjecture 2.5.1 assumes K is unramified but is much stronger and
more precise than Conjecture 2.1.3.1 and Conjecture 2.1.4.5 as it predicts the number,
position and form of the irreducible constituents of these Hecke-isotypic components,
as well as their contribution on the Galois side.

Throughout this section, we let T ⊆ G = GLn the diagonal torus over Z and
X(T ) the Z-module HomGr(T,Gm). As usual, we identify X(T ) with ⊕ni=1Zei via
ei 7→

(
diag(x1, . . . , xn) 7→ xi

)
and define 〈 , 〉 : X(T ) × X(T ) → Z, 〈ei, ej〉

def= δi,j,
which we extend by Q-bilinearity to X(T ) ⊗Z Q. This provides an isomorphism of
Z-modules X(T ) ∼

→ HomZ(X(T ),Z) ∼= HomGr(Gm, T ) given by

ei 7−→ e∗
i

def=
(
x 7→ diag(1, . . . , 1︸ ︷︷ ︸

i−1

, x, 1, . . . , 1)
)
, i ∈ {1, . . . , n}. (9)

We denote by R = {ei − ej , 1 ≤ i 6= j ≤ n} ⊆ X(T ) the roots of (G, T ), by B ⊆ G
the Borel subgroup (over Z) of upper-triangular matrices and by N the unipotent
radical of B, so that the positive roots are R+ = {ei − ej , 1 ≤ i < j ≤ n} ⊆ R and
the simple roots are S = {ei− ei+1, 1 ≤ i ≤ n− 1} ⊆ R+. An element of X(T )⊗Z Q
is dominant if 〈λ, ei − ei+1〉 ≥ 0 for all i ∈ {1, . . . , n − 1}. If λ, µ ∈ X(T ) ⊗Z Q, we
write λ ≤ µ if µ−λ ∈

∑n−1
i=1 Q≥0(ei−ei+1). If λ =

∑n−1
i=1 ni(ei−ei+1) for some ni ∈ Q,

its support is by definition the set of simple roots ei− ei+1 such that ni 6= 0. Finally,
we denote by W ∼= Sn the Weyl group of (G, T ), which acts on the left on X(T ) by
w(λ)(t) def= λ(w−1tw) for λ ∈ X(T ) and t ∈ T .

If P is a standard parabolic subgroup of G (that is, containing B), we denote by
S(P ) ⊆ S the subset of simple roots of MP , R(P )+ ⊆ R+ the positive roots of MP

(generated by S(P )) and W (P ) ⊆W its Weyl group.

2.1 Weak local-global compatibility conjecture

We state our first local-global compatibility conjecture (see Conjecture 2.1.3.1 and
its generalization Conjecture 2.1.4.5) which relate Hecke-isotypic components with
their action of GLn(K) to representations of Gal(Qp/Qp) without taking care of their
irreducible constituents.
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2.1.1 The functors D∨
ξH

and VH

We review the simple generalization of Colmez’s functor defined in [Bre15].

Throughout this section, we fix a connected reductive algebraic group H which
is split over K with a connected center, BH ⊆ H a Borel subgroup and TH ⊆ BH a
split maximal torus in BH . We let

(
X(TH), RH , X

∨(TH), R∨
H

)
be the associated root

datum, R+
H ⊆ X(TH) the (positive) roots of BH , SH ⊆ R+

H the simple roots and S∨
H

the associated simple coroots.

We need to recall some notation of [Bre15] (to which we refer the reader for any
further details). For α ∈ R+

H , we let Nα ⊆ NH be the associated (commutative) root
subgroup, where NH

def= NBH
is the unipotent radical of BH . For α ∈ SH , we fix an

isomorphism ια : Nα
∼
→ Ga of algebraic groups over K such that

ια(tnαt−1) = α(t)ια(nα) ∀ t ∈ TH , ∀ nα ∈ Nα. (10)

We fix an open compact subgroup N0 ⊆ NH(K) such that
∏
α∈R+

H
Nα

∼
→ NH induces

a bijection
∏
α∈R+

H
Nα(K) ∩N0

∼
→ N0 for any order on the α ∈ R+

H and such that ια
induces isomorphisms for α ∈ SH :

Nα(K) ∩N0
∼
−→ OK ⊆ K = Ga(K).

We denote by ℓ the composite NH ։
∏
α∈SH

Nα

∑
α∈SH

ια

−→ Ga (a morphism of algebraic
groups over K). The morphism ℓ thus induces a group morphism still denoted ℓ :
N0 → OK and we define

N1
def= Ker

(
N0

ℓ
→ OK

TrK/Qp
−→ Qp

)
(11)

which is a normal open compact subgroup of N0. We fix an isomorphism of Zp-
modules ψ : TrK/Qp(OK) ∼

→ Zp. When NH 6= 0, i.e. when H 6= TH , this fixes an
isomorphism

N0/N1

TrK/Qp◦ℓ
∼
−→ TrK/Qp(OK)

ψ
∼
−→ Zp. (12)

We fix fundamental coweights (λα∨)α∈SH
(which exist since H has a connected center)

and set
ξH

def=
∑

α∨∈S∨H

λα∨ ∈ HomGr(Gm, TH) = X∨(TH). (13)

Note that ξH(x)N1ξH(x−1) ⊆ N1 for any x ∈ Zp\{0}. Let FJXK[F ] be the noncom-
mutative polynomial ring in F over the ring of formal power series FJXK such that
FS(X) = S(Xp)F .

For π a smooth representation of BH(K) over F, we endow the invariant subspace
πN1 ⊆ π with a structure of an FJXK[F ]-module as follows:
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(i) FJXK ∼= FJZpK acts via FJN0/N1K
(12)
∼= FJZpK (here X def= [1]− 1);

(ii) F acts via the “Hecke” action F (v) def=
∑
n1∈N1/ξH (p)N1ξH (p−1) n1ξH(p)v ∈ πN1 for

v ∈ πN1 .

Note that πN1 is a torsion FJXK-module (but not a torsion F[F ]-module in general).
We also endow πN1 with an action of Z×

p by making x ∈ Z×
p act by ξH(x). This action

commutes with F and satisfies ξH(x) ◦ (1 +X) = (1 +X)x ◦ ξH(x).

As in [Bre15], we denote by ΦΓét
F the category of finite-dimensional étale (ϕ,Γ)-

modules over FJXK[X−1] = F((X)) and by Φ̂Γ
ét

F the corresponding category of (pseudo-

compact) pro-objects, see [Bre15, §2] for more details. Both ΦΓét
F and Φ̂Γ

ét

F are abelian
categories. Let M ⊆ πN1 be a finite type FJXK[F ]-submodule which is Z×

p -stable and
assume that M is admissible as an FJXK-module, that is, M [X] def= {m ∈M,Xm = 0}
is finite-dimensional over F. Let M∨ def= HomF(M,F) (algebraic F-linear dual) which
is also an FJXK-module (but not a torsion FJXK-module in general). Then by a
key result of Colmez M∨[X−1] can be endowed with the structure of an object of
ΦΓét

F ([Col10], see also [Bre15, Lemma 2.6]). More precisely X acts on f ∈ M∨ by
(Xf)(m) def= f(Xm) (m ∈M), x ∈ Z×

p acts by (xf)(m) def= f(x−1m), and the operator
ϕ is defined as follows. Take the F-linear dual of Id⊗F : FJXK ⊗ϕ,FJXK M −→ M ,
compose with1

(FJXK⊗ϕ,FJXK M)∨ ∼
−→ FJXK⊗ϕ,FJXK M

∨

f 7−→
p−1∑

i=0

(1 +X)i ⊗ f
( 1

(1 +X)i
⊗ ·
)

(14)

and invert X: the resulting morphism M∨[X−1]→ FJXK⊗ϕ,FJXK M
∨[X−1] turns out

to be an F((X))-linear isomorphism whose inverse is by definition Id⊗ϕ.

When H 6= TH we then define

D∨
ξH

(π) def= lim
←−

M

M∨[X−1], (15)

where the projective limit is taken over the finite type FJXK[F ]-submodules M of
πN1 (for the preorder defined by inclusion) which are admissible as FJXK-modules
and invariant under the action of Z×

p . When H = TH , one has to replace M∨[X−1]
by F((X))⊗F M

∨, we refer the reader to [Bre15, §3]. The functor D∨
ξH

is right exact
contravariant from the category of smooth representations of BH(K) over F to the

category Φ̂Γ
ét

F and, up to isomorphism, only depends on the choice of the cocharacter

1The formula for this isomorphism given in the proof of [Bre15, Lemma 2.6] is actually wrong, the

present formula is the correct one. Note that it is also the same as f 7→
∑p−1

i=0
1

(1+X)i ⊗f((1+X)i⊗·).
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ξH . Moreover, if D∨
ξH

(π) turns out to be in ΦΓét
F (and not just Φ̂Γ

ét

F ), then D∨
ξH

(π) is
exactly the maximal étale (ϕ,Γ)-module which occurs as a quotient of (πN1)∨[X−1],
see [Bre15, Rem.5.6(iii)].

Remark 2.1.1.1. If H = Gm = TH , then by definition ξH = 1. It follows, for
dimF π = 1, that D∨

ξH
(π) is always the trivial (rank one) (ϕ,Γ)-module (even if π is a

nontrivial character).

Let us now assume that the dual group Ĥ of H also has a connected center, and
let us fix θH ∈ X(TH) such that θH ◦ α∨ = IdGm for all α ∈ SH ([BH15, Prop.2.1.1],
such an element is called a twisting element). In §2.1.4 below, it is possible to avoid
this assumption using C-parameters, but since our main aim is G = GLn in the rest
of the paper, there is no harm making this assumption.

Consider the smooth character

K× −→ F×, x 7−→ ω
(
θH(ξH(x))

)

and denote by δH the restriction of this character to Q×
p ⊆ K×. Seeing ω ◦ θH ◦ ξH

as a character of Gal(Qp/K) via local class field theory for K (as normalized in §1),
and remembering that the restriction from K× to Q×

p corresponds via local class field
theory to the composition with the transfer Gal(Qp/Qp)ab → Gal(Qp/K)ab, we see
that

δH ∼= ind⊗Qp

K (ω ◦ θH ◦ ξH),

where ind⊗Qp

K is the tensor induction from Gal(Qp/K) to Gal(Qp/Qp) (see the end of
§2.1.2 below).

Denote by RepF the abelian category of continuous linear representations of
Gal(Qp/Qp) on finite-dimensional F-vector spaces (equipped with the discrete topol-
ogy) and IndRepF the corresponding category of ind-objects, i.e. the category of
filtered direct limits of objects of RepF. Recall that there is a covariant equivalence of
categories V : ΦΓét

F
∼
→ RepF (see [Fon90, Thm.A.3.4.3] where this functor is denoted

VE) compatible with tensor products and duals on both sides. We denote by V∨ the
dual of V (i.e. the dual Galois representation). When H 6= TH , we then define the
covariant functor VH from the category of smooth representations of BH(K) over F
to the category IndRepF by

VH(π) def= lim
−→

M

(
V∨(M∨[X−1])

)
⊗ δH , (16)

where the inductive limit is taken over the finite type FJXK[F ]-submodules of πN1

which are admissible as FJXK-modules and preserved by Z×
p . Likewise, when H = TH ,

with F((X))⊗F M
∨ instead of M∨[X−1] (note that δH is then 1).

Lemma 2.1.1.2. The functor VH is left exact.
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Proof. We give the proof for H 6= TH , leaving the case H = TH to the reader. Let
0 → π′ → π

s
→ π′′ → 0 be an exact sequence of smooth BH(K)-representations over

F, which gives a short exact sequence 0→ π′N1 → πN1
s
→ π′′N1 . If M is a finite type

FJXK[F ]-submodule of πN1 which is admissible as FJXK-module and stable under the
action of Z×

p , then so are M ∩ π′N1 and s(M) (see e.g. [Bre15, Lemma 2.1(i)]). The
functor M → V∨(M∨[X−1]) being covariant exact (since both M 7→ M∨[X−1] and
V∨ are contravariant exact), each such M ⊆ πN1 gives rise to a short exact sequence
in RepF:

0→ V∨
(
(M ∩ π′N1)∨[X−1]

)
→ V∨

(
M∨[X−1]

)
→ V∨

(
s(M)∨[X−1]

)
→ 0.

Twisting by δH and taking the inductive limit over such M , we obtain a short exact
sequence 0 → VH(π′) → VH(π) → lim

−→

M

V∨
(
s(M)∨[X−1]

)
⊗ δH → 0 in IndRepF. But

we have an injection

lim
−→

M

V∨
(
s(M)∨[X−1]

)
⊗ δH →֒ VH(π′′)

in IndRepF since all transitions maps in the inductive limits are injective, therefore
we end up with an exact sequence 0→ VH(π′)→ VH(π)→ VH(π′′).

Example 2.1.1.3. For H = G ×Z K = GLn/K (so H ∼= Ĥ), we take in the sequel
(writing just G as a subscript instead of G×Z K)

ξG(x) def= diag(xn−1, . . . , x, 1) and θG
(
diag(x1, . . . , xn)

)
= xn−1

1 xn−2
2 · · ·xn−1,

so that δG = ind⊗Qp

K (ω(n−1)2+(n−2)2+···+4+1). (In fact, since tensor induction of a char-
acter is given by composition with the transfer map [Col89], by local class field theory
we see that δG = ω[K:Qp]((n−1)2+(n−2)2+···+4+1).)

Remark 2.1.1.4. (i) The covariant functor VH depends on the choices of ξH and δH
(though we don’t include it in the notation). The reader may wonder why we need
to assume the existence of θH and normalize VH using the strange twist δH above.
This comes from the local-global compatibility: it turns out that this normalization
is essentially what is going on in spaces of mod p automorphic forms (see [BH15, §4],
[Bre15, Cor.9.8], Example 2.1.1.6 and §§2.1.3, 2.5 below). This normalization is also
natural if one uses C-parameters, see §2.1.4.
(ii) For H as in Example 2.1.1.3, π a smooth representation of B(K) over F and
χ : K× → F× a smooth character, one checks that VG(π⊗(χ◦det)) ∼= VG(π)⊗δ, where
δ is the continuous character of Gal(Qp/Qp) associated via local class field theory to

x 7→ χ
(
det(ξG(x))

)
for x ∈ Q×

p . An explicit computation gives δ = (χ|Q×p )
n(n−1)

2 ∼=

ind⊗Qp

K (χ
n(n−1)

2 ).
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When restricted to the abelian category of finite length admissible smooth repre-
sentations of H(K) over F with all irreducible constituents isomorphic to irreducible
constituents of principal series, it is proven in [Bre15, §9] that the functors D∨

ξH
and

VH are exact. It seems reasonable to us, and also consistent with the conjectural
formalism developed in the sequel (see e.g. Remark 2.4.2.8(iii)), to hope that there
exists a suitable abelian category of admissible smooth representations of H(K) over
F containing the previous abelian category and the representations “coming from the
global theory” on which the functors D∨

ξH
and VH are still exact. See for instance the

category C in §3.1.2 when H = GL2/K and K is unramified.

We now recall the behaviour of the functor VH with respect to parabolic induction.

We assume for simplicity H = G ×Z K = GLn/K and let ξG, θG as in Example
2.1.1.3. We let P be a standard parabolic subgroup ofG×ZK and writeMP =

∏d
i=1 Mi

with Mi
∼= GLni/K . We define VMP

as in (16) using ξMP

def= ξG and θMP

def= θG (to
define D∨

ξMP
and δMP

). We write ξMP
= ⊕di=1ξMP ,i in X∨(T ) = ⊕di=1X

∨(Ti) and
θMP

= ⊕di=1θMP ,i in X(T ) = ⊕di=1X(Ti), where Ti is the diagonal torus in Mi, and let
VMP ,i

def= VGLni
but defined with ξMP ,i and θMP ,i. Finally we define VMi

def= VGLni
with

ξMi
and θMi

as in Example 2.1.1.3 replacing n by ni, and we recall that ξMi
, θMi

and
δMi

are trivial characters if ni = 1.

If πP is a smooth representation of MP (K) over F, that we see as a representation
of P−(K) via P−(K) ։MP (K), we define the usual smooth parabolic induction

IndG(K)
P−(K) πP

def= {f : G(K)→ πP loc. const., f(px) = p(f(x)), p ∈ P−(K), x ∈ πP},

with G(K) acting (smoothly) on the left by (gf)(g′) def= f(g′g).

Lemma 2.1.1.5. Let πP be a smooth representation of MP (K) over F of the form
πP = π1 ⊗ · · · ⊗ πd, where the πi are smooth representations of Mi(K) over F. As-
sume that the πi have central characters Z(πi) : K× → F× and that VMP

(πP ) ∼=⊗d
i=1 VMP ,i(πi). Then we have an isomorphism in IndRepF (using implicitly local

class field theory for Gal(Qp/Qp)):

VG

(
IndG(K)

P−(K) πP

)
⊗ δ−1

G
∼=

d⊗

i=1

(
VMi

(πi)⊗
(
Z(πi)

n−
∑i

j=1
nj
)
|Q×p δ

−1
Mi

)
.

Proof. By [Bre15, Thm.6.1] we have VG
(

IndG(K)
P−(K) πP

)
∼= VMP

(πP ) so that from the
assumption (all isomorphisms are in IndRepF):

VG
(

IndG(K)
P−(K) πP

)
∼=

d⊗

i=1

VMP ,i(πi). (17)
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An easy computation yields in Mi(K) for x ∈ K×:

ξMP ,i(x) = diag(xn−
∑i

j=1
nj , . . . , x

n−
∑i

j=1
nj

︸ ︷︷ ︸
ni

)ξMi
(x)

which implies by [Bre15, Rem.4.3] that

VMP ,i(πi)⊗ δ
−1
MP ,i
∼= VMi

(πi)⊗
(
Z(πi)

n−
∑i

j=1
nj
)
|Q×p δ

−1
Mi
, (18)

where δMP ,i
def= ind⊗Qp

K (ω ◦ θMP ,i ◦ ξMP ,i) (and recall VMi
(πi) = 1 if ni = dimF πi = 1,

see Remark 2.1.1.1). Since δG =
∏d
i=1 δMP ,i, twisting (17) by δ−1

G gives the result by
(18).

Example 2.1.1.6. An enlightening and important example is the case of principal
series IndG(K)

B−(K)(χ1 ⊗ · · · ⊗ χn), where the χi : K× → F× are smooth characters. The
assumptions of Lemma 2.1.1.5 are then trivially satisfied and thus we have

VG
(

IndG(K)
B−(K)(χ1 ⊗ · · · ⊗ χn)

)
⊗ δ−1

G
∼= (χn−1

1 χn−2
2 · · ·χn−1)|Q×p .

In particular we deduce (using Example 2.1.1.3 for δG) that

VG
(

IndG(K)
B−(K)(χ1ω

−(n−1) ⊗ χ2ω
−(n−2) ⊗ · · · ⊗ χn)

)
∼= (χn−1

1 χn−2
2 · · ·χn−1)|Q×p

∼= ind⊗Qp

K (χn−1
1 χn−2

2 · · ·χn−1),

where χn−1
1 χn−2

2 · · ·χn−1 on the last line is seen as a character of Gal(Qp/K) via local
class field theory for K.

Remark 2.1.1.7. Using [Bre15, Prop.5.5] the assumptions of Lemma 2.1.1.5 are sat-
isfied when all finite type FJXK[F ]-submodules of πN1

i for i ∈ {1, . . . , d} are automati-
cally admissible as FJXK-modules. This happens for instance if the πi are principal se-
ries or (whenK = Qp) are finite length representations of GL2(Qp) with a central char-
acter, but is not known otherwise. Contrary to what is stated in [Bre15, Rem.5.6(ii)],
we currently do not have a proof of an isomorphism VMP

(πP ) ∼=
⊗d
i=1 VMP ,i(πi) for any

smooth representations πi, though we expect that it will indeed be satisfied for repre-
sentations “coming from” the global theory. Note that, in [Záb18b, Prop.3.2], Zábrádi
does prove a compatibility of his functor with the tensor product which looks close
to the isomorphism above. However, loc.cit. deals with an external tensor product,
whereas we have an internal tensor product. In particular he has two operators F ,
one for each factor in the external tensor product (whereas we consider the resulting
diagonal operator), and his argument doesn’t extend.

2.1.2 Global setting

We recall our global setting (see e.g. [EGH13, §7.1] or [Tho12, §6] or [BH15, §4.1]
or many other references) and define the Gal(Qp/Qp)-representation L

⊗
(ρ) for ρ :

Gal(Qp/K) −→ G(F).
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We let F+ be a totally real finite extension of Q with ring of integers OF+ , F/F+

a totally imaginary quadratic extension with ring of integers OF (do not confuse F
with the operator F of §2.1.1!) and c the nontrivial element of Gal(F/F+). If v (resp.
ṽ) is a finite place of F+ (resp. F ), we let F+

v (resp. Fṽ) be the completion of F+

(resp. F ) at v (resp. ṽ) and OF+
v

(resp. OFṽ) the ring of integers of F+
v (resp. Fṽ). If

v splits in F and ṽ, ṽc are the two places of F above v, we have OF+
v

= OFṽ

c
∼= OFṽc ,

where the last isomorphism is induced by c. We let A∞
F+ (resp. A∞,v

F+ ) denote the finite
adèles of F+ (resp. the finite adèles of F+ outside v). Finally we always assume that
all places of F+ above p split in F .

We let n ∈ Z>1, N a positive integer prime to p and H a connected reductive
algebraic group over OF+ [1/N ] satisfying the following conditions:

(i) there is an isomorphism ι : H ×OF + [1/N ] OF [1/N ] ∼
−→ G×Z OF [1/N ];

(ii) H ×OF + [1/N ] F
+ is an outer form of G×Z F

+ = GLn/F+ ;

(iii) H ×OF + [1/N ] F
+ is isomorphic to Un(R) at all infinite places of F+.

One can prove that such groups exist (cf. e.g. [EGH13, §7.1.1]). Condition (i) implies
that if v is any finite place of F+ that splits in F and if ṽ|v in F the isomorphism
ι induces ιṽ : H(F+

v ) ∼
→ GLn(Fṽ) = G(Fṽ) which restricts to an isomorphism still

denoted by ιṽ : H(OF+
v

) ∼
→ GLn(OFṽ) if v doesn’t divide N . Condition (ii) implies

that c ◦ ιṽ : H(F+
v ) ∼
→ GLn(Fṽc) (resp. c ◦ ιṽ : H(OF+

v
) ∼
→ GLn(OFṽc ) if v doesn’t

divide N) is conjugate in GLn(Fṽc) (resp. in GLn(OFṽc )) to τ−1 ◦ ιṽc , where τ is the
transpose in GLn(Fṽc) (resp. in GLn(OFṽc )).

If U is any compact open subgroup of H(A∞
F+) then

S(U,F) def= {f : H(F+)\H(A∞
F+)/U → F}

is a finite-dimensional F-vector space since H(F+)\H(A∞
F+)/U is a finite set. Fix v|p

in F+ and a compact open subgroup Uv of H(A∞,v
F+ ), we define

S(Uv,F) def= lim
−→

Uv

S(UvUv,F),

where Uv runs among compact open subgroups of H(OF+
v

). We endow S(Uv,F) with

a linear left action of H(F+
v ) by (hvf)(h) def= f(hhv) (hv ∈ H(F+

v ), h ∈ H(A∞
F+)).

Thus, for ṽ dividing v in F , the isomorphism ιṽ gives an admissible smooth action of
G(F+

v ) = GLn(Fṽ) on S(Uv,F). By what is above, the action of G(F+
v ) induced by

ιṽ is the inverse transpose of the one induced by ιṽc .

If U is a compact open subgroup of H(A∞
F+), following [EGH13, §7.1.2] we say

that U is unramified at a finite place v of F+ which splits in F and doesn’t divide N if
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we have U = Uv ×H(OF+
v

), where Uv is a compact open subgroup of H(A∞,v
F+ ). Note

that a compact open subgroup of H(A∞
F+) is unramified at all but a finite number

of finite places of F+ which split in F . If U is a compact open subgroup of H(A∞
F+)

and Σ a finite set of finite places of F+ containing the set of places of F+ that split
in F and divide pN and the set of places of F+ that split in F at which U is not
unramified, we denote by T Σ def= OE [T (j)

w̃ ] the commutative polynomial OE-algebra
generated by formal variables T (j)

w̃ for j ∈ {1, . . . , n} and w̃ a place of F lying above
a finite place w of F+ that splits in F and doesn’t belong to Σ. The algebra T Σ acts
on S(U,F) by making T (j)

w̃ act by the double coset

ι−1
w̃

[
GLn(OFw̃)

(
1n−j

̟w̃1j

)
GLn(OFw̃)

]
,

where ̟w̃ is a uniformizer in OFw̃ . Explicitly, if we write

GLn(OFw̃)
(

1n−j

̟w̃1j

)
GLn(OFw̃) =

∐

i

gi
(

1n−j

̟w̃1j

)
GLn(OFw̃),

we have for f ∈ S(U,F) and g ∈ H(A∞
F+):

(T (j)
w̃ f)(g) def=

∑

i

f

(
gι−1
w̃

(
gi
(

1n−j

̟w̃1j

)))
.

One checks that T (j)
w̃c = (T (n)

w̃ )−1T
(n−j)
w̃ on S(U,F). We let T Σ(U,F) be the image of

T Σ in EndOE
(S(U,F)) (if U ′ ⊆ U , we thus have S(U,F) ⊆ S(U ′,F) and T Σ(U ′,F) ։

T Σ(U,F)). If S is any T Σ-module and I any ideal of T Σ, we set in the sequel
S[I] def= {x ∈ S : Ix = 0}.

We now fix v|p and a compact open subgroup Uv of H(A∞,v
F+ ). If Σ a finite set of

finite places of F+ containing the set of places of F+ that split in F and divide pN
and the set of places of F+ prime to p that split in F and at which UvUv (for any Uv)
is not unramified, the algebra T Σ acts on S(UvUv,F) (via its quotient T Σ(UvUv,F))
for any Uv and thus also on S(Uv,F). This action commutes with that of H(F+

v ). If
mΣ is a maximal ideal of T Σ with residue field F, we can define the localized subspaces
S(UvUv,F)mΣ and their inductive limit

lim
−→

Uv

S(UvUv,F)mΣ = S(Uv,F)mΣ,

which inherits an induced (admissible smooth) action of H(F+
v ) together with a com-

muting action of lim
←−

Uv

T Σ(UvUv,F)mΣ. We have

S(UvUv,F)[mΣ]⊆ S(UvUv,F)mΣ ⊆ S(UvUv,F)

and thus inclusions of admissible smooth H(F+
v )-representations over F:

S(Uv,F)[mΣ] ⊆ S(Uv,F)mΣ ⊆ S(Uv,F).
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Moreover, as representations of H(F+
v ), S(Uv,F)mΣ is a direct summand of S(Uv,F)

(= the maximal vector subspace on which the elements of mΣ act nilpotently).

We now go back to the notation of §2.1.1. For λ ∈ X(T ) a dominant weight with
respect to B, we consider the following algebraic representation of G×Z F over F:

L(λ) def=
(
indGB−λ

)
/Z
⊗Z F =

(
indG×ZF

B−×ZF
λ
)
/F
, (19)

where ind means the algebraic induction functor of [Jan03, §I.3.3] and the last equality
follows from [Jan03, II.8.8(1)]. For α = ei − ei+1 ∈ S, we set

λα
def= e1 + · · ·+ ei ∈ X(T ),

so that the λα for α ∈ S are fundamental weights of G (see e.g. [BH15, §2.1]).
Let ρ : Gal(Qp/K) −→ G(F) be a continuous homomorphism, viewing L(λα) as a
continuous homomorphism

G(F) −→ Aut
(
L(λα)(F)

)

(where L(λα)(F) is the underlying F-vector space of the algebraic representation
L(λα)), we define the Galois representations for α ∈ S:

L(λα)(ρ) : Gal(Qp/K)
ρ
−→ G(F)

L(λα)
−→ Aut

(
L(λα)(F)

)
.

Recall that L(λα)(ρ) =
∧i

Fρ if α = ei − ei+1 ([BH15, Ex.2.1.3]). We let

⊗

α∈S

(
L(λα)(ρ)

)
∼=

n−1⊗

i=1

∧i
F
ρ

be the tensor product of the representations L(λα)(ρ) (over F) and define the following
finite-dimensional continuous representation of Gal(Qp/Qp) over F:

L
⊗

(ρ) def= ind⊗Qp

K

(⊗

α∈S

(
L(λα)(ρ)

))
, (20)

where ind⊗Qp

K means the tensor induction from Gal(Qp/K) to Gal(Qp/Qp) ([Col89],
[CR81, §13], see also the end of the proof of Lemma 2.4.2.3). Note that there are
Gal(Qp/Qp)-equivariant isomorphisms

L
⊗

(ρ∨) ∼= L
⊗

(ρ)∨ ∼= L
⊗

(ρ)⊗ ind⊗Qp

K

(
det(ρ)−(n−1)

)
(21)

(recall ind⊗Qp

K

(
det(ρ)−(n−1)

)
is still one dimensional).

Example 2.1.2.1. For n = 2, we thus just have L
⊗

(ρ) = ind⊗Qp

K (ρ).
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2.1.3 Weak local-global compatibility conjecture

We state our weak local-global compatibility conjecture (Conjecture 2.1.3.1).

Let r : Gal(F/F ) → GLn(F) be a continuous representation and r∨ its dual. We
assume:

(i) rc ∼= r∨ ⊗ ω1−n (where rc(g) def= r(cgc) for g ∈ Gal(F/F ));

(ii) r is an absolutely irreducible representation of Gal(F/F ).

Fix v|p in F+, V v ⊆ Uv ⊆ H(A∞,v
F+ ) compact open subgroups and Σ a finite set of

finite places of F+ containing

(a) the set of places of F+ that split in F and divide pN ;

(b) the set of places of F+ that split in F at which V v is not unramified;

(c) the set of places of F+ that split in F at which r is ramified.

We associate to r and Σ the maximal ideal mΣ in T Σ with residue field F generated
by ̟E and all elements

(
(−1)jNorm(w̃)j(j−1)/2T

(j)
w̃ − a

(j)
w̃

)

j,w̃
,

where j ∈ {1, . . . , n}, w̃ is a place of F lying above a finite place w of F+ that splits
in F and doesn’t belong to Σ, Xn+a(1)

w̃ Xn−1 + · · ·+a(n−1)
w̃ X+a(n)

w̃ is the characteristic
polynomial of r(Frobw̃) (an element of F[X], Frobw̃ is a geometric Frobenius at w̃)
and where a(j)

w̃ is any element in OE lifting a(j)
w̃ . Note that S(V v,F)[mΣ] 6= 0 in fact

implies assumption (i) above on r (though strictly speaking we need (i) to define mΣ

in T Σ). Note also that if U is any subgroup of H(A∞
F+) containing V v as a normal

subgroup, then U naturally acts on S(V v,F) and S(V v,F)[mΣ].

For ṽ|v in F , we denote by VG,ṽ the functor defined in (16) applied to smooth
representations of H(F+

v ) over F, where we identify H(F+
v ) with GLn(Fṽ) = G(Fṽ) via

ιṽ. For any finite place w̃ of F , we denote by rw̃ the restriction of r to a decomposition
subgroup at w̃.

Conjecture 2.1.3.1. Let r : Gal(F/F ) → GLn(F) be a continuous representation
that satisfies conditions (i) and (ii) above and fix a place v of F+ which divides p.
Assume that there exist compact open subgroups V v ⊆ Uv ⊆ H(A∞,v

F+ ) with V v normal
in Uv, a finite-dimensional representation σv of Uv/V v over F and a finite set Σ of
finite places of F+ as above such that HomUv (σv, S(V v,F)[mΣ]) 6= 0. Let ṽ|v in F .
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Then there is an integer d ∈ Z>0 depending only on v, Uv, V v, σv and r such that
there is an isomorphism of representations of Gal(Qp/Qp) on F:

VG,ṽ
(

HomUv(σv, S(V v,F)[mΣ])⊗ (ω−(n−1) ◦ det)
)
∼= L

⊗
(rṽ)⊕d. (22)

Remark 2.1.3.2. (i) In the special case σv = 1, Conjecture 2.1.3.1 boils down to
VG,ṽ(S(Uv,F)[mΣ]⊗ (ω−(n−1) ◦ det)) ∼= L

⊗
(rṽ)⊕d.

(ii) Conjecture 2.1.3.1 implies that the G(Fṽ)-representation HomUv(σv, S(V v,F)[mΣ])
determines the Gal(Qp/Qp)-representation L

⊗
(rṽ). Note that this doesn’t imply in

general that HomUv(σv, S(V v,F)[mΣ]) determines the Gal(Fṽ/Fṽ)-representation rṽ
itself (though this is also expected, see [PQ] and the references therein).
(iii) See §§3.2, 3.4 below for nontrivial evidence on Conjecture 2.1.3.1 when K is
unramified and n = 2.

We now check that, at least when p is odd, F/F+ is unramified at finite places
and H×OF + [1/N ]F

+ is quasi-split at finite places, Conjecture 2.1.3.1 holds for ṽ if and
only if it holds for ṽc (these extra assumptions come from the use of [Tho12, §6] in
the next lemma).

Lemma 2.1.3.3. Assume p > 2, F/F+ unramified at finite places and H×OF + [1/N ]F
+

quasi-split at finite places of F+. Let ṽ|v in F . Then the action of the center (F+
v )× ⊆

GLn(F+
v ) on S(V v,F)[mΣ] via ιṽ is given by det(rṽ)ω

n(n−1)
2 (via local class field theory

for F+
v ).

Proof. We can assume S(V v,F)[mΣ] 6= 0. The map S(V vUv,OE) −→ S(V vUv,F) be-
ing surjective for Uv small enough (see e.g. [BH15, Lemma 4.4.1] or [EGH13, §7.1.2]),
we have a surjection of smooth H(F+

v )-representations:

S(V v,OE)mΣ ։ S(V v,F)mΣ (23)

(where S(V vUv,OE), S(V v,OE)mΣ are defined as S(V vUv,F), S(V v,F)mΣ replacing
F by OE). By classical local-global compatibility applied to

(
lim
−→

U

S(U,OE)
)
⊗OE

E,

see e.g. [EGH13, Thm.7.2.1], we easily deduce with (23) that if (F+
v )× acts via ιṽ on

the whole S(V v,F)[mΣ] (inside S(V v,F)mΣ) by a single character, then this character
must be det(rṽ)ω

n(n−1)
2 .

Let us prove that (F+
v )× indeed acts by a character. The functor associating to

any local artinian OE-algebra A with residue field F the set of isomorphism classes
of deformations rA of r to A such that rcA ∼= r∨

A ⊗ ε1−n is pro-representable by a
local complete noetherian OE-algebra Rr,Σ of residue field F. When p > 2, F/F+ is
unramified at finite places and H ×OF + [1/N ] F

+ is quasi-split at finite places of F+, it
follows from [Tho12, Prop.6.7] that there is a natural such deformation with values
in T Σ(V vUv,OE)mΣ for any Uv (where T Σ(V vUv,OE)mΣ is defined as T Σ(V vUv,F)mΣ
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in §2.1.2 replacing F by OE), and hence by universality a continuous morphism of
local OE-algebras:

Rr,Σ −→ T
Σ(V vUv,OE)mΣ . (24)

Likewise, the functor associating to any A as above the set of isomorphism classes of
Gal(Fṽ/Fṽ)ab-deformations of det(rṽ) over A is pro-representable by the Iwasawa
algebra OEJGal(Fṽ/Fṽ)abK, and considering detA(rA|Gal(Fṽ/Fṽ)) for A = Rr,Σ provides
by the universal property again a continuous morphism of local OE-algebras:

OEJGal(Fṽ/Fṽ)abK −→ Rr,Σ. (25)

Since T Σ(V vUv,OE)mΣ acts by a character on S(V vUv,F)[mΣ] for any Uv, so is the
case of Rr,Σ on S(V v,F)[mΣ] by (24). Using (23), we see that it is enough to prove
that the induced morphism

OEJGal(Fṽ/Fṽ)abK
(25)
−→ Rr,Σ

(24)
−→ lim

←−

Uv

T Σ(V vUv,OE)mΣ

gives an action of Gal(Fṽ/Fṽ)ab on S(V v,OE)mΣ which, when restricted to F×
ṽ →֒

Gal(Fṽ/Fṽ)ab (via the local reciprocity map), coincides with the action of F×
ṽ on

S(V v,OE)mΣ as center of H(F+
v )

ιṽ∼= G(Fṽ). We can work in S(V v,OE)mΣ ⊗OE
E, in

which case this follows from local-global compatibility (as in [EGH13, Thm.7.2.1])
and from the fact that, by construction of the map (24) (see [Tho12, §6]) and by
(25), Gal(Fṽ/Fṽ)ab acts on πV

v
⊆ S(V v,OE)mΣ ⊗OE

E by multiplication by the char-
acter det(rπ)|Gal(Fṽ/Fṽ), where π is an irreducible H(A∞

F+)-subrepresentation of(
lim
−→

U

S(U,OE)
)
⊗OE

E such that πV
v

occurs in S(V v,OE)mΣ ⊗OE
E and where rπ is

its associated (irreducible) p-adic representation of Gal(F/F ) ([EGH13, Thm.7.2.1]
again).

Let π be a smooth representation of G(K) = GLn(K) over F with central character
Z(π) and denote by π⋆ the smooth representation of G(K) with the same underlying
vector space as π but where g ∈ G(K) acts by τ(g)−1.

Lemma 2.1.3.4. There is a Gal(Qp/Qp)-equivariant isomorphism

VG(π⋆) ∼= VG(π)⊗ Z(π)−(n−1)|Q×p ,

where Z(π)|Q×p is seen as a character of Gal(Qp/Qp) via local class field theory.

Proof. We use the notation of §2.1.1. Let w0 ∈ W be the element of maximal
length, the isomorphism πN1

∼
→ πw0N1w0, v 7→ w0v shows that one can compute

VG(π) using w0N1w0 instead of N1 and conjugating everything by w0 (e.g. x ∈ Z×
p

acts by w0ξG(x)w0, etc.). Now, it is easy to check that the F-linear isomorphism
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(π⋆)N1
∼
→ πw0N1w0 , v 7→ w0v is compatible with the FJXK[F ]-module structure on

both sides but where we twist the FJXK[F ]-action as follows on the right-hand side:
X acts by (1 +X)−1 − 1 and F acts by p−(n−1)F , p−(n−1) being here in the center of
G(K). Likewise, it is compatible with the action of Z×

p but where x ∈ Z×
p acts by

x−(n−1)ξG(x) on the right-hand side (with x−(n−1) in the center of G(K)). All this
easily implies the lemma.

Lemma 2.1.3.5. Assume p > 2, F/F+ unramified at finite places and H×OF + [1/N ]F
+

quasi-split at finite places of F+. We have a Gal(Qp/Qp)-equivariant isomorphism

VG,ṽc

(
HomUv(σv, S(V v,F)[mΣ])

)

∼= VG,ṽ
(

HomUv(σv, S(V v,F)[mΣ])
)
⊗ ind⊗Qp

Fṽ

(
det(rṽ)

−(n−1)ω
−n(n−1)2

2

)
.

Proof. This follows from Lemma 2.1.3.4 applied to π = HomUv(σv, S(V v,F)[mΣ]) to-
gether with Lemma 2.1.3.3, recalling that Z(π)|Q×p , seen as a character of Gal(Qp/Qp)

via local class field theory, is ind⊗Qp

Fṽ
(Z(π)) (where Z(π) is here seen as a character of

Gal(Fṽ/Fṽ)).

Proposition 2.1.3.6. Assume p > 2, F/F+ unramified at finite places and
H ×OF + [1/N ] F

+ quasi-split at finite places of F+. Conjecture 2.1.3.1 holds for ṽ if
and only if it holds for ṽc.

Proof. This follows from Lemma 2.1.3.5 together with rṽc
∼= r∨

ṽ ⊗ ω
1−n, (21) and an

easy computation.

2.1.4 A reformulation using C-groups

We show that one can give a more general and more natural formulation of Conjecture
2.1.3.1 (in the special case of Remark 2.1.3.2(i)) using C-parameters (Conjecture
2.1.4.5).

We start by some reminders about L-groups and C-groups.

Let k be a field and ksep a separable closure of k. We note Γk
def= Gal(ksep/k).

Let H be a connected reductive group defined over k, let Ĥ be its dual group, LH
its L-group and CH its C-group. We refer to [Bor79, §2], [BG14, §§2,5], [GHS18,
§9] and [Zhu, §1.1] for more details concerning these L-groups and C-groups. Note
that these two groups can be defined over Z. Their construction depends on the
choice of a pinning (BH , TH , {xα}α∈SH

) of Hksep . The dual group Ĥ has a natural
pinned structure (B

Ĥ
, T

Ĥ
, {xα̂}α∈SH

) with B
Ĥ

a Borel subgroup of Ĥ , T
Ĥ
⊆ B

Ĥ

a maximal split torus and {xα̂}α∈SH
a pinning of (B

Ĥ
, T

Ĥ
) (see [Con14, §§5,6] for

33



the fact that everything can be defined over Z) on which the group Γk is acting.
Let 1 → Gm → H̃ → H → 1 be the central Gm-extension of H (over k) whose
existence is proved in [BG14, Prop.5.3.1(a)]. The inverse images T

H̃
and B

H̃
of TH

and BH in H̃ksep are respectively a maximal torus and a Borel subgroup of H̃ksep .
Moreover, since the above extension is central, there is a unique pinning {x̃α}α∈SH

of (B
H̃
, T

H̃
) inducing {xα}α∈SH

on (B, T ) via the map H̃ksep → Hksep . This gives rise

to a pinned dual data (
̂̃
H,B̂̃

B
, T ̂̃

H
, {x̃α̂}α∈SH

) with an action of Γk (trivial on some

open subgroup) and a Γk-equivariant injection (Ĥ, B
Ĥ
, T

Ĥ
) →֒ (

̂̃
H,B ̂̃

H
, T ̂̃

H
) such that

{xα̂}α∈SH
induces {x̃α̂}α∈SH

.

The L-groups and C-groups are then defined as the group schemes

LH
def= Ĥ ⋊ Γk CH

def=
̂̃
H ⋊ Γk. (26)

We have the following simple description of
̂̃
H given in [Zhu, §1.1]. Let Ĥad and T ad

Ĥ

be the quotients of Ĥ and T
Ĥ

by the center of Ĥ and let δad be the cocharacter of
T ad
Ĥ
⊆ Ĥad defined as the half sum of positive roots of Ĥ with respect to (B

Ĥ
, T

Ĥ
).

The group Ĥad acts on Ĥ by the adjoint action and, after precomposition with δad,
this defines an action, in the category of Z-group schemes, of Gm on Ĥ. There is an

isomorphism of Z-group schemes
̂̃
H ∼= Ĥ⋊Gm identifying B ̂̃

H
with B

Ĥ
⋊Gm and T ̂̃

H
with T

Ĥ
⋊Gm = T

Ĥ
×Gm. We note that, since δad is fixed by the Galois action, this

isomorphism is Galois equivariant. Using this isomorphism, we identify X(T ̂̃
H

) with
X(T

Ĥ
) × Z ∼= X∨(TH) × Z. This shows that we have an exact sequence of Z-group

schemes:
1 −→ LH −→ CH

d
−−→ Gm −→ 1.

Let A be a topological Zp-algebra and assume from now on that k is either a
number field or a finite extension of Qp, so that we have an A-valued p-adic cyclotomic
character. We recall that a morphism ρ : Γk → LH(A) is called admissible if its
composition with the second projection LH(A)→ Γk is the identity (see [Bor79, §3]).

Definition 2.1.4.1. An L-parameter (resp. C-parameter) of H over A is an admis-
sible continuous morphism ρ : Γk −→ LH(A) (resp. ρ : Γk −→ CH(A) such that d ◦ ρ
is the p-adic cyclotomic character). When A is moreover an algebraically closed field,
we say that two L-parameters (resp. C-parameters) of H over A are equivalent if they

are conjugate by an element of Ĥ(A) (resp.
̂̃
H(A)).

Remark 2.1.4.2. Assume A is an algebraically closed field. Each element of
̂̃
H(A) is

the product of an element of Ĥ(A) and an element of the center of
̂̃
H(A). This can be

deduced from [BG14, Prop.5.3.3] or [Zhu, (1.2)]. This implies that two C-parameters
of H over A are equivalent if and only if they are conjugate by an element of Ĥ(A).
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For simplicity, we assume from now on that A is moreover an algebraically closed
field. We also assume (not for simplicity) that H has a connected center. We gener-
alize now the representation L

⊗
(ρ)⊗F Fp (see (20) for L

⊗
(ρ)).

Let (λα∨)α∈SH
be a family of fundamental coweights of H such that

ξH
def=

∑

α∈SH

λα∨ ∈ X(T
Ĥ

) ∼= X∨(TH) (27)

is fixed under the action of Γk (compare with (13) and note that the cocharacters λα∨
exist since H has a connected center but each of them doesn’t have to be fixed by Γk).
Let (rλα∨

, Vλα∨
) be the irreducible algebraic representation of Ĥ of highest weight λα∨

over A and let (r⊗
ξH
, V ⊗

ξH
) be the irreducible algebraic representation of ĤSH over A of

highest weight (λα∨)α∈SH
= the character of T SH

Ĥ
defined by (xα)α∈SH

7→
∑
α λα∨(xα).

Note that we have an isomorphism of algebraic representations of ĤSH :

(r⊗
ξH
, V ⊗

ξH
) ∼=

⊗

α∈SH

(rλα∨
, Vλα∨

). (28)

Let γ ∈ Γk and χα,γ be the character of Ĥ corresponding to the cocharacter γ(λα∨)−
λγα∨ ∈ X

∨(ZH) ⊆ X∨(TH). Comparing the highest weights, for γ ∈ Γk there is an
isomorphism of algebraic irreducible representations of ĤSH :

(
r⊗
ξH

(γ−1·), V ⊗
ξH

)
∼=
(
⊗α∈SH

(rλα∨
⊗ χγ−1α,γ) ◦ cγ, V

⊗
ξH

)
,

where cγ is the automorphism of ĤSH defined by (xα)α∈SH
7→ (xγ−1α)α∈SH

. Therefore
there exists an A-linear automorphism Mγ of V ⊗

ξH
, well defined up to a nonzero scalar,

such that, for (xα)α∈SH
∈ Ĥ(A)SH :

Mγ

(
r⊗
ξH

((γ−1xα)α∈SH
)
)
M−1

γ =
(
⊗α∈SH

rλα∨
(xγ−1α)

) ∏

α∈SH

χα,γ(xα). (29)

Moreover the subspaces of highest weight of these two representations over V ⊗
ξH

being
the same, we can choose Mγ such that it induces the identity on this line. With this
choice, the map γ 7→ Mγ is a representation of Γk over V ⊗

ξH
. Since ξH ∈ X∨(TH)Γk ,

we have
∏
α∈SH

χα,γ = 1 for all γ ∈ Γk so that, for x ∈ Ĥ(A), we have from (29) and
(28) (replacing γ−1xα by x for all α ∈ SH):

Mγ

(
⊗α∈SH

rλα∨
(x)
)
M−1

γ =
(
⊗α∈SH

rλα∨
(γx)

)
.

All this proves that there is an algebraic representation (L⊗
ξH
, V ⊗

ξH
) of LH on V ⊗

ξH

defined by
L⊗
ξH

(x, γ) def=
(
⊗α∈SH

rλα∨
(x)
)
Mγ
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for x ∈ Ĥ(A) and γ ∈ Γk. The isomorphism class of this representation does not
depend on the choice of the λα∨ such that ξH =

∑
λα∨ . Namely any other choice will

twist each rλα∨
by a character whose product over all α is trivial.

If ρ is an L-parameter of H over A we define the Γk-representation L⊗
ξH

(ρ) as the
composition L⊗

ξH
◦ ρ. Moreover if two L-parameters ρ1 and ρ2 are equivalent, the

representations L⊗
ξH

(ρ1) and L⊗
ξH

(ρ2) are clearly isomorphic. If ρ is a C-parameter of
H over A, ρ is in particular an L-parameter of H̃ over A by (26), and we define the
Γk-representation L⊗,C

ξH
(ρ) def= L⊗

ξ
H̃

(ρ), where

ξ
H̃

def= (ξH , 0) ∈ X(T ̂̃
H

) ∼= X(T
Ĥ

)× Z. (30)

We now compare L⊗
ξH

(ρ), L⊗,C
ξH

(ρ) between k and finite extensions k′ of k.

We fix k′ ⊆ ksep a finite extension of k, H ′ a connected reductive group over k′

and we let H def= Resk′/k(H ′). We let Σk′ be the set of embeddings k′ →֒ ksep inducing
the identity on k and τ0 ∈ Σk′ the inclusion k′ ⊆ ksep. For τ ∈ Σk′ we choose gτ ∈ Γk
such that τ = gτ ◦ τ0, and we have Γk =

∐
τ∈Σk′

gτΓk′. The dual group Ĥ of H is
isomorphic to indΓk

Γk′
Ĥ ′, i.e. the group scheme of functions f : Γk → Ĥ ′ such that

f(gh) = h−1f(g) for all g ∈ Γk and h ∈ Γk′ (see [Bor79, §5.1(4)]). More explicitly,

the map f 7→ (f(gτ))τ∈Σk′
induces an isomorphism indΓk

Γk′
Ĥ ′ ∼= Ĥ ′Σk′ and the action

of Γk on Ĥ ′Σk′ is given by

g · (xτ )τ∈Σk′
=
(
(g−1
τ ggg−1◦τ )xg−1◦τ

)
τ∈Σk′

.

The map (xτ )τ∈Σk′
7→ xτ0 is a Γk′-equivariant map Ĥ → Ĥ ′. It extends to a morphism

of group schemes Ĥ ⋊ Γk′ → LH ′ (resp.
̂̃
H ⋊ Γk′ → CH ′) inducing the identity on

the Γk′ factor (resp. the Gm and Γk′ factors). If ρ is an L-parameter (resp. a C-
parameter) of H over A, we can define an L-parameter (resp. a C-parameter) ρ′ of
H ′ by restriction of ρ to Γk′ and composition with the above morphism.

Lemma 2.1.4.3. The map ρ 7→ ρ′ induces a bijection between equivalence classes
of L-parameters (resp. of C-parameters) of H over A and equivalence classes of L-
parameters (resp. C-parameters) of H ′ over A.

Proof. A map ρ from Γk to LH(A) of the form (cρ, Id) is admissible if and only if
cρ is a 1-cocycle of Γk in Ĥ(A) and is continuous if and only if cρ is continuous.
Moreover two admissible ρ are equivalent if and only if they are conjugate by an
element of Ĥ(A). Therefore the map associating to ρ the class [cρ] of cρ induces
a bijection between the set of equivalence classes of L-parameters and the set of
classes [c] ∈ H1

cont(Γk, Ĥ(A)). The fact that the above map ρ 7→ ρ′ induces an
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isomorphism H1
cont(Γk, Ĥ(A)) ∼

→ H1
cont(Γk′, Ĥ ′(A)) is a consequence of a nonabelian

version of Shapiro’s Lemma (see for example [Sti10, Prop.8] noting that everything
can be made continuous there or [GHS18, Lemma 9.4.1] in a more restricted context).

Therefore the map associated to a C-parameter ρ the class [cρ] of cρ induces a
bijection between the set of equivalence classes of C-parameters and the set of classes

c ∈ H1
cont(Γk,

̂̃
H(A)) such that d(c) ∈ H1

cont(Γk, A
×) ∼= Homcont

gp (Γk, A×) coincides with
the p-adic cyclotomic character. Let H̃1

def= Resk′/k H̃ ′, so that H̃ can be identified

to a quotient of H̃1. It follows from Remark 2.1.4.2 that H1(Γk,
̂̃
H1(A)) is the set of

classes of 1-cocycles of Γk with values in
̂̃
H1(A) up to Ĥ(A)-conjugation. It follows

again from Remark 2.1.4.2 that the set of equivalence classes of C-parameters of H

over A is in bijection with the subset of H1
cont(Γk,

̂̃
H1(A)) of classes whose image in

H1
cont(Γk, (A

×)[k′:k]) ∼= Homcont
gp (Γk, (A×)[k′:k]) is the image of the p-adic cyclotomic

character via the diagonal embedding A× →֒ (A×)[k′:k]. The conclusion follows from
the commutativity of the following diagram

H1
cont

(
Γk,

̂̃
H(A)

)
H1

cont

(
Γk, ( ̂Resk′/kGm)(A)

)

H1
cont

(
Γk′,

̂̃
H ′(A)

)
H1

cont

(
Γk′, Ĝm(A)

)
≀ ≀

and from the fact that the classes corresponding to the cyclotomic characters corre-
spond under the right vertical arrow.

Lemma 2.1.4.4. Let ρ be an L-parameter, resp. a C-parameter, of H over A and
ρ′ the L-parameter, resp. C-parameter, of H ′ over A corresponding to ρ by Lemma
2.1.4.3. Let ξH′ ∈ X(T

Ĥ′
) be as in (27) (with H ′ instead of H) and let ξH ∈ X(T

Ĥ
) ∼=

X(T
Ĥ′

)Σk′ be the character (ξH′)τ∈Σk′
(which is fixed by Γk). Then we have an iso-

morphism of representations of Γk over A:

L⊗
ξH

(ρ) ∼= ind⊗k
k′

(
L⊗
ξH′

(ρ′)
)

resp. L⊗,C
ξH

(ρ) ∼= ind⊗k
k′

(
L⊗,C
ξH′

(ρ′)
)
.

Proof. Let ρ′ be an L-parameter of H ′ over A. If g ∈ Γk and τ ∈ Σk′, let ggτ =
gg◦τh(g, τ) with h(g, τ) ∈ Γk′. For g ∈ Γk, we can check that the above automorphism
Mg of V ⊗

ξH
= (V ⊗

ξH′
)⊗[k′:k] is defined by Mg(⊗τ∈Σk′

vτ ) = ⊗τ∈Σk′
(Mh(g,g−1◦τ)vg−1◦τ ).

Moreover, setting for g ∈ Γk:

ρ(g) def=
(
(ρ′(h(g, g−1 ◦ τ))τ∈Σk′

, g
)
∈ Ĥ ′(A)Σk′ ⋊ Γk

it is easy to check that ρ is an admissible morphism and that the equivalence class of ρ
corresponds to ρ′ via Lemma 2.1.4.3. The result follows from an explicit computation
together with the definition of the tensor induction ([CR81, §13], see also the end of
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the proof of Lemma 2.4.2.3 below). The case of C-parameters can be deduced from
the case of L-parameters as in the proof of Lemma 2.1.4.3.

We will later need to “untwist” a C-parameter into an L-parameter. This can
be done when the group H has a twisting element (as we assumed in §2.1.1), i.e. a
character θH ∈ X(TH)Γk ∼= X∨(T

Ĥ
)Γk such that 〈θH , α∨〉 = 1 for all α ∈ SH . By [Zhu,

(1.3)], there exists a Galois equivariant isomorphism
̂̃
H ∼= Ĥ×Gm given explicitly by

tθH
: Ĥ ⋊Gm

∼= Ĥ ×Gm

(h, t) 7→ (hθH(t), t).

This induces an isomorphism of group schemes CH ∼= LH × Gm. The choice of θH
gives a bijection between the equivalence classes of C-parameters and of L-parameters
of H over A given by ρC 7→ ρ, so that tθH

◦ ρC ∼= (ρ, ε), where ε is (the image in A×)
of the p-adic cyclotomic character.

Let ξH ∈ X∨(TH)Γk ∼= X(T
Ĥ

)Γk be a dominant character of Ĥ fixed by Γk as above.
The algebraic representation rξ

H̃
◦t−1

θH
of Ĥ×Gm (see (30) for ξ

H̃
) is the representation

of highest weight (ξH ,−〈ξH , θH〉) and similarly L⊗
ξ

H̃
◦ t−1

θH
= L⊗

ξH
⊗x−〈ξH ,θH〉 (where we

note xh the character x 7→ xh of Gm). This proves that we have

L⊗,C
ξH

(ρC) ∼= L⊗
ξH

(ρ)⊗ ε−〈ξH ,θH〉. (31)

On order to state the reformulation/generalization Conjecture 2.1.3.1 (more pre-
cisely of its variant in Remark 2.1.3.2(i) and extending scalars from F to Fp), we
broaden the global setting of §2.1.2 following [DPS].

We now letH be a connected reductive group defined over Q. We fix some compact
open subgroup Up ⊆ H(A∞,p

Q ) satisfying the hypotheses of [DPS, §9.2] (Up there is
denoted Kp

f ). For i ≥ 0 an integer, let H̃ i(Fp) be the completed cohomology of the
tower of locally symmetric spaces associated to H of tame level Up defined in [Eme06]
(see [DPS, §9.2]). Let Σ be a set of finite places of Q containing p and the places of
Q where H is not unramified or Up is not hyperspecial. Let TΣ be the abstract Hecke
algebra defined as the tensor product of the spherical Z[p−1]-Hecke algebras Hℓ of
H(Qℓ) with respect to Up

ℓ . We recall that a maximal open ideal m ⊆ TΣ is weakly
non-Eisenstein [DPS, Def.9.13] if the equivalent assumptions of [DPS, Lemma 9.10]
are satisfied. In this case there is a unique q0 ≥ 0 such that H̃q0(Fp)m 6= 0. Then the
H(Qp)-representation H̃q0(Fp)[m] is smooth and admissible and the residue field of m
is finite. We choose an embedding T/m →֒ Fp.

Considering [DPS, Conj.9.3.1], the following construction is natural. Let rC :
Gal(Q/Q)→ CH(Fp) be a C-parameter unramified outside a finite number of primes
and choose Σ big enough to contain all the primes of ramification of rC . For each
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ℓ /∈ Σ, let xℓ : Hℓ → Fp be the character such that the semisimplification of rC(Frobℓ)
is contained in the Ĥ(Fp)-conjugacy class CC(xℓ)ζ(ℓ−1) of CH(Fp) defined by the
version of Satake isomorphism for C-groups in [Zhu] and ζ is the cocharacter t 7→

(2δad(t−1), t2) of
̂̃
H (recall δad is defined at the beginning of this section). We define

mΣ as the maximal ideal of TΣ generated by the kernels of all the xℓ with ℓ /∈ Σ. Note
that this gives us a natural embedding TΣ/mΣ →֒ Fp.

Assume that HQp

def= H×QQp is isomorphic to ResK/Qp(H ′) for a finite extension K
of Qp and some split connected reductive group H ′ over K (in particular HQp is quasi-
split) and that H ′ has a connected center. Then we can fix a cocharacter ξH′ of H ′

such that 〈ξH′, α〉 = 1 for all α ∈ SH′ and define ξHQp

def= ResK/Qp(ξH′)|Gm (restriction
to the diagonal embedding Gm →֒ ResK/Qp(Gm) = G[K:Qp]

m ), which is a cocharacter of
HQp satisfying 〈ξHQp

, α〉 = 1 for all α ∈ SHQp
. We can finally conjecture:

Conjecture 2.1.4.5. Assume that the H(Qp)-representation π
def= H̃q0(F)[mΣ] is

nonzero. Then D∨
ξH′

(π) (defined similarly to (15)) is finite-dimensional over Fp((X))
and there is an integer d ∈ Z>0 such that we have an isomorphism of representations
of Gal(Qp/Qp) over Fp:

V∨
(
D∨
ξH′

(π)
)
⊗TΣ/mΣ Fp ∼=

(
L⊗,C
ξHQp

(
rC |Gal(Qp/Qp)

))⊕d
.

We now check that, when H is the restriction of scalars of a compact unitary
group as in §2.1.2, Conjecture 2.1.4.5 is equivalent to the special case of Conjecture
2.1.3.1 in Remark 2.1.3.2(i) where the coefficient field is Fp instead of F.

We go back to the notation of §§2.1.2, 2.1.3 and we fix an embedding F →֒ Fp. For
simplification we assume that there is a unique place v of F+ over p and we fix ṽ in F
above v, so that we have an isomorphism (ResF+/QH)×Q Qp

∼= ResFṽ/Qp GLn. The
base field k at the beginning is now F+, the connected reductive group H over k is
the compact unitary group H of §2.1.2 (so that Ĥ ∼= G = GLn), ξH is the cocharacter
ξG of Example 2.1.1.3, the twisting element θH is the character θG of Example 2.1.1.3
and the algebraically closed field A is Fp.

Let r be a continuous irreducible representation Gal(Q/F ) → GLn(Fp) as in
§2.1.3 (composed with our embedding F →֒ Fp). Let r′ : Gal(Q/F+) → Gn(Fp) be
the continuous morphism associated to r using [CHT08, Lemma 2.1.4] and denote by
(r′)C : Gal(Q/F+) → CH(Fp) the C-parameter of H over Fp obtained by the con-
struction of [BG14, §8.3]. A simple computation shows that (r′)C (or more precisely

its composition with
̂̃
H⋊Gal(Q/F+) ։

̂̃
H⋊Gal(F/F+)) is the composition of (r′, ω)

with
Gn ×Gm −→ Ĥ ⋊ (Gm ×Gal(F/F+))

(g, µ, γ, λ) 7−→ (gθ′
H(λ)−1, λ, γ)

(32)
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where g ∈ GLn(Fp), µ, λ ∈ F
×
p , γ ∈ Gal(F/F+) and θ′

H ∈ X(T ) is the character
θ′
H(diag(x1, . . . , xn)) = x−1

2 x−2
3 · · ·x

1−n
n . Finally we define rC as the C-parameter of

ResF+/Q(H) over Fp obtained from the application of Lemma 2.1.4.3 to (r′)C . We
can check that the maximal ideal mΣ of TΣ defined by rC coincides with the ideal
mΣ defined in §2.1.3. This can be checked using the formulas relating the Satake
isomorphism for C-groups with the usual Satake isomorphism ([Zhu, §1.4]) and the
explicit formulas [Gro98, (3.13)], [Gro98, (3.14)].

Note that, seeing now θH and θ′
H as cocharacters of T (recall ĜLn ∼= GLn), we

have θH ◦ ω = (θ′
H ◦ ω)ωn−1, so that we have, using (32):

(r′)C = t−1
θH
◦ ((r ⊗ ωn−1), ω).

Let ξv
def= ξH ×F+ F+

v and ξp
def= ResF+

v /Qp
(ξv)|Gm. Then (31) and Lemma 2.1.4.4 imply

(note that ξv is fixed by Gal(Qp/F
+
v ) since H ×F+ F+

v is split):

L⊗,C
ξp

(rC |Gal(Qp/Qp)) ∼= ind⊗Qp

F+
v

(
r⊗
ξv

(rṽ ⊗ ωn−1)ω−〈ξH ,θH〉
)

= L
⊗

(rṽ)⊗ δ−1
G .

This shows that Conjecture 2.1.4.5 is equivalent to the special case of Conjecture
2.1.3.1 in Remark 2.1.3.2(i) (with Fp instead of F).

2.2 Good subquotients of L
⊗

From now on we assume that K is unramified (i.e. K = Qpf ). We define the algebraic
representation L

⊗
of
∏
σ∈Gal(K/Qp)G together with “good subquotients” of L

⊗
, and

prove various properties of these good subquotients. This section is entirely on the
“Galois side” (though no Galois representation appears yet). All the results, except
Remark 2.2.3.12, in fact hold for any split reductive connected algebraic group G/Z
with connected center.

2.2.1 Definition and first properties

We define good subquotients of L
⊗

.

If H is an algebraic group over Z, we now write H instead of H ×Z F (in order
not to burden the notation) and HGal(K/Qp) for the group product

∏
σ∈Gal(K/Qp)H (it

is not a subgroup of H !).

We define the following algebraic representation of GGal(K/Qp) over F:

L
⊗ def=

⊗

Gal(K/Qp)

(⊗

α∈S
L(λα)

)
(33)
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(recall L(λα) is defined in (19)). Note that L
⊗

is also the tensor product of all
fundamental representations of the product group GGal(K/Qp). In particular the center
Z

Gal(K/Qp)
G acts on L

⊗
by the character θG|ZG

⊗ · · · ⊗ θG|ZG︸ ︷︷ ︸
Gal(K/Qp)

, where θG is as in Example

2.1.1.3, i.e.
θG =

∑

α∈S
λα ∈ X(T ). (34)

Remark 2.2.1.1. (i) With the notation of §2.1.4, the representation L
⊗

is the re-
striction to Ĥ of the representation (L⊗

ξH
, V ⊗

ξH
) of LH , where k = F, H = ResK/Qp(G)

and ξH = (ξG, . . . , ξG) ∈ X(T
Ĥ

) (ξG as in Example 2.1.1.3).
(ii) Since λα ∈ ⊕ni=1Z≥0ei, all the weights of X(T ) appearing in each L(λα)|T are also
in ⊕ni=1Z≥0ei, and thus the same holds for the weights of L

⊗
|T (where T is diagonally

embedded into GGal(K/Qp)). This follows from the classical fact that the weights ap-
pearing in L(λ)|T for any dominant λ ∈ X(T ) are the points in ⊕ni=1Zei

∼= X(T ) of
the convex hull in ⊕ni=1Rei of the weights w(λ), w ∈W .

Fix P a standard parabolic subgroup of G, if R is a finite-dimensional algebraic
representation of PGal(K/Qp) over F, we write R|ZMP

for the restriction of R to ZMP

acting via the diagonal embedding

ZMP
→֒ Z

Gal(K/Qp)
MP

⊆ GGal(K/Qp). (35)

Since ZMP
is a torus, it follows from [Jan03, §I.2.11] that R|ZMP

is the direct sum

of its isotypic components. For instance, if P = G and R = L
⊗

, there is only one
isotypic component as ZMG

= ZG acts on L
⊗

via the character fθG|ZG
.

Lemma 2.2.1.2. Any isotypic component of R|ZMP
carries an action of M

Gal(K/Qp)
P

when viewed inside R|
M

Gal(K/Qp)

P

.

Proof. This just comes from the fact that the action of ZMP
commutes with that of

M
Gal(K/Qp)
P .

Definition 2.2.1.3. Let P̃ ⊆ P be a Zariski closed algebraic subgroup containing MP

and R an algebraic representation of PGal(K/Qp) over F, a subquotient (resp. subrepre-
sentation, resp. quotient) ofR|

P̃Gal(K/Qp) is a good subquotient (resp. subrepresentation,
resp. quotient) if its restriction to ZMP

is a (direct) sum of isotypic components of
R|ZMP

.

Remark 2.2.1.4. A Zariski closed subgroup P̃ as in Definition 2.2.1.3 actually de-
termines the standard parabolic subgroup P that contains it. Indeed, assume there
is another standard parabolic subgroup P ′ such that MP ′ ⊆ P̃ ⊆ P ′. Then we have
MP ′ ⊆ P which implies P ′ ⊆ P . Symmetrically, we also have P ⊆ P ′, hence P = P ′.
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Since isotypic components of R|ZMP
tautologically occur with multiplicity 1, we

see in particular that there is only a finite number of good subquotients of R|
P̃Gal(K/Qp).

For instance the entire L
⊗

is the only good subquotient of L
⊗
|GGal(K/Qp) . If ˜̃P ⊆ P̃

is another Zariski closed algebraic subgroup as in Definition 2.2.1.3, any good sub-
quotient (resp. subrepresentation, resp. quotient) of R|

P̃Gal(K/Qp) is a good subquotient
(resp. subrepresentation, resp. quotient) of R|˜̃

P
Gal(K/Qp) (but the converse is wrong).

Lemma 2.2.1.5. There exists a filtration on L
⊗
|
P̃Gal(K/Qp) by good subrepresentations

such that the graded pieces exhaust the isotypic components of L
⊗
|ZMP

seen as rep-

resentations of P̃Gal(K/Qp) via the surjection P̃Gal(K/Qp)
։ M

Gal(K/Qp)
P and Lemma

2.2.1.2.

Proof. It is enough to prove the lemma for P̃ = P . We prove the following statement
(which implies the lemma): let H be a split connected reductive algebraic group over
Z with connected center, TH ⊆ H a split maximal torus in H , BH ⊆ H a Borel
subgroup containing TH with set of (positive) roots R+

H , V a finite-dimensional H-
module over F, QH ⊆ H a parabolic subgroup containing BH with Levi decomposition
MQH

NQH
and center ZMQH

⊆ TH , Z ′
MQH

a subtorus of ZMQH
and λ′

QH
∈ X(Z ′

MQH
) def=

HomGr(Z ′
MQH

,Gm). Then the Z ′
MQH

-isotypic component Vλ′QH
of V is a quotient of

two subrepresentations in V |QH
which are both direct sums of isotypic components

of V |Z′
MQH

(one applies this result to H = GGal(K/Qp), V = L
⊗

, QH = PGal(K/Qp)

and Z ′
MQH

= ZMP
). Note that as above V = ⊕λ′QH

Vλ′QH
and that Vλ′QH

carries from

V |MQH
an action of MQH

by the same proof as for Lemma 2.2.1.2. Let R(QH)+ ⊆ R+
H

be the positive roots of MQH
, if α ∈ R+

H\R(QH)+, denote by α its image via the
quotient map X(TH) ։ X(Z ′

MQH
) and Nα ⊆ NQH

the root subgroup. If nα ∈ Nα

and λ′
QH
∈ X(Z ′

MQH
), then we have nα(Vλ′QH

) ⊆
∑+∞
i=0 Vλ′QH

+iα by [Jan03, §II.1.19]
(the sum being finite inside V ). Fix λ′

QH
∈ X(Z ′

MQH
) that occurs in V |Z′MQH

and let

W(λ′
QH

) be the set of λ′′
QH
∈ X(Z ′

MQH
) of the form λ′

QH
+
(∑

α∈R+
H

\R(QH )+ Z≥0α
)

that
occur in V |Z′MQH

, we deduce that both subspaces

∑

λ′′QH
∈W(λ′QH

)\{λ′QH
}
Vλ′′

QH
(

∑

λ′′QH
∈W(λ′QH

)

Vλ′′
QH

are preserved by NQH
, hence by QH , inside V . Since their cokernel is exactly Vλ′

QH
,

this proves the statement.

We will use the following lemma extensively.

Lemma 2.2.1.6. If Q is a (standard) parabolic subgroup of G containing P , any iso-
typic component of R|ZMQ

is a good subquotient of R|PGal(K/Qp) (hence of R|
P̃Gal(K/Qp)).
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Proof. By Lemma 2.2.1.5 (applied in the case P̃ = P and with P there being Q), such
an isotypic component is a good subquotient of R|QGal(K/Qp), and thus is a subquotient
of R|PGal(K/Qp) since P ⊆ Q. It is also obviously a direct sum of isotypic components
of R|ZMP

since ZMQ
⊆ ZMP

. This proves the lemma.

Remark 2.2.1.7. Let P̃ , P and R as in Definition 2.2.1.3 and define a good sub-
quotient of R|

P̃
(for the diagonal embedding P̃ →֒ P̃Gal(K/Qp) similar to (35)) as a

subquotient of R|
P̃

such that its restriction to ZMP
is a sum of isotypic components of

R|ZMP
. Then, using the same kind of argument as for the proof of Lemma 2.2.1.5, one

can prove that a good subquotient of R|
P̃

is also a good subquotient of R|
P̃Gal(K/Qp),

so that good subquotients of R|
P̃

and of R|
P̃Gal(K/Qp) are actually the same.

2.2.2 The parabolic group associated to an isotypic component

Fix P ⊆ G a standard parabolic subgroup and CP an isotypic component of L
⊗
|ZMP

,
we associate to CP a subset of the set of simple roots S (see (37)), as well as the
standard parabolic subgroup of G, denoted by P (CP ), corresponding to this subset.

We will use the following two lemmas, the first being well-known.

Lemma 2.2.2.1. Let λ ∈ X(T ) ⊗Z Q be dominant. Then the Weyl group of the
root subsystem of R generated by the simple roots α ∈ S such that sα fixes λ is the
subgroup of W of elements fixing λ.

Lemma 2.2.2.2. Let α ∈ S. Then
∑
w∈W (P )w(α) ≥ 0, and we have

∑
w∈W (P )w(α) =

0 if and only if α ∈ S(P ). Moreover, if α ∈ S\S(P ), then α is in the support of∑
w∈W (P )w(α).

Proof. If α ∈ S(P ), it is clear that
∑
w∈W (P )w(α) = 0 since, for each w ∈ W (P ),

we also have wsα ∈ W (P ). If α ∈ S\S(P ), then −α is dominant for MP , that
is, −〈α, β〉 ≥ 0 for β ∈ S(P ). This implies that w(−α) ≤ −α for w ∈ W (P ).
Summing over W (P ) gives −

∑
w∈W (P )w(α) ≤ −|W (P )|α or equivalently |W (P )|α ≤∑

w∈W (P )w(α). This proves the lemma.

If w ∈W satisfies w(S(P )) ⊆ S, we denote by wP the standard parabolic subgroup
of G whose associated set of simple roots is w(S(P )). It has Levi subgroup MwP =
wMPw

−1 (so wP = (wMPw
−1)N) and Weyl group W (wP ) = wW (P )w−1 (caution:

wP is not wPw−1 if w 6= 1!). If λ ∈ X(T ), we define

λ′ def=
1

|W (P )|

∑

w′∈W (P )

w′(λ) ∈ (X(T )⊗Z Q)W (P ). (36)
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Remark 2.2.2.3. (i) Note that λ′ only depends on λ|ZMP
since two distinct λ with the

same restriction to ZMP
differ by an element in

∑
α∈S(P ) Zα and since

∑
w′∈W (P )w(α) =

0 for α ∈ S(P ) by Lemma 2.2.2.2.
(ii) It easily follows from the definitions and Lemma 2.2.2.2 that if w ∈ W satisfies
w(S(P )) ⊆ S and λ ∈ X(T ) is any weight, then w(λ′) = (w(λ))′, where (w(λ))′ is
given by the same formula as in (36) applied to the parabolic wP and the character
w(λ).

Lemma 2.2.2.4. Let P be a standard parabolic subgroup of G.

(i) Let λ ∈ X(T ), there exists w ∈ W such that w(S(P )) ⊆ S and w(λ)|ZMwP

coincides with the restriction to ZMwP
of a dominant weight of X(T )⊗Z Q.

(ii) Let λ ∈ X(T ) such that λ|ZMP
occurs in L

⊗
|ZMP

and let w as in (i). Then
we have fθG − w(λ) =

∑
α∈S nαα for some nα ∈ Z≥0 (see (34) for θG) and the

subset

w(S(P )) ∪ {α ∈ S, nα 6= 0} ⊆ S (37)

only depends on λ|ZMP
.

Proof. (i) We first claim that it is equivalent to find w such that w(S(P )) ⊆ S and
w(λ′) is dominant with λ′ as in (36). Assume we have such a w, since w′(λ)|ZMP

=
λ|ZMP

for all w′ ∈W (P ), we have λ′|ZMP
= λ|ZMP

and thus w(λ)|ZMwP
= w(λ′)|ZMwP

.
Conversely, assume that there is w such that w(S(P )) ⊆ S and w(λ)|ZMwP

= µ|ZMwP

for some dominant µ in X(T ) ⊗Z Q, and set µ′ def= 1
|W (P )|

∑
w′∈W (wP ) w

′(µ) ∈

(X(T ) ⊗Z Q)W (wP ). Then we have µ′ = w(λ′) by Remark 2.2.2.3(ii) and µ ≥ µ′

(as µ ≥ w′(µ) for any w′ ∈ W since µ is dominant). Thus µ − w(λ′) = µ − µ′ =∑
α∈S(wP ) nαα for some nα ∈ Q≥0 (recall µ|ZMwP

= µ′|ZMwP
). This implies that

〈w(λ′), β〉 = 〈µ, β〉 −
∑

α∈S(wP )

nα〈α, β〉 ≥ 0

for any β ∈ S\S(wP ) (as µ is dominant and 〈α, β〉 ≤ 0 if α 6= β ∈ S). Since
〈w(λ′), β〉 = 〈µ′, β〉 = 0 for β ∈ S(wP ) (use again Lemma 2.2.2.2), we see that w(λ′)
is dominant.
Now let us find such a w. First, pick w′ ∈ W such that w′(λ′) is dominant, by
Lemma 2.2.2.1 applied to w′(λ′) the set of elements β in S such that sβ fixes w′(λ′)
generate a root subsystem of R with corresponding Weyl group the subgroup of W of
elements that fix w′(λ′). This root subsystem has two natural bases of simple roots:
namely the elements β above and the elements w′(γ) ∈ w′(S) such that sγ fixes λ′

(they are usually distinct as W doesn’t preserve S). This second basis obviously
contains w′(S(P )). Therefore, there is w′′ in the Weyl group of this root subsystem,
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i.e. w′′ ∈ W fixing w′(λ′), that maps the second basis to the first. In particular we
have w′′w′(S(P )) ⊆ S and w′′w′(λ′) = w′(λ′) dominant, thus we can take w def= w′′w′.

(ii) The positivity of the nα follows from the fact fθG is the highest weight of L
⊗
|T (for

the diagonal embedding of T as in (35)). Let w1, w2 as in (i) and λ′ as in (36). Then
w1(λ′) = w2(λ′) as these two weights are dominant (by the first part of the proof of
(i)) and in a single W -orbit. Since λ′ only depends on λ|ZMP

by Remark 2.2.2.3(i), it is
therefore enough to prove that the support of fθG−w(λ′) is exactly the set of simple
roots (37) for one (any) w as in (i). Writing fθG−w(λ′) = (fθG−w(λ))+(w(λ)−w(λ′))
and recalling that w(λ)−w(λ′) is a sum of roots in w(S(P )) ⊆ S (as w(λ), w(λ′) have
same restriction to ZMwP

from the proof of (i)), we see that this support is contained
in (37) and that it contains {α ∈ S\w(S(P )), nα 6= 0}. It is thus enough to prove
that this support also contains w(S(P )). Since fθG ≥ w(λ′) (use fθG ≥ ww′(λ) for
any w′ ∈ W and sum over w′ ∈ W (P )) and 〈β, α〉 ≤ 0 if α 6= β ∈ S, it is enough to
check that 〈fθG − w(λ′), α〉 > 0 (in Q) for any α ∈ w(S(P )). But this follows from
Lemma 2.2.2.2 and 〈fθG − w(λ′), α〉 = f〈θG, α〉 − 〈w(λ′), α〉 = f − 0 = f .

Remark 2.2.2.5. Note that it is not true in general that, for λ as in Lemma
2.2.2.4(ii), one can find w ∈ W such that w(S(P )) ⊆ S and w(λ)|ZMwP

is the re-
striction to ZMwP

of a dominant weight of X(T ) (one really needs X(T )⊗Z Q).

The proof of Lemma 2.2.2.4 also gives the following equivalent proposition that
we will use repeatedly in the sequel.

Proposition 2.2.2.6. Let P be a standard parabolic subgroup of G.

(i) Let λ ∈ X(T ) and λ′ as in (36), there exists w ∈ W such that w(S(P )) ⊆ S
and w(λ′) is a dominant weight of X(T )⊗Z Q.

(ii) Let λ ∈ X(T ) such that λ|ZMP
occurs in L

⊗
|ZMP

and let w as in (i). Then we
have fθG−w(λ′) =

∑
α∈S nαα for some nα ∈ Q≥0 and the support of fθG−w(λ′)

is S(P (CP )).

Let CP be an isotypic component of L
⊗
|ZMP

associated to some λP ∈ X(ZMP
) =

HomGr(ZMP
,Gm). We denote by P (CP ) the unique standard parabolic subgroup of

G whose associated set of simple roots S(P (CP )) is (37) for one (equivalently any)
weight λ ∈ X(T ) such that λ|ZMP

= λP . We also define

W (CP ) def= {w ∈W as in Proposition 2.2.2.6(i) for λ ∈ X(T ), λ|ZMP
= λP} (38)

(W (CP ) doesn’t depend on the choice of such λ by the claim in the proof of Lemma
2.2.2.4(i) and by Remark 2.2.2.3(i)). We see from (37) that for all w ∈ W (CP ) we
have the inclusion

wP ⊆ P (CP ). (39)

45



Note that the set W (CP ) is not in general a group, in particular it is distinct in
general from the Weyl group W (P (CP )) (see Lemma 2.2.2.10 below for the relation
between the two).

Remark 2.2.2.7. The inclusion wP ⊆ P (CP ) for some w ∈W (such that w(S(P )) ⊆
S) doesn’t imply w ∈ W (CP ) (take P = B). Also P (CP ) doesn’t necessarily contain
P , see e.g. the end of Example 2.2.2.9(ii) below. The subgroup generated by all wP
for w ∈ W (CP ) may also be strictly contained in P (CP ) (see e.g. Example 2.2.2.9(i)
below).

The parabolic subgroups P (CP ) respect inclusions.

Lemma 2.2.2.8. Let P ′ ⊆ P be two standard parabolic subgroups of G, CP an
isotypic component of L

⊗
|ZMP

and CP ′ an isotypic component of L
⊗
|ZM

P ′
such that

CP ′ ⊆ CP |ZM
P ′

. Then P (CP ′) ⊆ P (CP ).

Proof. Let λ ∈ X(T ) such that CP ′ is the isotypic component of λ|ZM
P ′

. Then by

assumption CP is the isotypic component of λ|ZMP
. Define λ′

P ∈ (X(T ) ⊗Z Q)W (P ),
λ′
P ′ ∈ (X(T ) ⊗Z Q)W (P ′) as in (36) for respectively P and P ′ and let (wP , wP ′) ∈
W×W such that wP (S(P )) ⊆ S and wP (λ′

P ) dominant, wP ′(S(P ′)) ⊆ S and wP ′(λ′
P ′)

dominant (wP , wP ′ exist by Proposition 2.2.2.6(i)). Then we have

wP (λ′
P ) =

1
|W (P )|

∑

w′∈W (wP P )

w′wP (λ), wP (λ′
P ′) =

1
|W (P ′)|

∑

w′∈W (wP P ′)

w′wP (λ)

and also

wP (λ′
P ) =

|W (P ′)|
|W (P )|

∑

σ∈W (wP P )/W (wP P ′)

σwP (λ′
P ′). (40)

Since wP ′(λ′
P ′) is dominant, we have wP ′(λ′

P ′) ≥ wwP ′(λ′
P ′) for any w ∈W and in par-

ticular wP ′(λ′
P ′) ≥ σwP (λ′

P ′) = (σwPw−1
P ′ )wP ′(λ

′
P ′). Summing up these inequalities

over σ ∈W (wPP )/W (wPP ′) and multiplying by |W (P ′)|
|W (P )| , one gets with (40):

wP ′(λ′
P ′) ≥ wP (λ′

P ). (41)

Now the result follows from

fθG − wP (λ′
P ) =

(
fθG − wP ′(λ′

P ′)
)

+
(
wP ′(λ′

P ′)− wP (λ′
P )
)

together with Proposition 2.2.2.6(ii) and (41).

Example 2.2.2.9. We give a few simple examples (beyond GL2(Qp)).

(i) Assume n = 2 and P = B. Then L
⊗
|ZMB

= L
⊗
|T has f + 1 isotypic components

C(λi) given by the characters λi : diag(x1, x2) 7→ xf−i
1 xi2 for 0 ≤ i ≤ f . For i < f/2,
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λi is dominant, W (C(λi)) = {1} and fθG−λi = i(e1−e2). For i = f/2 (if f is even),
λi = se1−e2(λi) is dominant, W (C(λi)) = {1, se1−e2} and fθG − w(λi) = f/2(e1 − e2)
for w ∈ W (C(λi)). For i > f/2, se1−e2(λi) is dominant, W (C(λi)) = {se1−e2} and
fθG−se1−e2(λi) = (f− i)(e1−e2). We see that wB = B ( P (C(λi)) = G if i /∈ {0, f}
and wB = P (C(λi)) = B if i ∈ {0, f}.

(ii) Assume n = 3 and K = Qp.

If P = B, then L
⊗
|T has 7 isotypic components given by the 6 characters λw :

diag(x1, x2, x3) 7→ x2
w−1(1)xw−1(2) for w ∈ S3 and the character det : diag(x1, x2, x3) 7→

x1x2x3. If CP corresponds to some λw, one gets that W (CP ) is the singleton {w}
and θG − w(λw) = 0, which implies wB = P (CP ) = B. If CP corresponds to det, one
gets W (CP ) = W and θG − w(det) = (e1 − e2) + (e2 − e3) for w ∈ W , which implies
wB = B ( P (CP ) = G.

If P is the standard parabolic subgroup of Levi diag(GL2,GL1), then L
⊗
|ZMP

has 3
isotypic components CP given by the characters

λ0 : diag(x1, x1, x2) 7→ x3
1, λ1 : diag(x1, x1, x2) 7→ x2

1x2, λ2 : diag(x1, x1, x2) 7→ x1x
2
2.

One has λ′
0 = 3/2(e1 + e2), λ′

1 = e1 + e2 + e3, λ′
2 = 1/2(e1 + e2) + 2e3 from which one

deduces for the three respective isotypic components CP (where w ∈W (CP )):

W (CP ) = {1} θG − w(λ′
0) = 1/2(e1 − e2)

W (CP ) = {1, se1−e2se2−e3} θG − w(λ′
1) = (e1 − e2) + (e2 − e3)

W (CP ) = {se1−e2se2−e3} θG − w(λ′
2) = 1/2(e2 − e3).

If CP corresponds to λ0 one gets wP = P (CP ) = P , if CP corresponds to λ1 one
gets wP ( P (CP ) = G (wP being P if w = Id and the standard parabolic subgroup
of Levi diag(GL1,GL2) if w = se1−e2se2−e3), and if CP corresponds to λ2 one gets
wP = P (CP ) = the standard parabolic subgroup of Levi diag(GL1,GL2). In this last
case we see that P (CP ) doesn’t contain P .

Finally, if MP = diag(GL1,GL2), the situation is symmetric.

Lemma 2.2.2.10. We have W (CP ) ⊆ W (P (CP ))w for any fixed element w ∈
W (CP ). Equivalently w′w−1 ∈W (P (CP )) for any w,w′ ∈W (CP ).

Proof. Let λP ∈ X(ZMP
) corresponding to CP , wCP

∈ W (CP ), λ ∈ X(T ) such that
λ|ZMP

= λP and define λ′ as in (36). Recall that an element w ∈ W is in W (CP )
if and only if w(S(P )) ⊆ S and w(λ′) is dominant (see Proposition 2.2.2.6(i)), and
that we have w(λ′) = wCP

(λ′) for all w ∈ W (CP ) (see the beginning of the proof of
Lemma 2.2.2.4(ii)). We rewrite this ww−1

CP
(wCP

(λ′)) = wCP
(λ′) ∀ w ∈W (CP ). By the

definition of P (CP ) and Proposition 2.2.2.6(ii), we know that S(P (CP )) is the set of
simple roots in the support of fθG−wCP

(λ′). Since wCP
(λ′) is dominant, by Lemma
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2.2.2.1 the subgroup of W fixing wCP
(λ′) is generated by the simple reflections sβ

fixing wCP
(λ′), or equivalently such that 〈wCP

(λ′), β〉 = 0. Since 〈fθG−wCP
(λ′), β〉 =

f − 0 = f , we see that these simple roots β are all in the support of fθG − wCP
(λ′).

Therefore W (P (CP )) contains the subgroup of W fixing wCP
(λ′). Since ww−1

CP
fixes

wCP
(λ′), it follows that ww−1

CP
∈ W (P (CP )).

Remark 2.2.2.11. The inclusion in Lemma 2.2.2.10 is not an equality in general
(take P = G).

2.2.3 The structure of isotypic components of L
⊗

We let P be a standard parabolic subgroup of G, we prove an important structure
theorem on the isotypic components of L

⊗
|ZMP

(Theorem 2.2.3.9) as well as several
useful technical results.

Recall that W (CP ) is defined in (38) and P (CP ) is defined just before.

Lemma 2.2.3.1. If P (CP ) = wP for some w ∈ W (CP ) then W (CP ) has just one
element.

Proof. Let wCP
∈W (CP ) such that P (CP ) = wCP P and let w′

CP
∈W (CP ). Since

P (CP ) = wCP P we get S(P (CP )) = wCP
(S(P )) and W (P (CP )) = wCP

W (P )w−1
CP

. By
Lemma 2.2.2.10 applied to the element wCP

, we deduce W (CP ) ⊆ wCP
W (P ) and

thus w−1
CP
w′
CP
∈W (P ). But since S(P (CP )) contains w(S(P )) for all w ∈W (CP ) by

definition of W (CP ) and (37), we have w′
CP

(S(P )) ⊆ S(P (CP )) = wCP
(S(P )) which

implies w′
CP

(S(P )) = wCP
(S(P )) since the cardinalities are the same on both sides,

that is, w−1
CP
w′
CP

(S(P )) = S(P ). Since w−1
CP
w′
CP
∈W (P ), this forces w′

CP
= wCP

.

Remark 2.2.3.2. (i) The converse to Lemma 2.2.3.1 is wrong in general (e.g. consider
the C(λi) with i /∈ {0, f/2, f} in Example 2.2.2.9(i)).
(ii) For a general isotypic component CP , it is not true that one can find w ∈W (CP )
such that w−1MP (CP )w is the Levi subgroup of a standard parabolic subgroup of G.

Proposition 2.2.3.3. The isotypic components CP such that P (CP ) = wP for some
(necessarily unique) w ∈ W (CP ) are those isotypic components which are associated
to fw−1(θG)|ZMP

for the w ∈W such that w(S(P )) ⊆ S.

Proof. Let w ∈ W such that w(S(P )) ⊆ S and λ
def= fw−1(θG) ∈ X(T ). Since

w(λ) = fθG is dominant and fθG − w(λ) = 0, the set (37) is w(S(P )). This implies
P (CP ) = wP .
Conversely, let CP as in the statement, λ ∈ X(T ) such that CP is the isotypic
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component associated to the character λ|ZMP
of ZMP

and define λ′ as in (36). Since
S(P (CP )) = w(S(P )) by assumption, from Proposition 2.2.2.6(ii) we obtain

fw−1(θG)− λ′ =
∑

α∈S(P )

nαα

(for some nα ∈ Q>0), which implies fw−1(θG)|ZMP
= λ′|ZMP

. Since λ|ZMP
= λ′|ZMP

(see the beginning of the proof of Lemma 2.2.2.4(i)), we deduce that CP is the isotypic
component associated to the character fw−1(θG)|ZMP

.

Note that if CP is associated to fw−1(θG)|ZMP
(with w(S(P )) ⊆ S), we have

W (CP ) = {w} by Lemma 2.2.3.1.

Example 2.2.3.4. Coming back to Example 2.2.2.9, the isotypic components as in
Proposition 2.2.3.3 are the isotypic components C(λ0), C(λf) when n = 2, P = B,
the isotypic components associated to the six λw when n = 3, K = Qp, P = B, and
the isotypic components associated to λ0, λ2 when n = 3, K = Qp, MP = GL2×GL1.

We set for α = ej − ej+1 ∈ S(P ):

λα,P
def=

∑

ei−ej+1∈R(P )+

ei ∈ X(T ). (42)

One easily checks that the λα,P for α ∈ S(P ) are fundamental weights for the reductive
group MP and that 〈λα,P , β〉 ≤ 0 for β ∈ S\S(P ). For any λ ∈ X(T ), we define LP (λ)
as in (19) but with (MP ,MP ∩B

−) instead of (G,B−). When S(P ) = ∅, we define L
⊗
P

to be the trivial representation of TGal(K/Qp) over F and, when S(P ) 6= ∅, we define
similarly to (33) the algebraic representation of MGal(K/Qp)

P over F:

L
⊗
P

def=
⊗

Gal(K/Qp)

( ⊗

α∈S(P )

LP (λα,P )
)
. (43)

We also define

θP
def=

∑

α∈S(P )

λα,P ∈ X(T ) and θP
def= θG − θP ∈ X(T ). (44)

Since for α ∈ S(P ) we have 〈θP , α〉 = 〈θG, α〉 − 〈θP , α〉 = 1 − 1 = 0, we see that
θP extends to an element of HomGr(MP ,Gm). Likewise we have for α ∈ S(P ) and
w ∈W such that w(S(P )) ⊆ S:

〈w−1(θ
wP ), α〉 = 〈θ

wP , w(α)〉 = 0

so that w−1(θ
wP ) also extends to HomGr(MP ,Gm). Note that, since 〈θP , β〉 ≤ 0 for

β ∈ S\S(P ), we get 〈θP , β〉 = 〈θG, β〉 − 〈θP , β〉 ≥ 1, thus θP is a dominant weight.
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Example 2.2.3.5. If G = GL6 and MP = GL2×GL3×GL1, one gets

θP : diag(x1, . . . , x6) 7−→ (x1)(x2
3x4)

θP : diag(x1, . . . , x6) 7−→ (x1x2)4(x3x4x5).

Lemma 2.2.3.6. If w ∈W (P ), we have w(θP ) = θP .

Proof. The character θP extends to MP and factors through MP /M
der
P . But conjuga-

tion by W (P ) is trivial on MP/M
der
P .

Lemma 2.2.3.7. Let λ ∈ X(T ) be a dominant weight and denote by L(λ)µ ⊆ L(λ)
for µ ∈ X(T ) the isotypic component of L(λ)|T associated to µ (i.e. the weight space
of L(λ) for µ, see [Jan03, §I.2.11]). Then

⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ ⊆ L(λ)

is an MP -subrepresentation of L(λ)|MP
which is isomorphic to LP (λ).

Proof. Since ⊕µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ is the isotypic component of L(λ)|ZMP
associ-

ated to λ|ZMP
(as λ|ZMP

∼= µ|ZMP
⇐⇒ λ − µ ∈

∑
α∈S(P ) Zα), it is endowed with an

action of MP by the same proof as for Lemma 2.2.1.2. By [Jan03, II.2.2(1)], [Jan03,
I.6.11(2)] and the transitivity of induction ([Jan03, I.3.5(2)]), we have an injection of
algebraic representations of MP over F:

H0(NP , L(λ)) →֒ LP (λ) (45)

(recall NP is the unipotent radical of P ) and by [Jan03, II.2.11(1)] we have an iso-
morphism of algebraic representations of MP over F:

⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ
∼
−→ H0(NP , L(λ)).

It is therefore enough to prove that (45) is an isomorphism, or equivalently that

dimF

( ⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ

)
= dimF LP (λ).

Let L(λ) def=
(
indGB−λ

)
/Z
⊗Z E, LP (λ) def=

(
indMP

MP ∩B−λ
)
/Z
⊗Z E and L(λ)µ ⊆ L(λ) the

weight space associated to µ, we have dimF L(λ)µ = dimE L(λ)µ, and thus

dimF

( ⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ

)
= dimE

( ⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ

)
.
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Likewise, we have dimF LP (λ) = dimE LP (λ). It is therefore enough to have

dimE

( ⊕

µ∈λ−
∑

α∈S(P )
Z≥0α

L(λ)µ

)
= dimE LP (λ).

But now, we are over a field of characteristic 0, where it is well known that L(λ) and
LP (λ) as defined above are simple modules with highest weight λ. Then the result
follows from [Jan03, Prop.II.2.11].

The following lemma is a special case of Lemma 2.2.3.7.

Lemma 2.2.3.8. Let λ ∈ X(T ) be a dominant weight such that 〈λ, α〉 = 0 for all
α ∈ S(P ) (equivalently λ extends to an element in HomGr(MP ,Gm)). Then any
µ ∈ X(T ) distinct from λ with L(λ)µ 6= 0 is such that λ−µ contains at least one root
of S\S(P ) in its support.

Proof. Since λ ∈ HomGr(MP ,Gm), we have LP (λ) ∼= λ by (19) applied with MP

instead of G. By Lemma 2.2.3.7, we deduce
⊕
µ∈λ−

∑
α∈S(P )

Z≥0α
L(λ)µ ∼= λ inside

L(λ). This clearly implies the lemma.

If R is any algebraic representation of MP or of MGal(K/Qp)
P and w ∈ W such

that w(S(P )) ⊆ S, we define an algebraic representation of MwP = wMPw
−1 or

of MGal(K/Qp)
wP = wM

Gal(K/Qp)
P w−1 (w acting diagonally via W →֒ WGal(K/Qp)) by

(g ∈MwP or MGal(K/Qp)
wP ):

w(R)(g) def= R(w−1gw). (46)

If α ∈ S(P ), one then easily checks that w(λα,P ) = λw(α),wP and w(LP (λα,P )) =
LwP (λw(α),wP ), from which one gets

w(L
⊗
P ) = L

⊗
wP . (47)

Theorem 2.2.3.9. Let CP be an isotypic component of L
⊗
|ZMP

, associated to λ|ZMP

for λ ∈ X(T ). For any w ∈ W (CP ), there is an isomorphism of algebraic represen-

tations of M
Gal(K/Qp)
P over F:

CP ∼= w−1
(
CP (CP ),wP

)
⊗
(
w−1(θP (CP ))⊗ · · · ⊗ w−1(θP (CP ))
︸ ︷︷ ︸

Gal(K/Qp)

)
, (48)

where CP (CP ),wP is the isotypic component of L
⊗
P (CP )|ZMwP

associated to

(w(λ)− fθP (CP ))|ZMwP
(thus an M

Gal(K/Qp)
wP -representation, recall wP ⊆ P (CP )) and

w−1(CP (CP ),wP ) is defined in (46).
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Proof. Step 1: Assuming the result holds if w = Id, we prove it for any w. For
µ ∈ X(T ) we have µ|ZMP

= λ|ZMP
if and only if w(µ)|ZMwP

= w(λ)|ZMwP
, therefore

the image w(CP ) of CP for the diagonal action of w ∈ W on L
⊗

is the isotypic com-
ponent of L

⊗
|ZMwP

associated to w(λ)|ZMwP
. Note that, as an algebraic MGal(K/Qp)

wP -

subrepresentation of L
⊗
|
M

Gal(K/Qp)
wP

, w(CP ) is indeed isomorphic to g 7→ CP (w−1gw)

if g ∈ MGal(K/Qp)
wP , so the notation is consistent with (46). By Remark 2.2.2.3(ii) we

have w(λ′) = (w(λ))′ in (X(T )⊗ZQ)W (wP ). Recall that w(λ′), and hence (w(λ))′, are
dominant since w ∈ W (CP ) (see Proposition 2.2.2.6(i)). Therefore Id ∈ W (w(CP ))
and by the case w = Id for the parabolic subgroup wP and the isotypic compo-
nent w(CP ), we have w(CP ) ∼= CP (w(CP )),wP ⊗

(
θP (w(CP )) ⊗ · · · ⊗ θP (w(CP ))

)
. Moreover

S(P (w(CP ))), which is the support of fθG − (w(λ))′ by Proposition 2.2.2.6(ii) (ap-
plied to w = Id), is the same as S(PCP

), which is the support of fθG − w(λ′) by
loc.cit. (applied to w), i.e. we have P (w(CP )) = P (CP ). We thus deduce w(CP ) ∼=
CP (CP ),wP ⊗

(
θP (CP ) ⊗ · · · ⊗ θP (CP )

)
which gives (48) by applying w−1.

Step 2: From now on we assume w = Id (so in particular P ⊆ P (CP )). Writing

L
⊗

=

( ⊗

Gal(K/Qp)

( ⊗

α∈S(P (CP ))

L(λα)
))⊗( ⊗

Gal(K/Qp)

( ⊗

α∈S\S(P (CP ))

L(λα)
))

,

we prove that any (µ1, µ2) ∈ X(T )×X(T ) such that

(i) µ1 occurs in
(⊗

Gal(K/Qp)

(⊗
α∈S(P (CP )) L(λα)

))
|T (for the diagonal action of T );

(ii) µ2 occurs in
(⊗

Gal(K/Qp)

(⊗
α∈S\S(P (CP )) L(λα)

))
|T (idem);

(iii) µ1|ZMP
+ µ2|ZMP

= λ|ZMP

must be such that µ2 = f
∑
α∈S\S(P (CP )) λα (note that µ2 ≤ f

∑
α∈S\S(P (CP )) λα and

µ1 ≤ f
∑
α∈S(P (CP )) λα). Let λ′, µ′

1, µ′
2 as in (36) for P (CP ) and the respective

characters λ, µ1, µ2, we have λ′ = µ′
1 + µ′

2 from (iii) and Remark 2.2.2.3(i), and thus

fθG − λ
′ = f

( ∑

α∈S(P (CP ))

λα

)
− µ′

1 + f
( ∑

α∈S\S(P (CP ))

λα

)
− µ′

2. (49)

Assume µ2 is not f
∑
α∈S\S(P (CP )) λα. Then writing µ2 =

∑
j,α µ2,j,α where (j, α) ∈

Gal(K/Qp) × S\S(P (CP )) and µ2,j,α occurs in L(λα) and applying Lemma 2.2.3.8
with P = P (CP ), λ = λα and µ = µ2,j,α for α ∈ S\S(P (CP )) (the assumptions in
Lemma 2.2.3.8 are satisfied since the λα, α ∈ S are fundamental weights), we get that
f
∑
α∈S\S(P (CP )) λα−µ2 has at least one root of S\S(P (CP )) in its support. Averaging

over w ∈ W (P (CP )) as in (36) and using w(λα) = λα for w ∈ W (P (CP )) and
α ∈ S\S(P (CP )) (same proof as for Lemma 2.2.3.6), we get applying Lemma 2.2.2.2
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to P = P (CP ) that f
∑
α∈S\S(P (CP )) λα−µ

′
2 has still at least one root of S\S(P (CP ))

in its support (and that µ′
2 ≤ f

∑
α∈S\S(P (CP )) λα). Since µ′

1 ≤ f
∑
α∈S(P (CP )) λα by the

proof of Step 3 below, this root doesn’t vanish in the sum (49). But by Proposition
2.2.2.6(ii), S(P (CP )) is the support of (49), which is a contradiction. Therefore, we
must have µ2 = f

∑
α∈S\S(P (CP )) λα and thus from (iii) that

CP ∼= C ′
P (CP ),P ⊗

⊗

Gal(K/Qp)

( ∑

α∈S\S(P (CP ))

λα

)
, (50)

where C ′
P (CP ),P is the isotypic component of

(⊗
Gal(K/Qp)

(⊗
α∈S(P (CP )) L(λα)

))
|ZMP

associated to
(
λ− f

∑
α∈S\S(P (CP )) λα

)
|ZMP

(= (λ− µ2)|ZMP
= µ1|ZMP

).

Step 3: We prove that

f
( ∑

α∈S(P (CP ))

λα

)
− µ1 ∈

∑

α∈S(P (CP ))

Z≥0α

(i.e. no root of S\S(P (CP )) is in the support). Since λα is dominant, we have λα ≥ λ′
α,

where λ′
α is defined as in (36) for P = P (CP ) and the character λα. This implies

(with obvious notation)

f
( ∑

α∈S(P (CP ))

λα
)
− µ′

1 ≥ f
( ∑

α∈S(P (CP ))

λ′
α

)
− µ′

1 =
(
f
( ∑

α∈S(P (CP ))

λα
)
− µ1

)′
≥ 0, (51)

where the last inequality follows from Lemma 2.2.2.2 (applied with P = P (CP )). If
f
(∑

α∈S(P (CP )) λα
)
−µ1 has roots of S\S(P (CP )) in its support, then by Lemma 2.2.2.2

again so is the case of
(
f
(∑

α∈S(P (CP )) λα
)
−µ1

)′
, and thus of f

(∑
α∈S(P (CP )) λα

)
−µ′

1

by (51). As in Step 2, this is again a contradiction by (49) and the definition of
P (CP ).

Step 4: We prove the statement for w = Id. By Lemma 2.2.3.7 applied with P =
P (CP ) and the various L(λα) for α ∈ S(P (CP )), we deduce from Step 3 that µ1 is a
weight of

⊗
Gal(K/Qp)

(⊗
α∈S(P (CP )) LP (CP )(λα)

)
inside

⊗
Gal(K/Qp)

(⊗
α∈S(P (CP )) L(λα)

)

(see just after (42)). Let α ∈ S(P (CP )), for each β ∈ S(P (CP )) we have 〈λα, β〉 =
〈λα,P (CP ), β〉 (a straightforward check from (42)), thus λα−λα,P (CP ) extends to
HomGr(MP (CP ),Gm) which implies LP (CP )(λα) ∼= LP (CP )(λα,P (CP )) ⊗ (λα − λα,P (CP )).
Thus µ1 − f

∑
α∈S(P (CP ))(λα − λα,P (CP )) is a weight of

⊗

Gal(K/Qp)

( ⊗

α∈S(P (CP ))

LP (CP )(λα,P (CP ))
)

= L
⊗
P (CP ),

or in other terms:

C ′
P (CP ),P

∼= CP (CP ),P ⊗
⊗

Gal(K/Qp)

( ∑

α∈S(P (CP ))

(λα − λα,P (CP ))

)
,
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where CP (CP ),P is the isotypic component of L
⊗
P (CP )|ZMP

associated to(
λ− f

∑
α∈S\S(P (CP )) λα − f

∑
α∈S(P (CP ))(λα − λα,P (CP ))

)
|ZMP

. But by (44):

∑

α∈S\S(P (CP ))

λα +
∑

α∈S(P (CP ))

(λα − λα,P (CP )) = θG −
∑

α∈S(P (CP ))

λα,P (CP ) = θP (CP ),

so together with (50) we are done.

Remark 2.2.3.10. The character w−1(θP (CP )) of MP doesn’t depend on w ∈W (CP ),
as follows from Lemma 2.2.2.10 and Lemma 2.2.3.6 (the latter applied with P there
being P (CP )). In particular, by (48) we see that the representation w−1

(
CP (CP ),wP

)

of MGal(K/Qp)
P is also independent of w ∈W (CP ).

When CP is as in Proposition 2.2.3.3, its underlying M
Gal(K/Qp)
P -representation

looks like L
⊗

but for the reductive group MP instead of G.

Corollary 2.2.3.11. Let CP be an isotypic component of L
⊗
|ZMP

such that P (CP ) =
wP for some (unique) w ∈W such that w(S(P )) ⊆ S. Then there is an isomorphism

CP ∼= L
⊗
P ⊗

(
w−1(θ

wP )⊗ · · · ⊗ w−1(θ
wP )

︸ ︷︷ ︸
Gal(K/Qp)

)

of algebraic representations of M
Gal(K/Qp)
P over F.

Proof. If P (CP ) = wP , then L
⊗
P (CP )|ZMwP

= L
⊗
wP |ZMwP

has only one isotypic compo-
nent, corresponding to fθwP |ZMwP

. So the corollary follows from Theorem 2.2.3.9 to-
gether with (47). Note that, by Proposition 2.2.3.3, CP corresponds to λ = fw−1(θG),
which is consistent with Theorem 2.2.3.9 since

(w(λ)− fθP (CP ))|ZMwP
=
(
w(fw−1(θG))− fθ

wP
)
|ZMwP

= f(θG − θ
wP )|ZMwP

= fθwP |ZMwP
.

Remark 2.2.3.12. In this remark, we use that we are working with G = GLn. We
write MP (CP ) = diag(M1, . . . ,Md) for some d > 0 with Mi

∼= GLni
, and correspond-

ingly T = diag(T1, . . . , Td), where Ti is the diagonal torus of GLni
, so that we have

X(T ) = ⊕di=1X(Ti) and S(P (CP )) = ∐di=1S(Mi), where X(Ti)
def= HomGr(Ti,Gm) and

S(Mi)
def= S(P (CP )) ∩X(Ti) is the set of simple roots of Mi (for the Borel subgroup

of upper-triangular matrices). Note that S(Mi) = ∅ if Mi
∼= GL1. For i ∈ {1, . . . , d}

such that ni > 1, one easily checks that λα,P (CP ) ∈ X(Ti) ⊆ X(T ) if α ∈ S(Mi) and
that the λα,P (CP ) ∈ X(Ti) for α ∈ S(Mi) are fundamental weights for the reductive

54



group Mi. For i ∈ {1, . . . , d} and λi ∈ X(Ti), we define LMi
(λi) as in (19) but for

the reductive group Mi instead of G. When ni = 1, we define L
⊗
i to be the trivial

representation of MGal(K/Qp)
i

∼= GGal(K/Qp)
m , and when ni > 1, we define as in (33) the

algebraic representation of MGal(K/Qp)
i over F (seeing λα,P (CP ) in X(Ti)):

L
⊗
i

def=
⊗

Gal(K/Qp)

( ⊗

α∈S(Mi)

LMi
(λα,P (CP ))

)
. (52)

We then clearly have L
⊗
P (CP )

∼=
⊗d

i=1L
⊗
i . Likewise, we have θP (CP ) = ⊗di=1(θP (CP ))i,

where (θP (CP ))i ∈ X(Ti) extends to HomGr(Mi,Gm) and where we denote by µi the
image in X(Ti) of a character µ ∈ X(T ).

For any w ∈ W (CP ), we define (wP )i as the standard parabolic subgroup of Mi

which is the image of wP under
wP →֒ P (CP ) ։ MP (CP ) ։Mi

(in particular its Levi M(wP )i
is the image of MwP under MwP →֒ MP (CP ) ։ Mi).

Applying w to (48), it is not difficult to deduce from Theorem 2.2.3.9 an isomorphism
of algebraic representations of MGal(K/Qp)

wP
∼=
∏d
i=1 M

Gal(K/Qp)
(wP )i

over F:

w(CP ) ∼=
d⊗

i=1

(
Cw,i ⊗

(
(θP (CP ))i ⊗ · · · ⊗ (θP (CP ))i︸ ︷︷ ︸

Gal(K/Qp)

))
, (53)

where Cw,i is the isotypic component of L
⊗
i |ZM(wP )i

associated to (w(λ) −

fθP (CP ))i|ZM(wP )i
(thus an M

Gal(K/Qp)
(wP )i

-representation, note that Cw,i is trivial if ni =

1). If w′ is another element in W (CP ), writing w′ = wP (CP )w with wP (CP ) ∈
W (P (CP )) (Lemma 2.2.2.10), we have Mw′P = wP (CP )MwPw

−1
P (CP ), and thus w′(Cp) ∼=

wP (CP )(w(CP )) and CP (CP ),w′P
∼= wP (CP )

(
CP (CP ),wP

)
(as the twist by θP (CP ) ⊗ · · · ⊗

θP (CP ) doesn’t involve the choice of w). Since wP (CP )Miw
−1
P (CP ) = Mi for all i, we

get M(w′P )i
= wP (CP )M(wP )i

w−1
P (CP ) (inside Mi) and deduce for i ∈ {1, . . . , d} an iso-

morphism of algebraic representations of MGal(K/Qp)

(w′P )i
over F (with notation similar to

(46)):
Cw′,i ∼= wP (CP )(Cw,i). (54)

We will avoid applying w−1 to Cw,i since w−1MP (CP )w is not in general the Levi
subgroup of a standard parabolic subgroup of G (see Remark 2.2.3.2(ii)), although it
indeed contains MP .

2.2.4 From one isotypic component to another

We let P be a standard parabolic subgroup of G. We show that, if CP is an isotypic
component of L

⊗
|ZMP

, then one can associate to CP in a natural way another isotypic
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component w · CP of L
⊗
|ZMP

for any w ∈ W such that w
(
S(P (CP ))

)
⊆ S (see

Proposition 2.2.4.2). Note that, on the contrary to w(CP ), w · CP is an isotypic
component of L

⊗
|ZMP

for the same standard parabolic subgroup P as CP .

Lemma 2.2.4.1. Let µ ∈ X(T ) be a dominant weight. Then µ occurs in L
⊗
|T (for

the diagonal embedding of T analogous to (35)) if and only if µ ≤ fθG in X(T ).

Proof. Since this statement only concerns weights, we can work in characteristic 0, i.e.
with L⊗ def=

⊗
Gal(K/Qp)

(⊗
α∈S L(λα)

)
, where L(λα) def=

(
indGB−λα

)
/Z
⊗Z E (see (19)).

Arguing as in the proof of [BH15, Lemma 2.2.3], it is equivalent to prove that µ is a
weight of the algebraic representation L(fθG) of G. The result then follows from the
inequalities w(µ) ≤ µ ≤ fθG for all w ∈ W (the left ones hold since µ is dominant
and the right ones since fθG is the highest weight) combined with [Hum78, Prop.
21.3].

Proposition 2.2.4.2. Let λP ∈ X(ZMP
) be a character of ZMP

which occurs in

L
⊗
|ZMP

(for the diagonal embedding, as usual) with associated isotypic component CP

of L
⊗
|ZMP

, and let w ∈W such that w
(
S(P (CP ))

)
⊆ S.

(i) For wCP
∈W (CP ) the character of ZMP

:

λP −
(
fw−1

CP
(θG) + f(wwCP

)−1(θG)
)
|ZMP

(55)

doesn’t depend on wCP
.

(ii) The character (55) corresponds to an isotypic component w ·CP of L
⊗
|ZMP

, i.e.

occurs in L
⊗
|ZMP

.

(iii) We have P (w · CP ) = wP (CP ).

Proof. (i) For any α ∈ S(P (CP )) we have (since w(α) is still in S)

〈w−1(θG)− θG, α〉 = 〈θG, w(α)〉 − 〈θG, α〉 = 1− 1 = 0 (56)

which implies sα(w−1(θG)− θG) = w−1(θG)− θG, and thus for all w′ ∈W (P (CP )):

w′(w−1(θG)− θG) = w−1(θG)− θG. (57)

Let w′
CP
∈ W (CP ), by Lemma 2.2.2.10 we have w′

CP
w−1
CP
∈ W (P (CP )) and thus by

(57):
(w′

CP
w−1
CP

)(w−1(θG)− θG) = w−1(θG)− θG.

Applying w′
CP

−1 we get in particular
(
w−1
CP

(w−1(θG)− θG)
)
|ZMP

=
(
w′
CP

−1(w−1(θG)− θG)
)
|ZMP
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from which (i) follows.
(ii) Let λ ∈ X(T ) such that λ|ZMP

= λP . Applying wwCP
to (55), it is sufficient

to prove that fθG − w
(
fθG − wCP

(λ)
)

occurs in L
⊗
|T (since L

⊗
|T is acted on by

the diagonal action of W →֒ WGal(K/Qp)). Recall from Lemma 2.2.2.4(ii) (and the
definition of P (CP )) that

fθG − wCP
(λ) ∈

∑

α∈S(P (CP ))

Z≥0α. (58)

For β = w(α) ∈ w(S(P (CP ))) and any w′ ∈W , we have

〈fθG − w(fθG − w′(λ)), β〉 = 〈ww′(λ), β〉+ f〈θG − w(θG), β〉 (59)

= 〈ww′(λ), β〉+ f〈w−1(θG)− θG, α〉

= 〈ww′(λ), β〉,

where the last equality follows from (56). This can be rewritten as

sβ
(
fθG − w(fθG − w′(λ))

)
= fθG − w(fθG − w′(λ))− 〈ww′(λ), β〉β (60)

= fθG − w(fθG − sαw′(λ)).

Iterating (60), we see that for any wP (CP ) ∈W (P (CP )), we have for w′ ∈W that

wwP (CP )w
−1
(
fθG − w(fθG − w′(λ))

)
= fθG − w(fθG − wP (CP )w

′(λ)). (61)

Choose wP (CP ) ∈ W (P (CP )) such that wP (CP )(wCP
(λ)) is dominant for the root

subsystem generated by S(P (CP )), equivalently

〈wwP (CP )wCP
(λ), β〉 ≥ 0 ∀ β ∈ w(S(P (CP ))). (62)

As λ occurs in L
⊗
|T , we get that wP (CP )(wCP

(λ)) ∈ wCP
(λ) +

∑
α∈S(P (CP )) Zα occurs

in L
⊗
|T (L

⊗
is stable under W ), and thus wP (CP )(wCP

(λ)) ≤ fθG. Since on the other
hand by (58):

fθG − wP (CP )(wCP
(λ)) = (fθG − wCP

(λ)) +
∑

α∈S(P (CP ))

Zα ∈
∑

α∈S(P (CP ))

Zα,

we see that we must have

fθG − wP (CP )wCP
(λ) ∈

∑

α∈S(P (CP ))

Z≥0α. (63)

Since w(S(P (CP ))) ⊆ S, we deduce 〈w(fθG − wP (CP )wCP
(λ)), β〉 ≤ 0 for β ∈

S\w(S(P (CP ))). In particular we have for such β:

〈fθG − w(fθG − wP (CP )wCP
(λ)), β〉 = f − 〈w(fθG − wP (CP )wCP

(λ)), β〉 (64)

≥ f.
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Combining (59) for w′ = wP (CP )wCP
with (62) and (64), we obtain that fθG −

w(fθG − wP (CP )wCP
(λ)) is a dominant weight. Applying w to (63), we also get

since w(S(P (CP ))) ⊆ S:

fθG − w(fθG − wP (CP )wCP
(λ)) ≤ fθG.

Lemma 2.2.4.1 then implies that fθG − w(fθG − wP (CP )wCP
(λ)) occurs in L

⊗
|T . By

(61) applied with w′ = wCP
, we finally deduce that fθG−w(fθG−wCP

(λ)) also occurs
in L

⊗
|T .

(iii) By definition S(P (w · CP )) ⊆ S is the union of w′(S(P )) and of the support of

fθG − w
′
(
λ− fw−1

CP
(θG) + f(wwCP

)−1(θG)
)

(65)

for any w′ ∈W such that w′(S(P )) ⊆ S and w′
(
λ−fw−1

CP
(θG)+f(wwCP

)−1(θG)
)

is the

restriction to ZMw′P
of a dominant weight of X(T )⊗ZQ. Consider the case w′ def= wwCP

,
since wCP

(S(P )) ⊆ S(P (CP )) and w(S(P (CP ))) ⊆ S, we get w′(S(P )) ⊆ S. Let us
check that

w′
(
λ− fw−1

CP
(θG) + f(wwCP

)−1(θG)
)

= wwCP
(λ)− fw(θG) + fθG

is the restriction to ZMw′P
of a dominant weight of X(T )⊗ZQ. Let λ′ as in (36), since

λ|ZMP
= λ′|ZMP

, we have w′(λ)|ZM
w′P

= w′(λ′)|ZM
w′P

and it is enough to prove that

wwCP
(λ′)− fw(θG) + fθG is dominant. As in (59) we have if α ∈ w(S(P (CP ))):

〈wwCP
(λ′)− fw(θG) + fθG, α〉 = 〈wwCP

(λ′), α〉+ f〈θG − w(θG), α〉

= 〈wCP
(λ′), w−1(α)〉 ≥ 0

since wCP
(λ′) is dominant in X(T )⊗Z Q by Proposition 2.2.2.6(i), and as in (64) we

have if α ∈ S\w(S(P (CP))):

〈wwCP
(λ′)− fw(θG) + fθG, α〉 = f − 〈w(fθG − wCP

(λ′)), α〉 ≥ f

since w
(
fθG−wCP

(λ′)
)
∈
∑
β∈S(P (CP )) Q≥0w(β) from Proposition 2.2.2.6(ii). Now all

that remains is to compute (65) for w′ = wwCP
, which gives w(fθG − wCP

(λ)), the
support of which is w(support(fθG − wCP

(λ))). Therefore we obtain

S(P (w · CP )) = w
(
wCP

(S(P )) ∪ support
(
fθG − wCP

(λ)
))

= w
(
S(P (CP ))

)

which finishes the proof.

Remark 2.2.4.3. If CP is one of the isotypic components of Proposition 2.2.3.3, say
associated to fw−1

CP
(θG)|ZMP

for some wCP
∈ W such that wCP

(S(P )) ⊆ S, and if
w ∈ W is such that w(S(P (CP ))) ⊆ S, i.e. wwCP

(S(P )) ⊆ S, we see from (55) that
w · CP is the isotypic component associated to f(wwCP

)−1(θG)|ZMP
.

58



Example 2.2.4.4. Let us consider Example 2.2.2.9(ii) (Example 2.2.2.9(i) only pro-
vides components CP which are either as in Remark 2.2.4.3 or such that P (CP ) = G).
If P = B and CP is associated to λId = θG, then w · CP for w ∈ S3 gives the iso-
typic component associated to λw (and there is no w · CP 6= CP if CP corresponds
to det since P (CP ) is the whole G). If MP = GL2×GL1, consider CP associated
to λ0 and w ∈ S3 the unique permutation e1 7→ e2, e2 7→ e3, e3 7→ e1 (so that
w(S(P (CP ))) = w(e1 − e2) ⊆ S). Then w · CP is the isotypic component associated
to λ2 (here again, there is no w · CP 6= CP for CP corresponding to λ1).

2.3 Good conjugates of ρ

Following and generalizing the mod p variant of [BH15, §3.2], we define and study
good conjugates of a continuous ρ : Gal(Qp/K) → G(F) under a mild assumption
on ρ (see Definition 2.3.2.3) and still assuming K unramified. Though some of the
results might hold for more general split reductive groups, we use here in the proofs
that we work with GLn.

2.3.1 Some preliminaries

We start with a few group-theoretic preliminaries.

We fix a standard parabolic subgroup P of G. Recall that a subset C ⊆ R+ is
closed if α ∈ C, β ∈ C with α+β ∈ R+ implies α+β ∈ C. For instance R(P )+ ⊆ R+

is closed.

Definition 2.3.1.1. A subset X ⊆ R+ is a closed subset relative to P if it satisfies
the following three conditions:

(i) it contains R(P )+;

(ii) X\R(P )+ is a closed subset of R+;

(iii) for any w ∈W (P ), w(X\R(P )+) = X\R(P )+.

Note that a closed subset relative to B is the same thing as a closed subset and
that R+ is the only closed subset relative to G.

Lemma 2.3.1.2. Let X ⊆ R+ be a closed subset relative to P . Then X is a closed
subset of R+.

Proof. Since we already know that both R(P )+ and X\R(P )+ are closed, it remains
to show that if α ∈ R(P )+ and β ∈ X\R(P )+ are such that α + β ∈ R+, then
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α + β ∈ X. We work with GLn, and it is then easy to check that α + β = sα(β).
Since sα ∈W (P ), we have α + β ∈ X\R(P )+ ⊆ X by Definition 2.3.1.1(iii).

Remark 2.3.1.3. Note that Lemma 2.3.1.2 doesn’t hold for an arbitrary split con-
nected reductive algebraic group (for instance it doesn’t work for GSp4). An alterna-
tive definition would be to consider closed subsets Y of R+\R(P )+ such that Y ∪R(P )
is also closed.

If X ⊆ R+ is any closed subset, we let NX ⊆ N be the Zariski closed algebraic
subgroup generated by the root subgroups Nα for α ∈ X (see [Jan03, §II.1.7]). Thanks
to Lemma 2.3.1.2, we can thus consider NX for any X ⊆ R+ closed relative to P .

Lemma 2.3.1.4.

(i) Let X be a closed subset of R+ relative to P . Then MPNX is a Zariski closed
algebraic subgroup of P containing MP .

(ii) Let P̃ ⊆ P be a Zariski closed algebraic subgroup containing MP . Then there
exists a unique closed subset X relative to P such that P̃ = MPNX.

Proof. (i) Since MPNX = MPNX\R(P )+ , it is enough to prove that MP normalizes
NX\R(P )+ . Let α ∈ R(P )+, β ∈ X\R(P )+ and let nα ∈ Nα, nβ ∈ Nβ . Then

nαnβn
−1
α =

( ∏

i,j>0

niα+jβ

)
nβ , (66)

where the product is over all integers i, j > 0 such that iα + jβ ∈ R+ (see [Jan03,
§II.1.2]). Since X ⊆ R+ is closed, all these iα+jβ are inX, and since β /∈ R(P )+, they
are all in X\R(P )+. Therefore nαnβn−1

α ∈ NX\R(P )+ . Let w ∈W (P ), β ∈ X\R(P )+

and nβ ∈ Nβ. Then w(β) ∈ X\R(P )+ implies wnβw−1 ∈ NX\R(P )+ . The Bruhat
decomposition for the reductive group MP then shows that MP normalizes NX\R(P )+ .
(ii) Let P̃ ⊆ P be a closed algebraic subgroup containingMP . Then P̃ = MP (P̃∩B) =
MP (P̃ ∩N) (since T ⊆MP ⊆ P̃ ). By [BH15, Lemma 3.4.1] applied to P̃ ∩B ⊆ B, we
deduce P̃ ∩N = NX for a (unique) closed subset X ⊆ R+. Since MP ∩N ⊆ P̃ ∩N ,
the set X contains R(P )+. Since P̃ ∩ NP = NX\R(P )+ , the set X\R(P )+ is closed,
and moreover P̃ = MPNX\R(P )+ . Since MP normalizes NP and P̃ , it normalizes
P̃ ∩NP = NX\R(P )+ , from which Definition 2.3.1.1(iii) easily follows.

Remark 2.3.1.5. (i) The sets R(P )+ and R+ are closed with respect to P (they
correspond respectively to P̃ = MP and P̃ = P in Lemma 2.3.1.4). In particular, if
X is closed with respect to P , from w(R+\R(P )+) = R+\R(P )+ and w(X\R(P )+) =
X\R(P )+, we also get w(R+\X) = R+\X for all w ∈W (P ).
(ii) If X ⊆ R+ is a closed subset relative to P , it follows from the proof of Lemma
2.3.1.4(i) that MP normalizes NX\R(P )+ .
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Lemma 2.3.1.6. Let X ⊆ R+ be a closed subset relative to P . Then there are roots
α1, . . . , αm ∈ R

+\X such that we have a partition

R+ = X ∐ {w(α1), w ∈W (P )} ∐ · · · ∐ {w(αm), w ∈W (P )}

and such that, for all i, αi is not in the smallest closed subset relative to P containing
X and the αj for 1 ≤ j ≤ i− 1.

Proof. Since w(R+\X) = R+\X for all w ∈ W (P ) (Remark 2.3.1.5(i)), we have
a partition R+ = X ∐ {w(α1), w ∈ W (P )} ∐ · · · ∐ {w(αm), w ∈ W (P )} for some
α1, . . . , αm ∈ R+\X. Denote by h(·) the height of a positive root (see e.g. [BH15,
Rem.2.5.3]). Replacing each αi by a suitable w(αi) for w ∈ W (P ), we can assume
h(αi) maximal among the h(w(αi)), w ∈ W (P ). Permuting the αi if necessary, we
can assume h(α1) ≥ h(α2) ≥ · · · ≥ h(αm). It is enough to prove that each set
X ∐ {w(α1), w ∈ W (P )} ∐ · · · ∐ {w(αi), w ∈ W (P )} for 1 ≤ i ≤ m is closed relative
to P , or equivalently that Xi

def= (X\R(P )+)∐{w(α1), w ∈W (P )}∐· · ·∐{w(αi), w ∈
W (P )} satisfies conditions (ii) and (iii) in Definition 2.3.1.1 for 1 ≤ i ≤ m. Since (iii)
is clear, let us prove (ii), i.e. that each of the Xi is closed in R+.
This is obvious if i = m since R+\R(P )+ is closed, so we can assume i < m. If Xi is
not closed for some i < m, then its complementary in R+ contains an element x which
is the sum of at least two roots of Xi, at least one being in {w′(αj), w′ ∈ W (P ), 1 ≤
j ≤ i} (since R+\R(P )+ is closed). Such an element x is in R(P )+ ∐ {w(αj), w ∈
W (P ), i + 1 ≤ j ≤ m} and, since w′(Xi) = Xi for w′ ∈ W (P ), it also satisfies
w′(x) ∈ R+ for any w′ ∈W (P ). In particular x can’t be in R(P )+, and is thus of the
form x = w(αk) for some k ∈ {i+ 1, . . . , m} and some w ∈W (P ). Thus w(αk) is the
sum of at least two roots of Xi, one at least being in {w′(αj), w′ ∈W (P ), 1 ≤ j ≤ i}.
Applying a convenient w′ ∈W (P ) and using again w′(Xi) = Xi, we can modify w if
necessary and assume that αj for some j ∈ {1, . . . , i} appears in the sum of w(αk).
This implies in particular h(w(αk)) > h(αj) for some j ≤ i (see the argument in the
proof of [BH15, Lemma 3.2.1]), which is impossible since by assumption h(w(αk)) ≤
h(αk) ≤ h(αj). Hence Xi is closed for all i.

Lemma 2.3.1.7. Let X ⊆ R+ be a closed subset relative to P , P̃
def= MPNX and let

w ∈W such that w(S(P )) ⊆ S. Then the following assertions are equivalent:

(i) wP̃w−1 is contained in wP ;

(ii) w(X\R(P )+) ⊆ R+.

Proof. We have

wP̃w−1 = (wMPw
−1)(wNX\R(P )+w−1) = (wMPw

−1)Nw(X\R(P )+).

As wP = (wMPw
−1)N , we deduce wP̃w−1 ⊆ wP if and only if w(X\R(P )+) ⊆

R+.
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2.3.2 Good conjugates of a generic ρ

We define good conjugates of a Gal(Qp/K)-representation ρ under a mild genericity
assumption and show how two good conjugates are related (Theorem 2.3.2.5). The
intuitive idea is that conjugating a good conjugate of ρ can only increase the image
in G(F).

We fix a continuous homomorphism

ρ : Gal(Qp/K) −→ Pρ(F) ⊆ G(F), (67)

where Pρ ⊆ G is a standard parabolic subgroup. We consider

ρPρ−ss : Gal(Qp/K)
ρ
−→ Pρ(F) ։MPρ

(F),

and assume that the image of ρPρ−ss is not contained in the F-points of a proper
(not necessarily standard) parabolic subgroup of MPρ

. This implies in particular
that Pρ is uniquely determined by the homomorphism ρ. Finally we let ρss be the
homomorphism Gal(Qp/K)→ G(F) obtained by composing ρPρ−ss with the inclusion
MPρ

(F) ⊆ G(F) (so ρss is the usual semisimplification of ρ). We let Xρ be the smallest

closed subset of R+ relative to Pρ such that P̃ρ(F) def= MPρ
(F)NXρ

(F) contains all the
ρ(g), g ∈ Gal(Qp/K). By Lemma 2.3.1.4, P̃ρ is the smallest closed algebraic subgroup
of Pρ containing MPρ

such that ρ takes values in P̃ρ(F), i.e. ρ : Gal(Qp/K)→ P̃ρ(F) →֒
Pρ(F) →֒ G(F). Note that Xρss = R(P )+ and P̃

ρ
Pρ−ss = MPρ

.

Lemma 2.3.2.1. Assume that the irreducible constituents of ρss of dimension 1 (i.e.
the characters of Gal(Qp/K) occurring in ρss) are all distinct. Let α ∈ R+\Xρ and
nα ∈ Nα(F)\{1}. Then Xnαρn

−1
α

is the smallest closed subset relative to Pρ containing
Xρ and α.

Proof. The proof of this lemma is quite technical, but is no more than simple com-
putations in GLn. We denote by Xρ,α ⊆ R+ the smallest closed subset relative to Pρ
containing Xρ and α and by X̃ρ ⊆ Xρ the subset of roots which are not the sum of
at least two roots of Xρ,α. For g ∈ Gal(Qp/K) we can write

ρ(g) = ρPρ−ss(g)
∏

β∈Xρ\R(Pρ)+

nβ(g), (68)

where ρPρ−ss(g) ∈MPρ
(F) and nβ(g) ∈ Nβ(F). Using (66), we see that

nα

( ∏

β∈Xρ\R(Pρ)+

nβ(g)
)
n−1
α ∈

∏

γ

Nγ(F), (69)

where γ runs among the roots in R+ of the form Z≥0α + Z>0β1 + · · · + Z>0βs for
s ≥ 1 and βi ∈ Xρ\R(Pρ)+. This clearly implies Xnαρn

−1
α
⊆ Xρ,α. To prove the
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reverse inclusion, it is enough to prove X̃ρ ⊆ Xnαρn
−1
α

and w(α) ∈ Xnαρn
−1
α

for some
w ∈W (Pρ) (as then α ∈ Xnαρn

−1
α

by Remark 2.3.1.5(i)).
An easy explicit matrix computation in GLn (that we leave to the reader) gives that
nαρ

Pρ−ss(g)n−1
α is of the form in GLn(F):

nαρ
Pρ−ss(g)n−1

α ∈ ρ
Pρ−ss(g)

∏

β∈{w(α),w∈W (Pρ)}
mβ(g) (70)

with mβ(g) ∈ Nβ(F) (note that, as w ∈ W (Pρ), w(α) is of the form α+n1α1+· · ·+ntαt
for some t ≥ 0, αi ∈ S(Pρ), ni ∈ Z). It then follows from (69) and (70) that, for
β ∈ X̃ρ\(X̃ρ ∩R(Pρ)+), the entry nβ(g) in (68) is not affected by the conjugation by
nα. In particular, we have X̃ρ ⊆ Xnαρn

−1
α

.
We now prove that w(α) ∈ Xnαρn

−1
α

for some w ∈ W (Pρ). We first claim that
none of the roots γ in (69) are in {w(α), w ∈ W (Pρ)}. Indeed, assume w(α) =
mα +m1β1 + · · ·+msβs for some s ≥ 0, m ≥ 0, βi ∈ Xρ\R(Pρ)+, mi > 0. If m = 0,
then we get w(α) = m1β1 +· · ·+msβs ∈ Xρ\R(Pρ)+ since Xρ\R(Pρ)+ is closed in R+,
which implies α ∈ Xρ\R(Pρ)+ by Definition 2.3.1.1(iii), a contradiction. If m > 0,
then we get (m−1)α+m1β1 + · · ·+msβs = n1α1 + · · ·+ntαt (writing w(α) as in the
above form), which implies in particular all βi ∈ R(Pρ)+, a contradiction. We deduce
from this that for all g ∈ Gal(Qp/K):

nαρ(g)n−1
α ∈ nαρ

Pρ−ss(g)n−1
α

∏

γ

Nγ(F)

with γ in R+\
(
R(Pρ)+ ∐ {w(α), w ∈W (Pρ)}

)
.

We can see ρPρ−ss(g) as a block matrix diag(ρ1(g), . . . , ρd(g)), where ρi : Gal(Qp/K)→
GLni

(F) is irreducible. Assume that {w(α), w ∈W (Pρ)} ) {α}. Then using that, for
fixed i, the ρi(g) for g ∈ Gal(Qp/K) do not take all values in the F-points of a strict
(not necessarily standard) parabolic subgroup of GLni

, one can check that at least one
mβ(g) in (70) is nontrivial for some g ∈ Gal(Qp/K). If {w(α), w ∈ W (Pρ)} = {α},
then there are integers 1 ≤ i < j ≤ d such that ni = nj = 1 and the non-diagonal
entry in mα(g) is (ρi(g) − ρj(g))xα, where xα ∈ F× is the non-diagonal entry in nα.
By assumption, there is at least one g ∈ Gal(Qp/K) such that ρi(g) 6= ρj(g), which
implies mα(g) 6= 1 for that g.
Hence we finally deduce that

nαρ(g)n−1
α ∈ ρ

Pρ−ss(g)

( ∏

β∈{w(α),w∈W (Pρ)}
mβ(g)

)∏

γ

Nγ(F)

with γ in R+\
(
R(Pρ)+∐{w(α), w ∈W (Pρ)}

)
and at least one mβ(g) being nontrivial

for some g ∈ Gal(Qp/K) and some β ∈ {w(α), w ∈W (Pρ)}. This implies that this β
is in Xnαρn

−1
α

and finishes the proof.

Proposition 2.3.2.2. Let ρ : Gal(Qp/K)→ Pρ(F) and Xρ as below (67), and assume
that the irreducible constituents of ρss of dimension 1 are all distinct. Then there is
h0 ∈ Pρ(F) (non unique in general) such that Xh0ρh

−1
0
⊆ Xhρh−1 for all h ∈ Pρ(F).
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Proof. The proof is modelled on that of [BH15, Prop.3.2.3]. Since MPρ
normalizes

NXρ\R(Pρ)+ (Remark 2.3.1.5(ii)), it is enough to prove the same statement with h0, h ∈

NPρ
(F). Using that ρPρ−ss(g)−1hρPρ−ss(g) ∈ NXρ\R(Pρ)+(F) for h ∈ NXρ\R(Pρ)+(F) ⊆

NPρ
(F) by Remark 2.3.1.5(ii) again, and that NXρ\R(Pρ)+(F) is a group, we deduce

Xhρh−1 ⊆ Xρ for all h ∈ NXρ\R(Pρ)+(F). Replacing ρ by a suitable conjugate h0ρh
−1
0

with h0 ∈ NXρ\R(Pρ)+(F), we can assume Xhρh−1 = Xρ for all h ∈ NXρ\R(Pρ)+(F). It is
enough to prove Xρ ⊆ Xhρh−1 for all h ∈ NPρ

(F). Choosing roots α1, . . . , αm ∈ R
+\Xρ

as in Lemma 2.3.1.6 (for P = Pρ and X = Xρ), we can write any h ∈ NPρ
(F) as

h = hmhm−1 · · ·h1hρ, where hi ∈
∏
β∈{w(αi),w∈W (Pρ)} Nβ(F) and hρ ∈ NXρ\R(Pρ)+(F).

We have Xhρρh
−1
ρ

= Xρ and a straightforward induction applying successively Lemma

2.3.2.1 to Xhρρh
−1
ρ

and α = α1, Xh1hρρ(h1hρ)−1 and α = α2, etc. (which we can do

thanks to Lemma 2.3.1.6) gives that Xhρh−1 is the smallest closed subset of R+ relative
to Pρ containing Xρ and the αi, i = 1, . . . , m. In particular Xρ ⊆ Xhρh−1 for all
h ∈ NPρ

(F).

Definition 2.3.2.3. Let ρ : Gal(Qp/K) −→ G(F) be a continuous homomorphism
such that the irreducible constituents of ρss of dimension 1 are all distinct. A good
conjugate of ρ is a conjugate ρ′ of ρ in G(F) which satisfies the two conditions:

(i) it is of the form ρ′ : Gal(Qp/K) → Pρ′(F) ⊆ G(F) for a standard parabolic

subgroup Pρ′ of G such that the image of ρ′Pρ′−ss : Gal(Qp/K)
ρ′
→ Pρ′(F) ։

MPρ′
(F) is not contained in the F-points of a proper parabolic subgroup of

MPρ′
;

(ii) Xρ′ ⊆ Xhρ′h−1 for all h ∈ Pρ′(F).

From Proposition 2.3.2.2, we easily deduce that good conjugates always exist. If
ρ is irreducible, then any conjugate of ρ in G(F) is a good conjugate.

For ρ : Gal(Qp/K) −→ P̃ρ(F) ⊆ Pρ(F) as in (67), set

Wρ
def= {w ∈W,w(S(Pρ)) ⊆ S and w(Xρ\R(Pρ)+) ⊆ R+}

= {w ∈W,w(S(Pρ)) ⊆ S and wP̃ρw
−1 ⊆ wPρ},

(71)

where the second equality follows from Lemma 2.3.1.7. Using the definition of Xρ we
see that, for any w ∈Wρ, we have Xwρw−1 = w(Xρ), where

wρw−1 : Gal(Qp/K) −→ wP̃ρ(F)w−1 = P̃wρw−1(F) ⊆ (wPρ)(F).

(and note that the set Xwρw−1 is relative to wPρ, while the set Xρ is relative to Pρ).

Lemma 2.3.2.4. Let ρ : Gal(Qp/K) → G(F) as in Definition 2.3.2.3 and ρ′ :
Gal(Qp/K) → P̃ρ′(F) ⊆ Pρ′(F) a good conjugate of ρ (where P̃ρ′

def= MPρ′
NXρ′

=

MPρ′
NXρ′\R(Pρ′ )

+). Then any hρ′h−1 for h ∈ P̃ρ′(F) and any wρ′w−1 for w ∈ Wρ′ is a

good conjugate of ρ. Moreover we have Xhρ′h−1 = Xρ′ and Xwρ′w−1 = w(Xρ′).
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Proof. Again, the proof is formally the same as that of [BH15, Lemma 3.2.5]. The
statement is obvious for h ∈ P̃ρ′(F) (as hNX\R(P )+h−1 = NX\R(P )+ for any X closed
subset relative P and any h ∈ NX\R(P )+) and the very last equality follows from the
discussion just above. Following the argument in the proof of Proposition 2.3.2.2, it
is enough to check

Xh(wρ′w−1)h−1 = Xwρ′w−1

for all h ∈ NXwρ′w−1 \R(Pwρ′w−1 )+(F) = Nw(Xρ′\R(Pρ′ )
+)(F). We have

h(wρ′w−1)h−1 = w(w−1hw)ρ′(w−1h−1w)w−1.

Since w−1hw ∈ NXρ′\R(Pρ′ )
+(F), we have X(w−1hw)ρ′(w−1h−1w) ⊆ Xρ′ and since ρ′ is a

good conjugate, we have Xρ′ ⊆ X(w−1hw)ρ′(w−1h−1w), hence Xρ′ = X(w−1hw)ρ′(w−1h−1w).
Applying the discussion just before this lemma to (w−1hw)ρ′(w−1h−1w) and then to
ρ′, we thus get Xh(wρ′w−1)h−1 = w(X(w−1hw)ρ′(w−1h−1w)) = w(Xρ′) = Xwρ′w−1.

We now state and prove the main result of this section (see [BH15, Prop.3.2.6]).

Theorem 2.3.2.5. Let ρ : Gal(Qp/K)→ G(F) be a continuous homomorphism such
that the irreducible constituents of ρss of dimension 1 are all distinct. Let ρ′ and ρ′′

be two good conjugates of ρ. Then there exist h ∈ P̃ρ′(F) and w ∈ Wρ′ such that
ρ′′ = w(hρ′h−1)w−1. In particular we have Xρ′′ = w(Xρ′).

Proof. By assumption there is x ∈ G(F) such that ρ′′(g) = xρ′(g)x−1 for all g ∈
Gal(Qp/K). We can write x = h′′wh′ with h′ ∈ Pρ′(F), h′′ ∈ Pρ′′(F) and w ∈W such
that w(R(Pρ′)+) ⊆ R+.

Step 1: We prove that w(S(Pρ′)) = S(Pρ′′). We have wh′ρ′(g)h′−1w−1 ∈ Pρ′′(F)
for all g ∈ Gal(Qp/K), which implies h′ρ′(g)h′−1 ∈ (w−1Pρ′′w ∩ Pρ′)(F) ⊆ Pρ′(F)
for all g ∈ Gal(Qp/K). In particular, using for instance [DM91, Prop.2.1(iii)], the
image of h′ρ′h′−1 in MPρ′

(F) is contained in the F-points of the parabolic subgroup

w−1Pρ′′w ∩ MPρ′
of MPρ′

. But since (h′ρ′h′−1)Pρ′−ss is conjugate to ρ′Pρ′−ss (recall

h′ ∈ Pρ′(F)), the image of h′ρ′h′−1 in MPρ′
(F) is not contained in the F-points of a

proper parabolic subgroup of MPρ′
. Thus we must have w−1Pρ′′w∩MPρ′

= MPρ′
which

implies MPρ′
⊆ w−1MPρ′′

w. The same argument starting with w−1h′′−1ρ′′(g)h′′w ∈

Pρ′(F) yieldsMPρ′′
⊆ wMPρ′

w−1, i.e. we have MPρ′
= w−1MPρ′′

w. Since by assumption
w(R(Pρ′)+) ⊆ R+, this forces w(S(Pρ′)) = S(Pρ′′) (and thus w(R(Pρ′)+) = R(Pρ′′)+).

Step 2: We choose roots α′
1, . . . , α

′
m′ ∈ R

+\Xρ′ as in Lemma 2.3.1.6 (for P = Pρ′ and
X = Xρ′) and we write h′ = h′

m′h
′
m′−1 · · ·h

′
1h

′
ρ, where h′

i ∈
∏
β∈{w′(α′i),w′∈W (Pρ′)}Nβ(F)

and h′
ρ′ ∈ P̃ρ′(F). By Lemma 2.3.2.4, we can replace ρ′ by h′

ρ′ρ
′h′−1

ρ′ and thus assume
h′
ρ′ = 1. By Lemma 2.3.2.1 and an induction as in the proof of Proposition 2.3.2.2,
Xh′ρ′h′−1 is the smallest closed subset relative to Pρ′ containing Xρ′ and those α′

i such
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that h′
i 6= 1. Since w(h′ρ′h′−1)w−1 takes values in Pρ′′(F) and w(R(Pρ′)) = R(Pρ′′)

(by Step 1), we must also have w(Xh′ρ′h′−1\R(Pρ′)+) ⊆ R+\R(Pρ′′)+. This implies
ww′(α′

i) ∈ R
+ if w′ ∈ W (Pρ′) and h′

i 6= 1, and w(Xρ′\R(Pρ′)+) ⊆ R+. In particular
w ∈Wρ′ together with Step 1.

Step 3: We prove that Xρ′′ = w(Xρ′). Setting

hi
def= wh′

iw
−1 ∈

∏

β∈{ww′(α′i),w′∈W (Pρ′ )}
Nβ(F) ⊆ Pρ′′(F)

(we proved ww′(α′
i) ∈ R

+ in Step 2), we have

ρ′′ = h′′(hm′ · · ·h1)(wρ′w−1)(h−1
1 · · ·h

−1
m′ )h

′′−1
, (72)

where h′′hm′ · · ·h1 ∈ Pρ′′(F) and where ρ′′ and wρ′w−1 are good conjugates of ρ (the
latter by Lemma 2.3.2.4). Applying Definition 2.3.2.3 to both ρ′′ and wρ′w−1, we get
Xρ′′ = Xwρ′w−1 = w(Xρ′) (and thus w−1P̃ρ′′w = P̃ρ′).

Step 4 : We complete the proof. We choose again roots α′′
1 , . . . , α

′′
m′′ ∈ R

+\Xwρ′w−1

as in Lemma 2.3.1.6 for P = Pwρ′w−1 = Pρ′′ (this latter equality from Remark 2.2.1.4)
and X = Xwρ′w−1 = Xρ′′ and we write

h′′(hm′ · · ·h1) = h′′
m′′h

′′
m′′−1 · · ·h

′′
1h

′′
Xρ′′

,

where h′′
i ∈

∏
β∈{w′′(α′′i ),w′′∈W (Pρ′′ )} Nβ(F) and h′′

Xρ′′
∈ P̃wρ′w−1(F) = P̃ρ′′(F). From (72)

and Lemma 2.3.2.1, we see that we must have h′′
i = 1 for all i ∈ {1, . . . , m′′} otherwise

Xρ′′ would be strictly bigger that Xwρ′w−1 . Thus we deduce

ρ′′ = h′′
Xρ′′

wρ′w−1h′′−1
Xρ′′

= w(w−1h′′
Xρ′′

w)ρ′(w−1h′′−1
Xρ′′

w)w−1.

Setting h def= w−1h′′
Xρ′′

w ∈ w−1P̃ρ′′(F)w = P̃ρ′(F), this finishes the proof.

2.4 The definition of compatibility

Given a sufficiently generic n-dimensional representation of Gal(Qp/K) over F (where
K = Qpf is still unramified) and a good conjugate ρ of this representation as in
Definition 2.3.2.3, we define what it means for a smooth representation of G(K) over
F to be compatible with P̃ρ (Definition 2.4.1.5, see the beginning of §2.3.2 for P̃ρ) and
to be compatible with ρ (Definition 2.4.2.7).

2.4.1 Compatibility with P̃

We first define what it means for a smooth representation of G(K) over F to be
compatible with a Zariski closed subgroup P̃ of a standard parabolic subgroup P as
in Definition 2.2.1.3. We keep the notation of §§2.2, 2.3.
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We fix a Zariski closed algebraic subgroup P̃ of a standard parabolic subgroup P
of G as in Definition 2.2.1.3 (by Remark 2.2.1.4, P is in fact determined by P̃ ). We
let X be the unique closed subset of R+ relative to P such that P̃ = MPNX (Lemma
2.3.1.4) and define

W
P̃

def= {w ∈W,w(S(P )) ⊆ S, w(X\R(P )+) ⊆ R+}.

Note that W
P̃

is analogous to Wρ in (71) with P̃ρ replaced by P̃ .

Let Q be a parabolic subgroup containing w
P̃P for some w

P̃
∈W

P̃
, wQ an element

of W such that wQ(S(Q)) ⊆ S and Q′ a parabolic subgroup containing wQQ (note that
both Q and Q′ are standard). So we have inclusions of standard parabolic subgroups
wQw

P̃P ⊆ wQQ ⊆ Q′ and likewise for the Levi subgroups

MwQw
P̃P

= wQwP̃MP (wQwP̃ )−1 ⊆MwQQ = wQMQw
−1
Q ⊆MQ′ .

Using that we work with GLn, we write

MQ′ = diag(M1, . . . ,Md)

with Mi
∼= GLni

and we define the standard parabolic subgroup (wQQ)i of Mi as

(wQQ)i
def= Im

(
wQQ →֒ Q′

։ MQ′ ։Mi

)
.

We define a standard parabolic subgroup (wQw
P̃P )Q of MwQQ, resp. a standard parabo-

lic subgroup (wQw
P̃P )Q,i of M(

wQQ)i
, as the image of wQw

P̃P via wQw
P̃P ⊆ wQQ։MwQQ,

resp. via wQw
P̃P ⊆ wQQ։MwQQ ։M(

wQQ)i
. Equivalently,

(wQw
P̃P )Q = wQ(wP̃P ∩MQ)w−1

Q ⊆ wQMQw
−1
Q = MwQQ

(wQw
P̃P )Q,i = Im

(
wQ(wP̃P ∩MQ)w−1

Q ⊆MwQQ ։M(
wQQ)i

)
.

Note that
M

(
wQw

P̃P )Q
= wQM(

w
P̃P )∩MQ

w−1
Q = wQwP̃MP (wQwP̃ )−1.

We finally define a Zariski closed algebraic subgroup (wQw
P̃P̃ )Q of (wQw

P̃P )Q contain-
ing M

(
wQw

P̃P )Q
, resp. a Zariski closed algebraic subgroup (wQw

P̃P̃ )Q,i of (wQw
P̃P )Q,i

containing M
(
wQw

P̃P )Q,i
, as

(wQw
P̃P̃ )Q

def= wQ
(
(w

P̃
P̃w−1

P̃
) ∩MQ

)
w−1
Q ⊆ wQ(wP̃P ∩MQ)w−1

Q = (wQw
P̃P )Q

(wQw
P̃P̃ )Q,i

def= Im
(
wQ
(
(w

P̃
P̃w−1

P̃
) ∩MQ

)
w−1
Q ⊆MwQQ ։M(wQQ)i

)
.

We also define the continuous group homomorphism

ω−1 ◦ θQ
′

: Q′−(K) −→MQ′(K) θQ′

−→ K× ω−1

−→ F×
p →֒ F×,

where θQ
′

is defined in (44) (applied with P = Q′).

We need a quite formal and easy lemma.
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Lemma 2.4.1.1. Let Π be a smooth representation of a p-adic analytic group over
F which has finite length and distinct absolutely irreducible constituents. Let H be a
split connected reductive algebraic group over Z, PH ⊆ H a parabolic subgroup with
Levi MPH

, P̃H ⊆ PH a Zariski closed algebraic subgroup containing MPH
and R a

(finite-dimensional) algebraic representation of P
Gal(K/Qp)
H over F. Assume that there

exist

(a) a filtration on R by good subrepresentations for the P
Gal(K/Qp)
H -action (see Def-

inition 2.2.1.3) such that the graded pieces exhaust the isotypic components of
R|ZMPH

;

(b) a bijection Φ of partially ordered finite sets between the set of subrepresentations
of Π and the set of good subrepresentations of R|

P̃
Gal(K/Qp)

H

(both being ordered

by inclusion).

Then the following hold:

(i) The bijection Φ uniquely extends to bijections between subquotients of Π and
good subquotients of R|

P̃
Gal(K/Qp)

H

, and between irreducible constituents of Π and

isotypic components of R|ZMPH
.

(ii) If Π′ is a subquotient of Π, then Φ induces a bijection of partially ordered finite
sets between the set of subrepresentations of Π′ and the set of good subrepresen-
tations of Φ(Π′)|

P̃
Gal(K/Qp)

H

.

Proof. Formal and left to the reader.

Remark 2.4.1.2. (i) Let Π and Φ as in Lemma 2.4.1.1, Π′ a subquotient of Π and
Π′′ ⊆ Π′ a subrepresentation. Then the bijection Φ also induces a short exact sequence
0 → Φ(Π′′) → Φ(Π′) → Φ(Π′/Π′′) → 0 of algebraic representation of P̃Gal(K/Qp)

H over
F.
(ii) By Lemma 2.2.1.5 applied with P there being the parabolic w

P̃P above, we see
that Lemma 2.4.1.1 can be applied with H = G, PH = w

P̃P , P̃H = w
P̃
P̃w−1

P̃
and

R = L
⊗

. Using moreover Lemma 2.2.1.6, one easily sees that Lemma 2.4.1.1 can also
be applied with H = MQ, PH = w

P̃P ∩MQ, P̃H = (w
P̃
P̃w−1

P̃
)∩MQ and R any isotypic

component CQ of L
⊗
|ZMQ

(recall from (the proof of) Lemma 2.2.1.5 applied with P

there being Q that the action of QGal(K/Qp) on the subquotient CQ of L
⊗
|QGal(K/Qp)

factors through QGal(K/Qp)
։M

Gal(K/Qp)
Q ).

(iii) Let Q as above, CQ an isotypic component of L
⊗
|ZMQ

, Q′ def= P (CQ) (see §2.2.2)
and wQ ∈ W (CQ) (see (38) and note that wQQ ⊆ Q′ by (39)). Lemma 2.4.1.1 can
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also be applied with H = M(
wQQ)i

, PH = (wQw
P̃P )Q,i, P̃H = (wQw

P̃P̃ )Q,i and R =

CwQ,i, where CwQ,i is the algebraic representation of MGal(K/Qp)

(
wQQ)i

defined in Remark

2.2.3.12 with P there being Q (it is an isotypic component of L
⊗
i |ZM

(
wQ Q)i

). To

prove that assumption (a) of Lemma 2.4.1.1 is satisfied in that case, note that CwQ,i

is a good subquotient of L
⊗
i |(wQQ)

Gal(K/Qp)

i

, and thus a fortiori a good subquotient of

L
⊗
i |(wQw

P̃P )
Gal(K/Qp)

Q′,i

(Lemma 2.2.1.6), where (wQw
P̃P )Q′,i ⊆ (wQQ)i ⊆Mi is the standard

parabolic subgroup of Mi with the same Levi as (wQw
P̃P )Q,i. We have

(wQw
P̃P̃ )Q,i ⊆ (wQw

P̃P )Q,i ⊆ (wQw
P̃P )Q′,i ⊆Mi

and (wQw
P̃P̃ )Q,i is a closed algebraic subgroup of (wQw

P̃P )Q′,i containing M
(
wQw

P̃P )Q′,i
=

M
(
wQw

P̃P )Q,i
. One then applies Lemma 2.2.1.5 with L

⊗
i and with

(wQw
P̃P̃ )Q,i ⊆ (wQw

P̃P )Q′,i ⊆ Mi

instead of P̃ ⊆ P ⊆ G, which implies that there is a filtration on CwQ,i|(wQw
P̃P̃ )

Gal(K/Qp)

Q,i

(or on CwQ,i|(wQw
P̃P )

Gal(K/Qp)

Q′,i

, and thus on CwQ,i|(wQw
P̃P )

Gal(K/Qp)

Q,i

) by good subrepresen-

tations such that the graded pieces exhaust the isotypic components of
CwQ,i|ZM

(
wQw

P̃P )Q,i

= CwQ,i|ZM
(
wQw

P̃P )
Q′,i

.

Lemma 2.4.1.3. Let P̃ ⊆ P , w
P̃
∈ W

P̃
and Q containing w

P̃P as above. Let CQ be

an isotypic component of L
⊗
|ZMQ

and Q′ def= P (CQ).

(i) For any wQ ∈ W (CQ), there is a canonical bijection of partially ordered finite
sets between the set of good subrepresentations of

CQ|(w
P̃
P̃w−1

P̃
)Gal(K/Qp) = CQ|((w

P̃
P̃w−1

P̃
)∩MQ)Gal(K/Qp)

(where the equality follows from Remark 2.4.1.2(ii)) and the set of good subrep-
resentations of wQ(CQ)|

(
wQw

P̃P̃ )
Gal(K/Qp)

Q

.

(ii) For any wQ, w
′
Q ∈ W (CQ) and i ∈ {1, . . . , d}, there is a canonical bijec-

tion of partially ordered finite sets between the set of good subrep-
resentations of CwQ,i|(wQw

P̃P̃ )
Gal(K/Qp)

Q,i

and the set of good subrepresentations of

Cw′
Q
,i|

(
w′

Q
w

P̃P̃ )
Gal(K/Qp)

Q,i

.

Proof. (i) follows from the definition of wQ(CQ) in (46) and the fact that (wQw
P̃P̃ )Q =

wQ
(
(w

P̃
P̃w−1

P̃
) ∩MQ

)
w−1
Q .
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(ii) We have w′
Q = wQ′wQ with wQ′ ∈ W (P (CQ)) = W (Q′) by Lemma 2.2.2.10

(applied with P there being Q). In particular wQ′(wQ(S(Q))) ⊆ S which implies
(w
′
QwP̃P̃ )Q,i = wQ′(

wQw
P̃P̃ )Q,iw−1

Q′ inside M
(
w′

QQ)i

= wQ′M(
wQQ)i

w−1
Q′ (viewing wQ′ as an

element in W (Mi) by abuse of notation). By (54) (applied with P there being Q)
we have Cw′Q,i = wQ′(CwQ,i), where the conjugation by w−1

Q′ intertwines the actions of

(w
′
QwP̃P̃ )Q,i and of (wQw

P̃P̃ )Q,i. The result follows.

Remark 2.4.1.4. The bijections in Lemma 2.4.1.3 all extend to bijections between
good subquotients or isotypic components on both sides, as for Lemma 2.4.1.1.

Let Π, H , PH , P̃H , R and Φ as in Lemma 2.4.1.1. For any wH ∈ WH (the
Weyl group of H) such that wHP̃Hw−1

H is contained in a standard parabolic subgroup
of H , we can define another bijection wH(Φ) between the set of subquotients of Π
and the set of good subquotients of R|

(wH P̃Hw
−1
H

)Gal(K/Qp) as follows: wH(Φ)(Π′) is the

algebraic representation wH
(
Φ(Π′)

)
of (wHP̃Hw−1

H )Gal(K/Qp), where wH
(
Φ(Π′)

)
(g) def=

Φ(Π′)(w−1
H gwH) if g ∈ (wHP̃Hw−1

H )Gal(K/Qp), see (46).

Here is now the first crucial definition.

Definition 2.4.1.5. An admissible smooth representation Π of G(K) over F which
has finite length and distinct absolutely irreducible constituents is compatible with P̃
if there exists a bijection Φ of partially ordered finite sets between the set of subre-
presentations of Π and the set of good subrepresentations of L

⊗
|
P̃Gal(K/Qp) (both being

ordered by inclusion) which satisfies the following conditions (once extended to all
subquotients as in Lemma 2.4.1.1):

(i) (form of subquotients) for any w
P̃
∈ W

P̃
, any parabolic subgroup Q con-

taining w
P̃P and any isotypic component CQ of L

⊗
|ZMQ

, writing MP (CQ) =
M1 × · · · ×Md with Mi

∼= GLni
we have

w
P̃

(Φ)−1(CQ) ∼= IndG(K)
P (CQ)−(K)

(
π(CQ)⊗ (ω−1 ◦ θP (CQ))

)
, (73)

where P (CQ) is defined in §2.2.2, θP (CQ) is defined in (44) and where π(CQ) is
a MP (CQ)-representation of the form π(CQ) ∼= π1(CQ)⊗ · · · ⊗ πd(CQ) for some
(finite length) admissible smooth representations πi(CQ) of Mi(K) over F;

(ii) (compatibility between subquotients) for any w
P̃
∈ W

P̃
, any parabolic

subgroup Q containing w
P̃P , any isotypic component CQ of L

⊗
|ZMQ

and any

w ∈ W such that w
(
S(P (CQ))

)
⊆ S, let w(π(CQ)) be the representation

of MwP (CQ)(K) = wMP (CQ)(K)w−1 defined by

w(π(CQ))(g) def= π(CQ)(w−1gw)
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for π(CQ) as in (73) and g ∈MwP (CQ)(K). Then we have

π
(
w · CQ

)
∼= w

(
π(CQ)

)
,

where w ·CQ is the isotypic component of L
⊗
|ZMQ

in Proposition 2.2.4.2(ii) (ap-
plied with P there being Q) and where π(w · CQ) is as in (73) for the isotypic
component w ·CQ instead of CQ (note that P (w ·CQ) = wP (CQ) by Proposition
2.2.4.2(iii));

(iii) (product structure) for any w
P̃
∈ W

P̃
, any parabolic subgroup Q con-

taining w
P̃P , any isotypic component CQ of L

⊗
|ZMQ

, and one, or equivalently
any by Lemma 2.4.1.3(ii), element wQ ∈ W (CQ), writing MP (CQ) =
diag(M1, . . . ,Md) withMi

∼= GLni
, the restriction of w

P̃
(Φ) to the set of subquo-

tients of w
P̃

(Φ)−1(CQ) comes from d bijections w
P̃

(Φ)wQ,i of partially ordered
sets between the set of Mi(K)-subrepresentations of πi(CQ) (where πi(CQ) is
as in (i)) and the set of good subrepresentations of CwQ,i|(wQw

P̃P̃ )
Gal(K/Qp)

Q,i

(where

CwQ,i is the isotypic component of L
⊗
i |ZM

(
wQQ)i

with its MGal(K/Qp)

(
wQQ)i

-action in (53)

applied with P there being Q) in the following sense: for any subquotient Π′ of
Φ−1(CQ) of the form

Π′ ∼= IndG(K)
P (CQ)−(K)

(
(π′

1 ⊗ · · · ⊗ π
′
d)⊗ (ω−1 ◦ θP (CQ))

)

with π′
i a subquotient of πi(CQ), the good subquotient w

P̃
(Φ)(Π′) of

CQ|(w
P̃
P̃w−1

P̃
)Gal(K/Qp) = CQ|((w

P̃
P̃w−1

P̃
)∩MQ)Gal(K/Qp)

corresponds via Lemma 2.4.1.3(i) and Remark 2.4.1.4 to the following algebraic
representation of (wQw

P̃P̃ )Gal(K/Qp)
Q =

∏d
i=1(

wQw
P̃P̃ )Gal(K/Qp)

Q,i :

d⊗

i=1

(
w
P̃

(Φ)wQ,i(π
′
i)⊗

(
(θP (CQ))i ⊗ · · · ⊗ (θP (CQ))i︸ ︷︷ ︸

Gal(K/Qp)

))
;

(iv) (supersingular) for any isotypic component CP of L
⊗
|ZMP

, the (absolutely ir-
reducible) MP (CP )(K)-representation π(CP ) of (73) is supersingular (cf. [Her11,
Def.4.7, Def.9.12, Cor.9.13]).

If (Π,Φ) is as in Definition 2.4.1.5, then we have in particular Φ(Π) = L
⊗

and
w
P̃

(Φ)wQ,i(πi(CQ)) = CwQ,i. If P̃ = G, then Π is compatible with P̃ if and only if Π
is absolutely irreducible supersingular. Also it is clear from Definition 2.4.1.5 that,
for a fixed w

P̃
∈ W

P̃
, Π is compatible with P̃ if and only if Π is compatible with

w
P̃
P̃w−1

P̃
(replace Φ by w

P̃
(Φ)).
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Remark 2.4.1.6. (i) In Definition 2.4.1.5, we have used Lemma 2.4.1.1 everywhere
(see Remark 2.4.1.2(ii)(iii)). In Definition 2.4.1.5(iii), we have used Remark 2.4.1.4.
Also, Definition 2.4.1.5 is somewhat redundant since a parabolic subgroup Q can
contain w

P̃P for several w
P̃
∈ W

P̃
, but we found it too tedious to make it “non-

redundant”.
(ii) The representations π(CQ) and πi(CQ) in Definition 2.4.1.5(i) are uniquely de-
fined since there are no nontrivial intertwinings between parabolic inductions (by
[Eme10a]).
(iii) When Q = w

P̃P , π(Cw
P̃P

) in (73) is absolutely irreducible, and is thus automat-
ically of the form π(Cw

P̃P
) ∼= π1(Cw

P̃P
) ⊗ · · · ⊗ πd(Cw

P̃P
). It is then not difficult to

deduce from this, together with Lemma 2.2.2.8 and [Eme10a] (and the properties of
Φ), that each πi(CQ) as in (73) has distinct (absolutely) irreducible constituents and
that each irreducible constituent of (73) is of the form IndG(K)

P (CQ)−(K)

(
(π′

1⊗· · ·⊗π
′
d)⊗

(ω−1 ◦ θP (CQ))
)
, where π′

i is an irreducible constituent of πi(CQ). This also justifies
the terminology “comes from d bijections w

P̃
(Φ)wQ,i” in Definition 2.4.1.5(iii).

(iv) It is in fact possible that Definition 2.4.1.5(i) for parabolic subgroups Q strictly
containing some w

P̃P and Definition 2.4.1.5(iii) both automatically follow from the
other conditions in Definition 2.4.1.5. See for instance how the results of [Hau18] are
used in Example 2, Example 4, Example 5 and Example 6 of §2.4.3 below to show
that several conditions of Definition 2.4.1.5 are automatic in special cases.
(v) In Definition 2.4.1.5(iii), we have to use some element wQ of W (CQ) and “pass
through wQ(CQ)” because of Remark 2.2.3.2(ii) (see also the end of Remark 2.2.3.12).
Nothing in here and what follows depends on the choice of such a wQ.
(vi) For a given Π compatible with P̃ , a bijection Φ as in Definition 2.4.1.5 is not
unique in general (consider the case P̃ = MP ).
(vii) In Definition 2.4.1.5, it is necessary in general to consider all elements w

P̃
∈W

P̃
,

note just w
P̃

= 1, otherwise one misses some condition, see for instance (97) below
(note that this is also quite natural in view of Theorem 2.3.2.5).

Example 2.4.1.7. Let us consider the case n = 3, K = Qp and P̃ = P with
MP = GL2×GL1 in the last part of Example 2.2.2.9(ii) (see also Example 2.2.4.4).
We denote by P ′ the standard parabolic subgroup of Levi GL1×GL2. Then Π is
compatible with P̃ if and only Π has 3 irreducible constituents and the following form
(a line means a nonsplit extension of length 2 as a subquotient and the constituent
on the left-hand side is the socle):

IndGL3(Qp)
P−(Qp)

(
π · (ω−1 ◦ det)⊗ χ

)
SS IndGL3(Qp)

P ′−(Qp)

(
χω−2 ⊗ π

)

where χ : Q×
p → F× is a smooth character, π is a supersingular representation of

GL2(Qp) and SS is a supersingular representation of GL3(Qp). The case P̃ = MP is
analogous but with a semisimple Π (instead of nonsplit extensions). See also §2.4.3
below for more examples.
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The following proposition shows that a representation Π as in Definition 2.4.1.5
has internal symmetries.

Proposition 2.4.1.8. Assume Π is compatible with P̃ and let Φ be a bijection as in
Definition 2.4.1.5. Let w

P̃
∈ W

P̃
, Q a parabolic subgroup containing w

P̃P and CQ an

isotypic component of L
⊗
|ZMQ

such that P (CQ) = wQQ for some (unique) wQ ∈ W

with wQ(S(Q)) ⊆ S. Then πi(CQ) is compatible with (wQw
P̃P̃ )Q,i for i ∈ {1, . . . , d},

where πi(CQ) is as in Definition 2.4.1.5(i).

Proof. The proof is long but essentially formal. Replacing P̃ by w
P̃
P̃w−1

P̃
and Φ by

w
P̃

(Φ) (see the discussion following Definition 2.4.1.5), we can assume w
P̃

= Id. We
write for simplicity w instead of wQ. Recall from Proposition 2.2.3.3 that CQ
is the isotypic component of fw−1(θG)|ZMQ

in L
⊗
|ZMQ

. More precisely, by (47),
Corollary 2.2.3.11 and Remark 2.2.3.12 (especially (53)), we have an isomorphism of
algebraic representations of MGal(K/Qp)

wQ
∼=
∏d
i=1 M

Gal(K/Qp)
i

∼=
∏d
i=1 GLGal(K/Qp)

ni
:

w(CQ) ∼= L
⊗
wQ ⊗

(
θ

wQ ⊗ · · · ⊗ θ
wQ
)
∼=

d⊗

i=1

(
L

⊗
i ⊗

(
(θ

wQ)i ⊗ · · · ⊗ (θ
wQ)i

))
. (74)

Thus the map Φw,i in Definition 2.4.1.5(iii) (recall w
P̃

= Id and w = wQ) is a bijection
of partially ordered sets between the set of Mi(K)-subrepresentations of πi(CQ) and
the set of good subrepresentations of Cw,i|(wP̃ )

Gal(K/Qp)

Q,i

= L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

(recall that

(wP )Q,i is here a standard parabolic subgroup of Mi and (wP̃ )Q,i a Zariski closed sub-
group of (wP )Q,i containing M(wP )Q,i

). We have to check that Φw,i satisfies conditions
(i) to (iv) in Definition 2.4.1.5 (with Mi instead of G and (wP̃ )Q,i instead of P̃ ). We
will only check condition (i) below, leaving the others, which are again essentially
formal, to the (motivated) reader.

We can assume i = 1. Let P1
def= (wP )Q,1, P̃1

def= (wP̃ )Q,1 (so MP1 ⊆ P̃1 ⊆ P1 ⊆
M1 ⊆ MwQ) and recall that T1 is the torus of diagonal matrices in M1. Let w

P̃1
∈

W
P̃1
⊆W (M1), Q1 a parabolic subgroup of M1 containing

w
P̃1P1 and CQ1 an isotypic

component of L
⊗
1 |ZMQ1

, we have to prove that w
P̃1

(Φw,1)−1(CQ1) is of the form (73).

Step 1: Let w̃1
def= w

P̃1
× Id× · · · × Id ∈ W (M1)× · · · ×W (Md) = W (wQ) ⊆ W and

set w
P̃

def= w−1w̃1w ∈ W (Q). Then w
P̃
∈ W

P̃
and Q contains w

P̃P . Indeed, since
w
P̃1
∈ W

P̃1
and the simple roots of P1 are contained in w(S(Q)) ⊆ S, we see that

w
P̃

= w−1w̃1w sends the simple (resp. positive) roots of P̃ ∩ MQ to simple (resp.
positive) roots of MQ and the roots of P̃ ∩ NQ to positive roots (using that W (Q)
normalizes NQ). Moreover, one easily checks that

w
P̃1P1 = (wwP̃P )Q,1 = (w(wP̃P ))Q,1.

Replacing P by w
P̃P and Φ by w

P̃
(Φ), we can thus assume w

P̃1
= Id.
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Step 2: Let λ1 ∈ X(T1) be a weight of L
⊗
1 |T1 such that CQ1 is the isotypic component

of λ1|ZMQ1
and recall that λ1|ZM1

= fθM1 |ZM1
= fθwQ|ZM1

, where θMi
for i ∈ {1, . . . , d}

is defined as in (34) replacing G = GLn by Mi = GLni
. Let λwQ ∈ X(T ) be the unique

character such that λwQ|T1 = λ1 and λwQ|Ti
= fθMi

= fθwQ|Ti
if i ∈ {2, . . . , d} (here,

we use the convention in Remark 2.2.3.12 and recall that θMi
is trivial if Mi = GL1).

Then λwQ is a weight of
⊗d
i=1 L

⊗
i |Ti

. We set

λ
def= λwQ + fθ

wQ ∈ X(T )

which is a weight of L
⊗
|T (use (74)). We have

λ|ZM1
= λ1|ZM1

+ fθ
wQ|ZM1

= fθM1 |ZM1
+ fθ

wQ|ZM1

= f(θwQ + θ
wQ)|ZM1

= fθG|ZM1
(75)

and if i ≥ 2:
λ|Ti

= fθMi
+ fθ

wQ|Ti
= f(θwQ + θ

wQ)|Ti
= fθG|Ti

. (76)

In particular λ|ZMwQ
= fθG|ZMwQ

and thus

w−1(λ)|ZMQ
= fw−1(θG)|ZMQ

. (77)

Let Q(1) ⊆ Q be the standard parabolic subgroup of G such that wQ(1) ⊆
wQ has

Levi MQ1 × M2 × · · · × Md. As P1 ⊆ Q1 by Step 1, we note that wQ(1) contains
wP and hence Q(1) contains P , W (wQ(1)) = W (Q1) ×W (M2) × · · · ×W (Md) and
w(S(Q(1))) = S(Q1)∐ S(M2)∐ · · · ∐ S(Md). Let CQ(1)

be the isotypic component of

L
⊗
|ZMQ(1)

associated to w−1(λ)|ZMQ(1)

. From (77) we get CQ(1)
⊆ CQ (inside L

⊗
|ZMQ(1)

)

and from (75), (76) an isomorphism of algebraic representations of MGal(K/Qp)
Q1

⊗
∏d
i=2 M

Gal(K/Qp)
i :

w(CQ(1)
) ∼=

(
CQ1⊗

(
(θ

wQ)1⊗· · ·⊗(θ
wQ)1

))
⊗

d⊗

i=2

(
L

⊗
i ⊗

(
(θ

wQ)i⊗· · ·⊗(θ
wQ)i

))
. (78)

Step 3: Define λ′, λ′
wQ and θ′

G by the formula (36) for P = wQ(1) and the respective
characters λ, λwQ and θG. Set λ′

1
def= 1

|W (Q1)|
∑
w′1∈W (Q1) w

′
1(λ1) ∈ (X(T1) ⊗Z Q)W (Q1).

From (the proof of) Lemma 2.2.3.6, we easily get λ′ = λ′
wQ + fθ

wQ with λ′
wQ|T1 = λ′

1.
Let w1 ∈W (M1) such that w1(S(Q1)) ⊆ S(M1) and w1(λ′

1) is dominant (w1 exists by
Proposition 2.2.2.6(i)). We prove that w1(λ′) = w1(λ′

wQ) +fθ
wQ is also dominant (we

consider here w1 as an element of W (wQ) in the obvious way and use that W (wQ)
acts trivially on θ

wQ). From (76) we easily get λ′|Ti
= fθ′

G|Ti
if i ≥ 2. But θ′

G is
dominant since θG is (see the proof of Lemma 2.2.2.4(i)), thus 〈w1(λ′), α〉 = 〈λ′, α〉 =
〈fθ′

G, α〉 ≥ 0 if α ∈ {ej − ej+1, n1 + 1 ≤ j ≤ n − 1}. Since w1(λ′
wQ)|T1 = w1(λ′

1)
is dominant by assumption and 〈fθ

wQ, α〉 = 0 if α ∈ {ej − ej+1, 1 ≤ j ≤ n1 − 1}
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(see after (44)), we are left to check that 〈w1(λ′), en1 − en1+1〉 ≥ 0. But an explicit
computation gives

〈w1(λ′), en1 − en1+1〉 = 〈w1(λ′
wQ), en1 − en1+1〉+ 〈fθ

wQ, en1 − en1+1〉

= 〈w1(λ′
wQ), en1〉 − 〈w1(λ′

wQ), en1+1〉+ fn2

= 〈w1(λ′
wQ), en1〉 − f

n2 − 1
2

+ fn2

≥ f
n2 + 1

2
,

where the last inequality follows 〈w1(λ′
wQ), en1〉 ≥ 0 by Remark 2.2.1.1(ii) applied to

L
⊗
1 |T1 (instead of L

⊗
|T ) together with formula (36).

Step 4: By definition, S(P (CQ1)) is the support of fθM1 − w1(λ′
1) (see Proposition

2.2.2.6(ii)). By Remark 2.2.2.3(ii) we have w−1(λ′) = (w−1(λ))′ in (X(T )⊗ZQ)W (Q(1)),
where the latter is given by (36) applied to the parabolic Q(1) and the character
w−1(λ). Since w1w(S(Q(1))) ⊆ S and w1w((w−1(λ))′) = w1w(w−1(λ′)) = w1(λ′) is
dominant (Step 4), S(P (CQ(1)

)) is by definition the support of

fθG − w1(λ′) = fθG −
(
w1(λ′

wQ) + fθ
wQ
)

= fθwQ − w1(λ′
wQ)

= (fθM1 − w1(λ′
1)) +

d∑

i=2

(fθMi
− fθ′

Mi
), (79)

where θ′
Mi

is defined by (36) applied to P = Mi = G and the character θMi
of Ti. In

fact, θ′
Mi

is the character det
ni−1

2 of Ti, from which we easily see that the support of
(79) is exactly S(P (CQ1))∐ S(M2)∐ · · · ∐ S(Md). This implies

MP (CQ(1)
) = diag(MP (CQ1

),M2, . . . ,Md). (80)

Step 5: We now finally prove that Φw,1 satisfies condition (i) in Definition 2.4.1.5.
Write MP (CQ1

) = M1,1 × · · · ×M1,d1 (for some d1 ≥ 1), by condition (i) in Definition
2.4.1.5 for the map Φ we have using (80):

Φ−1(CQ(1)
) ∼= IndG(K)

P (CQ(1)
)−(K)

((
π1(CQ(1)

)⊗· · ·⊗πd(CQ(1)
)
)
⊗ (ω−1 ◦ θ

P (CQ(1)
))
)
, (81)

where π1(CQ(1)
) = π1,1(CQ(1)

)⊗ · · · ⊗ π1,d1(CQ(1)
) (with obvious notation). Let

π′
1

def= IndM1(K)
P (CQ1

)−(K)

(
π1(CQ(1)

)⊗ (ω−1 ◦ θP (CQ1
))
)
, (82)

it is enough to prove that π′
1 is a subquotient of π1(CQ) and that

Φw,1(π′
1) = CQ1|P̃Gal(K/Qp)

1

(= CQ1|(P̃1∩MQ1
)Gal(K/Qp)).
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Note first that
θ
P (CQ(1)

) = θP (CQ) + θP (CQ1
), (83)

where we view θP (CQ1
) as a character of T (not just T1) by sending the coordinates

in Ti to 1 for i ≥ 2 (this is straightforward to check from (44)). From (81), (82) and
(83), we get

Φ−1(CQ(1)
) ∼= IndG(K)

P (CQ)−(K)

((
π′

1 ⊗ π2(CQ(1)
)⊗ · · · ⊗ πd(CQ(1)

)
)
⊗ (ω−1 ◦ θP (CQ))

)
.

Since CQ(1)
is a subquotient of CQ (both being good subquotients of L

⊗
|
P̃Gal(K/Qp)),

Φ−1(CQ(1)
) is a subquotient of Φ−1(CQ). This implies in particular (using the ordinary

functor of [Eme10a] together with Remark 2.4.1.6(iii)) that π′
1 (resp. πi(CQ(1)

) for
i ≥ 2) is a subquotient of π1(CQ) (resp. of πi(CQ) for i ≥ 2). By condition (iii) for Φ
(in Definition 2.4.1.5) applied to Π′ = Φ−1(CQ(1)

) (together with P (CQ) = wQ), we

also get an isomorphism of algebraic representations of
∏d
i=1(

wP̃ )Gal(K/Qp)
Q,i over F:

w(CQ(1)
) =

(
Φw,1(π′

1)⊗
(
(θ

wQ)1 ⊗ · · · ⊗ (θ
wQ)1

))
⊗

d⊗

i=2

(
Φw,i(πi(CQ(1)

))⊗
(
(θ

wQ)i ⊗ · · · ⊗ (θ
wQ)i

))
, (84)

where Φw,1(π′
1) and Φw,i(πi(CQ(1)

)) (i ≥ 2) are good subquotients of L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

.

Since we have good subquotients of L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

in each factor of (78) and (84),

(78) and (84) imply Φw,1(π′
1) = CQ1|P̃Gal(K/Qp)

1

and Φw,i(πi(CQ(1)
)) = L

⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

for

i ≥ 2 (recall isotypic components of L
⊗
i |MGal(K/Qp)

(wP )Q,i

tautology occur with multiplicity 1,

so there is no multiplicity issue). This finishes the proof of condition (i) in Definition
2.4.1.5 for Φw,1.

Remark 2.4.1.9. When P (CQ) is strictly bigger than wQQ for one, or equivalently
any by Lemma 2.2.3.1, wQ ∈ W (CQ), there is no real analogue of Proposition 2.4.1.8
since L

⊗
i has to be replaced by CwQ,i in (53) which is not L

⊗
i in general.

2.4.2 Compatibility with ρ

We define what it means for a representation of G(K) over F to be compatible with
a good conjugate ρ : Gal(Qp/K) → P̃ρ(F) as in §2.3.2. Essentially, an admissible
smooth representation Π is compatible with ρ if it is compatible with P̃ρ in the
sense of Definition 2.4.1.5 and if the bijection Φ of loc.cit. satisfies some natural
compatibilities with the functor VG in (16) (see Definition 2.4.2.7).
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We now fix a continuous homomorphism

ρ : Gal(Qp/K) −→ G(F)

and recall that ρss denotes the semisimplification of the associated representation of
Gal(Qp/K) (see §2.3.2). We assume that ρ is generic in the following sense:

(a) ρss has distinct irreducible constituents;

(b) the ratio of any two irreducible constituents of ρss of dimension 1 is not in
{ω, ω−1}.

By Proposition 2.3.2.2, conjugating ρ by an element of G(F) if necessary, we can
assume that ρ is a good conjugate in the sense of Definition 2.3.2.3, that is we have

ρ : Gal(Qp/K) −→ P̃ρ(F) ⊆ Pρ(F) ⊆ G(F),

where Pρ is a standard parabolic subgroup of G such that ρss is given by the com-

position Gal(Qp/K)
ρ
−→ Pρ(F) ։ MPρ

(F) (see (67)), P̃ρ ⊆ Pρ is the smallest closed
algebraic subgroup of Pρ containing MPρ

and the ρ(g) for g ∈ Gal(Qp/K) (in its
F-points), and where, for any h ∈ Pρ(F), if we define P̃hρh−1 ⊆ Pρ as for ρ, then we
have P̃ρ ⊆ P̃hρh−1. Good conjugates are not unique, see Theorem 2.3.2.5, but we fix
such a good conjugate ρ (and the associated pair (P̃ρ, Pρ)) for the moment.

For any w̃ ∈ Wρ = W
P̃ρ

(see (71)) and any parabolic subgroup Q containing w̃Pρ,

we define the Q-semisimplification ρQ−ss of ρ as the continuous homomorphism

ρQ−ss : Gal(Qp/K)
w̃ρw̃−1

−→ w̃Pρ(F) →֒ Q(F) ։MQ(F)

(strictly speaking, it also depends on w̃). More generally, for any w ∈ W such that
w(S(Q)) ⊆ S, we define the continuous homomorphisms

w(ρQ−ss) : Gal(Qp/K)
wρQ−ssw−1

−→ wMQ(F)w−1 = MwQ(F)

and note that w(ρQ−ss) actually takes values in

(ww̃P̃ρ)Q(F) ⊆ (ww̃Pρ)Q(F) ⊆MwQ(F)

(recall from the beginning of §2.4.1 that (ww̃Pρ)Q = w(w̃Pρ ∩MQ)w−1 and (ww̃P̃ρ)Q =
w
(
(w̃P̃ρw̃−1) ∩MQ

)
w−1).

Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ, w ∈W such that w(S(Q)) ⊆
S and Q′ a parabolic subgroup containing wQ. We write MQ′ = diag(M1, . . . ,Md)
with Mi

∼= GLni
and we set for i ∈ {1, . . . , d}:

w(ρQ−ss)i : Gal(Qp/K)
w(ρQ−ss)
−→ MwQ(F) →֒ MQ′(F) ։Mi(F).

77



We also have (recall from §2.4.1 that (wQ)i is a standard parabolic subgroup of Mi):

w(ρQ−ss)i : Gal(Qp/K)
w(ρQ−ss)
−→ MwQ(F) ։M(wQ)i

(F) →֒Mi(F). (85)

Composing w(ρQ−ss)i with Mi(F) ։ (Mi/M
der
i )(F) ∼= F×, we obtain by class field

theory for K a continuous group homomorphism

det(w(ρQ−ss)i) : K× −→ F×. (86)

Lemma 2.4.2.1. Let ρ, Q as above, CQ an isotypic component of L
⊗
|ZMQ

and Q′ def=
P (CQ). Then the characters (86) for i ∈ {1, . . . , d} and w ∈ W (CQ) (see (38))
don’t depend on the choice of w ∈ W (CQ). Moreover, we have

∏d
i=1 det(w(ρQ−ss)i) =

det(ρ).

Proof. This follows from Lemma 2.2.2.10 (applied to P = Q) together with the fact
that conjugation by W (P (CQ)) (seen in MP (CQ)(F)) is trivial on MP (CQ)/M

der
P (CQ), and

thus on each Mi/M
der
i . The last assertion is obvious.

As previously, w(ρQ−ss)i in (85) takes values in

(ww̃P̃ρ)Q,i(F) ⊆ (ww̃Pρ)Q,i(F) ⊆ M(wQ)i
(F) ⊆Mi(F) ∼= GLni

(F)

(recall from the beginning of §2.4.1 that (ww̃Pρ)Q,i is a standard parabolic subgroup of
M(wQ)i

and that (ww̃P̃ρ)Q,i is a Zariski closed algebraic subgroup of (ww̃Pρ)Q,i containing
M

(ww̃Pρ)Q,i
).

Proposition 2.4.2.2. Let ρ, Q as above, w ∈ W such that w(S(Q)) ⊆ S and

Q′ def= wQ. Then w(ρQ−ss)i : Gal(Qp/K) −→Mi(F) is a good conjugate with values in

(ww̃P̃ρ)Q,i(F) for i ∈ {1, . . . , d}.

Proof. Note that w̃ρw̃−1 is a good conjugate (with values in w̃P̃ρ(F)w̃−1 ⊆ w̃Pρ(F))
by Lemma 2.3.2.4. Since w(ρQ−ss) is obtained from ρQ−ss by permuting the blocs
Mi
∼= GLni

of MQ, it is equivalent to prove the statement for w = Id. Assume
that ρi

def= (ρQ−ss)i : Gal(Qp/K) → Mi(F) is not a good conjugate. Then it follows
from Proposition 2.3.2.2 that there is hi ∈ (w̃Pρ)Q,i(F) such that hiρih

−1
i is a good

conjugate, and thus Xhiρih
−1
i

( Xρi
(with the notation of §2.3.2). Let αi be a positive

root of GLni
in Xρi

\Xhiρih
−1
i

and note that, if αi is a sum of roots in R+ (viewing αi
in R+), then all of these roots are positive roots of GLni

. Set hj
def= IdGLnj

∈ GLnj
(F)

if j 6= i and define h = (h1, . . . , hd) ∈ diag(M1, . . . ,Md) = MQ(F) ⊆ Q(F). If
we had αi ∈ Xhw̃ρw̃−1h−1 , then from what we just said necessarily we would have
αi ∈ X(hρQ−ssh−1)i

= Xhiρih
−1
i

which is impossible. Therefore αi /∈ Xhw̃ρw̃−1h−1. But
since αi ∈ Xρi

⊆ Xw̃ρw̃−1 (viewing the positive roots of GLni
as a subset of R+) we

deduce Xhw̃ρw̃−1h−1 ( Xw̃ρw̃−1 which is impossible as w̃ρw̃−1 is a good conjugate.
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For σ ∈ Gal(K/Qp) = Gal(Qpf/Qp) consider

ρσ : Gal(Qp/K)→ P̃ρ(F) ⊆ Pρ(F) ⊆ G(F),

where ρσ(g) def= ρ(σgσ−1). Here g ∈ Gal(Qp/K) and σ is any lift of σ in Gal(Qp/Qp).
Since Gal(Qp/K) is normal in Gal(Qp/Qp), ρσ(g) is well defined up to conjugation
(by elements in P̃ρ(F)). If C is a good subquotient of L

⊗
|
P̃

Gal(K/Qp)

ρ

(Definition 2.2.1.3),

we can view in particular C as a continuous homomorphism

P̃ρ(F)× · · · × P̃ρ(F)
︸ ︷︷ ︸

Gal(K/Qp)

−→ Aut
(
C(F)

)
(87)

(denoting by C(F) the underlying F-vector space of the algebraic representation C)
and define a Gal(Qp/K)-representation C(ρ) as

Gal(Qp/K)
∏
ρσ

−→ P̃ρ(F)× · · · × P̃ρ(F) C
−→ Aut

(
C(F)

)
,

where, in the first arrow, we choose any order on the elements σ of Gal(K/Qp).

Lemma 2.4.2.3. The Gal(Qp/K)-representation C(ρ) is well-defined up to isomor-
phism and canonically extends to a Gal(Qp/Qp)-representation.

Proof. The algebraic representation C of P̃Gal(K/Qp)
ρ over F doesn’t depend up to

isomorphism on the order of the copies of P̃ρ, i.e. any permutation of the P̃ρ’s yields an
algebraic representation which is conjugate by an element of Aut(C(F)). Indeed, this
clearly holds when C is an isotypic component of L

⊗
|ZMPρ

as ZMPρ
embeds diagonally

into P̃Gal(K/Qp)
ρ . Thus, for a general good subquotient C, any permutation of the P̃ρ’s

gives a representation C ′ which contains the same isotypic components of L
⊗
|ZMPρ

as

those of C. Assume now that C is a good subrepresentation of L
⊗
|
P̃

Gal(K/Qp)

ρ

. Then

C ′ must be isomorphic to C since isotypic components of L
⊗
|ZMPρ

tautologically

occur with multiplicity 1. In general, one writes C as the quotient of two good
subrepresentations of L

⊗
|
P̃

Gal(K/Qp)

ρ

. All this implies that C(ρ) is well-defined.

We now prove that it extends to Gal(Qp/Qp). First, if C = L
⊗
|
P̃

Gal(K/Qp)

ρ

, then C(ρ)

is the tensor induction (20) and thus canonically extends to Gal(Qp/Qp). Let us
recall explicitly how it extends. Fix σ1, . . . , σf some representatives in Gal(Qp/Qp)
of the elements of Gal(K/Qp) = Gal(Qpf/Qp) and define permutations w1, . . . , wf on
{1, . . . , f} by σiσ

−1
j = σ−1

wi(j)
hi,j, where hi,j ∈ Gal(K/Qp). The underlying F-vector

space L
⊗

(F) of L
⊗

is
f⊗

i=1

((⊗

α∈S
L(λα)

)
(F)

)
,
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where
(⊗

α∈S L(λα)
)
(F) is the underlying vector space of

⊗
α∈S L(λα), and the action

of σi then sends v1 ⊗ v2 ⊗ · · · ⊗ vf ∈ L
⊗

(F) to u1 ⊗ u2 ⊗ · · · ⊗ uf , where:

uwi(j)
def=
((⊗

α∈S
L(λα)

)
(ρ(hi,j))

)
(vj). (88)

This yields an action of Gal(Qp/Qp) which doesn’t depend on any choice (up to
isomorphism). It is enough to prove that this action of Gal(Qp/Qp) preserves the
subspaces C(F) ⊆ L

⊗
(F), where C is any good subrepresentation of L

⊗
|
P̃

Gal(K/Qp)

ρ

.

But this is clear from (88) since C(F) is preserved by the action of Gal(Qp/K) and
by any permutation of the vi (as we have seen at the beginning).

Remark 2.4.2.4. One could also use L-groups as in §2.1.4 in order to have more
intrinsic definitions (see Remark 2.2.1.1(i)). However the above pedestrian approach
will be sufficient for our purpose.

The following lemma is in the same spirit as Lemma 2.4.2.1.

Lemma 2.4.2.5. Let ρ, Q as above, CQ an isotypic component of L
⊗
|ZMQ

and Q′ def=
P (CQ). For w ∈ W (CQ) and i ∈ {1, . . . , d}, let

• Cw,i be the isotypic component of L
⊗
i |ZM(wQ)i

defined in (53) (applied with P

there being Q);

• w(ρQ−ss)i the representation of Gal(Qp/K) with values in M(wQ)i
(F) defined in

(85) (applied to Q′ = P (CQ));

• Cw,i
(
w(ρQ−ss)i

)
the representation of Gal(Qp/Qp) defined in Lemma 2.4.2.3

(applied to ρ = w(ρQ−ss)i, L
⊗
i and C = Cw,i).

Then the Gal(Qp/Qp)-representation Cw,i
(
w(ρQ−ss)i

)
doesn’t depend on w ∈W (CQ).

Proof. Let w′ be another element in W (CQ). Then w′ = wP (CQ)w with wP (CQ) ∈
W (P (CQ)) by Lemma 2.2.2.10 (with P there being Q). Since wP (CQ) respects Mi, we
have

w′(ρQ−ss)i = wP (CQ)w(ρQ−ss)iw−1
P (CQ).

The result then follows from (54) (applied with P = Q).

Remark 2.4.2.6. Lemma 2.4.2.5 still holds replacing Cw,i by any good subquotient
of Cw,i|(ww̃P̃ρ)

Gal(K/Qp)

Q,i

and using the proof of Lemma 2.4.1.3(ii) and Remark 2.4.1.4 to

compare with the corresponding good subquotient of Cw′,i|(w′w̃P̃ρ)
Gal(K/Qp)

Q,i

. The proof

is the same as for Lemma 2.4.2.5 using that w(ρQ−ss)i takes values in (ww̃P̃ρ)Q,i(F).
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We now state the second crucial definition. We use the functor VH defined in
§2.1.1 in the case H = GLm, m ≥ 1 (with the convention of Example 2.1.1.3). If a
smooth representation π of H(K) has a central character, we denote it by Z(π) (so
writing Z(π) in the sequel implicitly means that π has a central character). We also
define

ω−1 ◦ θMi
: ZMi

(K) = K× θMi
|ZMi−→ K× ω−1

−→ F×
p →֒ F× (89)

(θMi
as in (34) replacing G by Mi).

Definition 2.4.2.7. An admissible smooth representation Π of G(K) over F which
has finite length and distinct absolutely irreducible constituents is compatible with ρ
if there exists a bijection Φ as in Definition 2.4.1.5 for P̃ = P̃ρ (in particular Π is
compatible with P̃ρ) which satisfies the following extra conditions:

(i) for any subquotient Π′ of Π, we have an isomorphism of Gal(Qp/Qp)-representa-
tions over F:

VG(Π′) ∼= Φ(Π′)(ρ), (90)

where Φ(Π′)(ρ) is the associated representation of Gal(Qp/Qp) defined in Lem-
ma 2.4.2.3;

(ii) for any w̃ ∈Wρ, any parabolic subgroup Q containing w̃Pρ and any isotypic com-
ponent CQ of L

⊗
|ZMQ

, writing MP (CQ) = diag(M1, . . . ,Md) with Mi
∼= GLni

we
have for one, or equivalently any, element w ∈W (CQ) and for any subquotient
π′
i of πi(CQ):

Z
(
π′
i

)
∼= det(w(ρQ−ss)i) · ω−1 ◦ θMi

(91)

VMi

(
π′
i

)
∼= w̃(Φ)w,i(π′

i)
(
w(ρQ−ss)i

)
,

where

• πi(CQ) is the admissible smooth representation of Mi(K) over F in Defini-
tion 2.4.1.5(i);

• det(w(ρQ−ss)i) (resp. ω−1◦θMi
) is the character of K× defined in (86) (resp.

in (89));

• w̃(Φ)w,i(π′
i) is the good subquotient of Cw,i|(ww̃P̃ρ)Q,i

defined in Definition

2.4.1.5(iii);

• w(ρQ−ss)i is the representation of Gal(Qp/K) with values in (ww̃P̃ρ)Q,i(F)⊆
M(wQ)i

(F) defined in (85) (applied to Q′ = P (CQ));

• w̃(Φ)w,i(π′
i)
(
w(ρQ−ss)i

)
is the representation of Gal(Qp/Qp) defined in

Lemma 2.4.2.3 (applied to ρ = w(ρQ−ss)i, L
⊗
i and C = w̃(Φ)w,i(π′

i)).
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If Π is compatible with ρ, then we have in particular VG(Π) ∼= L
⊗

(ρ)
and VMi

(
πi(CQ)

)
∼= Cw,i

(
w(ρQ−ss)i

)
for Q,w, i as in Definition 2.4.2.7(ii) (recall that

VMi
(πi(CQ)) is always the trivial representation of Gal(Qp/Qp) when ni = 1). If ρ is

(absolutely) irreducible, then P̃ρ = Pρ = G, Wρ = {Id} and Π is compatible with ρ
if and only if Π is absolutely irreducible supersingular, Z(Π) ∼= det(ρ) · ω−1 ◦ (θG|ZG

)
and VG(Π) ∼= L

⊗
(ρ).

Remark 2.4.2.8. (i) The isomorphisms in (91) are consistent with Lemma 2.4.2.1,
Lemma 2.4.2.5 and Remark 2.4.2.6 since their left-hand sides don’t depend on w ∈
W (CQ).
(ii) Let Π be compatible with ρ. From (73) applied with w

P̃
= 1 and Q = P , (91)

applied with w̃ = 1 and Q = Pρ, the last assertion in Lemma 2.4.2.1, and from

θG|ZG
= θP (CQ)|ZG

θP (CQ)|ZG
= θP (CQ)|ZG

( d∏

i=1

θMi
|ZMi

)

(which follows from (44)), we deduce that each irreducible constituent Π′ of Π is such
that Z(Π′) = det(ρ) · ω−1 ◦ (θG|ZG

). Since these irreducible constituents are all dis-
tinct by assumption, we obtain that Π has a central character Z(Π) = det(ρ) · ω−1 ◦

(θG|ZG
) = det(ρ) · ω

−n(n−1)
2 .

(iii) Let Π be compatible with ρ, Π′ a subquotient of Π and Π′′ ⊆ Π′ a subrepre-
sentation. Then from Remark 2.4.1.2(i) we have an exact sequence of Gal(Qp/Qp)-
representations:

0 −→ Φ(Π′′)(ρ) −→ Φ(Π′)(ρ) −→ Φ(Π′/Π′′)(ρ) −→ 0.

Thus (90) implies that the sequence 0 → VG(Π′′) → VG(Π′) → VG(Π′/Π′′) → 0 is
exact. In other terms, when applied to Π and its subquotients VG behaves like an
exact functor.
(iv) Let χ : K× → F× be a smooth character. Then it easily follows from Remark
2.1.1.4(ii) that Π is compatible with ρ if and only if Π⊗ (χ ◦ det) is compatible with
ρ⊗ χ.
(v) For a given Π compatible with ρ, a bijection Φ as in Definition 2.4.2.7 is still
not unique in general. For instance consider the case n = 4, K = Qp, P̃ρ = MPρ

=
diag(GL2,GL2) and ρ = ρ1⊕ρ2 with ρi : Gal(Qp/Qp)→ GL2(F) absolutely irreducible
distinct for i = 1, 2 but such that ∧2

Fρ1
∼= ∧2

Fρ2.

Definition 2.4.2.7 doesn’t depend on the choice of a good conjugate.

Proposition 2.4.2.9. If ρ′ : Gal(Qp/K)→ P̃ρ′(F) ⊆ Pρ′(F) is another good conjugate
of ρ, then Π is compatible with ρ if and only if Π is compatible with ρ′.

Proof. From Theorem 2.3.2.5, we have ρ′ = whρh−1w−1 for some h ∈ P̃ρ(F) and some
w ∈ Wρ. By symmetry, it is enough to prove that Π compatible with ρ implies Π
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compatible with ρ′. We have first that Π is compatible with hρh−1. Indeed, P̃hρh−1 =
P̃ρ and the conditions in Definition 2.4.2.7 for hρh−1 follow from the conditions for
ρ since w(ρQ−ss)i and w((hρh−1)Q−ss)i are conjugate in (ww̃P̃ρ)Q,i(F) (with w̃, w here
as in Definition 2.4.2.7). Thus we can assume h = Id. But then, it is clear from
Definition 2.4.2.7 that Π is compatible with ρ′ = wρw−1.

Just as some statements in Definition 2.4.1.5 should follow from others (see Re-
mark 2.4.1.6(iv)), we expect the isomorphisms (90) to follow in many cases from the
isomorphisms (91):

Proposition 2.4.2.10. Assume Π is compatible with ρ and let Φ be a bijection as
in Definition 2.4.2.7. Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ, CQ an

isotypic component of L
⊗
|ZMQ

and Π′ a subquotient of w̃(Φ)−1(CQ) of the form

Π′ ∼= IndG(K)
P (CQ)−(K)

(
(π′

1 ⊗ · · · ⊗ π
′
d)⊗ (ω−1 ◦ θP (CQ))

)
,

where π′
i is a subquotient of the representation πi(CQ) of Mi(K) over F defined

in Definition 2.4.1.5(i) (so that w̃(Φ)(Π′) is a good subquotient of CQ|w̃P̃Gal(K/Qp)

ρ

=

CQ|((w̃P̃ρw̃
−1)∩MQ)Gal(K/Qp)). Assume that VMP (CQ)

(π′
1 ⊗ · · · ⊗ π′

d) ∼=
⊗d
i=1 VMP (CQ),i(π

′
i)

(with the notation used in Lemma 2.1.1.5). Then the isomorphism (90) for Π′ follows
from the isomorphisms (91).

Proof. For i ∈ {1, . . . , d}, we have (easy computation):

(θP (CQ))i = detn−
∑i

j=1
nj . (92)

Let π′′
i

def= π′
i ⊗ (ω−1 ◦ det)n−

∑i

j=1
nj , we have by Lemma 2.1.1.5, (92) and Remark

2.1.1.4(ii):

VG(Π′) = VG

(
IndG(K)

P (CQ)−(K)(⊗
d
i=1π

′
i)⊗ (ω−1 ◦ θP (CQ))

)

∼=

(
d⊗

i=1

(
VMi

(π′′
i )⊗

(
Z(π′′

i )n−
∑i

j=1
nj
)
|Q×p δ

−1
Mi

))
⊗ δG

∼=

(
d⊗

i=1

(
VMi

(π′
i)⊗

((
Z(π′

i) · ω ◦ θMi

)n−
∑i

j=1
nj
)
|Q×p

))
⊗ δ,
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where δ def=
(
δG
∏d
i=1 δ

−1
Mi

)
ind⊗Qp

K (ω−
∑d

i=1
ci) with (by an explicit computation):

ci = ni(ni − 1)
(
n−

i∑

j=1

nj

)
+ ni

(
n−

i∑

j=1

nj

)2

= ni

(
n−

i∑

j=1

nj

)(
ni − 1 + n−

i∑

j=1

nj

)

= ni

(
n−

i∑

j=1

nj

)(
n− 1−

i−1∑

j=1

nj

)
. (93)

Now, assuming (91) we have for one, or equivalently any, w of W (CQ):

Φ(Π′)(ρ) ∼= w̃(Φ)(Π′)(ρ)

= w̃(Φ)(Π′)(ρQ−ss)

∼=
d⊗

i=1

(
w̃(Φ)w,i(π′

i)
(
w(ρQ−ss)i

)
⊗

((
(θP (CQ))i ⊗ · · · ⊗ (θP (CQ))i

)
◦
(
⊕σ (w(ρQ−ss)i)σ

)))

∼=
d⊗

i=1

(
VMi

(π′
i)⊗

((
det(w(ρQ−ss)i)

)n−
∑i

j=1
nj
)
|Q×p

)

∼=
d⊗

i=1

(
VMi

(π′
i)⊗

((
Z(π′

i) · ω ◦ θMi

)n−
∑i

j=1
nj
)
|Q×p

)
,

where the first isomorphism follows from ρ ∼= w̃ρw̃−1, the second equality is obvi-
ous (w̃(Φ)(Π′) being a representation of MGal(K/Qp)

Q as it is a subquotient of CQ),
the second isomorphism follows from Definition 2.4.1.5(iii), and the last two isomor-
phisms from (91), (92) and local class field theory for Qp. So we have to prove

(δG
∏d
i=1 δ

−1
Mi

) ind⊗Qp

K (ω−
∑d

i=1
ci) = 1, which amounts to checking the following explicit

identity (using (93) and Example 2.1.1.3):

n−1∑

j=1

j2 =
d∑

i=1

ni−1∑

j=1

j2 +
d∑

i=1

(
ni
(
n−

i∑

j=1

nj
)(
n− 1−

i−1∑

j=1

nj
))
.

This follows easily by induction on d using the case d = 2 and the identity

(n−m)2 + (n−m+ 1)2 + · · ·+ (n− 1)2 = 1 + 22 + · · ·+ (m− 1)2 +m(n−m)(n− 1)

for any integers n ≥ m ≥ 1.

The following proposition is analogous to Proposition 2.4.1.8.
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Proposition 2.4.2.11. Assume Π is compatible with ρ and let Φ be a bijection as in
Definition 2.4.2.7. Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ and CQ an

isotypic component of L
⊗
|ZMQ

such that P (CQ) = wQ for some (unique) w ∈W with

w(S(Q)) ⊆ S. Then πi(CQ) is compatible with w(ρQ−ss)i for i ∈ {1, . . . , d}, where
πi(CQ) is as in Definition 2.4.1.5(i) and w(ρQ−ss)i as in (85).

Proof. We use the notation in the proof of Proposition 2.4.1.8. Replacing ρ by w̃ρw̃−1

and Φ by w̃(Φ), we can assume w̃ = Id. We have to prove that the map Φw,i satisfies
conditions (i) and (ii) of Definition 2.4.2.7 with Mi instead of G and w(ρQ−ss)i instead
of ρ. Note that this makes sense thanks to Proposition 2.4.2.2. We can assume i = 1.
Condition (i) clearly follows from the second equality in (91) applied to π′

1 = π1(CQ).
Arguing as in Step 1 of Lemma 2.4.1.8, we need only consider a standard parabolic
subgroup Q1 of M1 containing (wPρ)Q,1 and CQ1 an isotypic component of L

⊗
1 |ZMQ1

.

Let CQ(1)
be the isotypic component of L

⊗
|ZMQ(1)

defined in Step 2 of the proof of

Proposition 2.4.1.8. Then it is easy to check that condition (ii) for M1, w(ρQ−ss)1,
CQ1 and an element w1 ∈ W (CQ1) follows from condition (ii) with G, ρ, CQ(1)

and
w1w ∈W (CQ(1)

) (see Step 3, Step 4 and Step 5 of the proof of Proposition 2.4.1.8).

2.4.3 Explicit examples

We explicitly give the form of a representation Π compatible with ρ for various ρ.

In the examples below, as in Example 2.4.1.7, a line means a nonsplit extension
between two irreducible constituents, the constituent on the left being the subobject
of the corresponding (length 2) subquotient.

Example 1

We start with GL2(Qpf ) and P̃ρ = Pρ = B as in Example 2.2.2.9(i), i.e. we have

ρ ∼=

(
χ1 ∗
0 χ2

)
,

where χi are two smooth characters Q×
pf → F× (via class field theory) with ratio

6= 1, ω±1 (and where ∗ is nonsplit). Let Π be compatible with ρ. Then Π has f + 1
irreducible constituents and the following form:

Ind
GL2(Q

pf )

B−(Q
pf ) (χ1ω

−1 ⊗ χ2) SS1 SS2 · · · SSf−1 Ind
GL2(Q

pf )

B−(Q
pf ) (χ2ω

−1 ⊗ χ1)

where the SSi for i ∈ {1, . . . , f − 1} are distinct supersingular representations of
GL2(Qpf ) over F such that Z(SSi) = det(ρ)ω−1 and

VG(SSi) ∼=
⊕

I⊆Gal(K/Qp)

|I|=f−i

((⊗

σ∈I
χσ1
)
⊗
(⊗

σ/∈I
χσ2
))

85



(here χσi
def= χi(σ · σ−1) and VG(SSi) is immediately checked to be a representation of

Gal(Qp/Qp)). Moreover it follows from Example 2.1.1.6 that

VG

(
Ind

GL2(Q
pf )

B−(Qp) (χ1ω
−1 ⊗ χ2)

)
∼= ⊗σ∈Gal(K/Qp)χ

σ
1

and likewise with Ind
GL2(Q

pf )

B−(Qp) (χ2ω
−1 ⊗ χ1). Finally the conditions in (90) imply that

VG behaves as an exact functor on the (not necessarily irreducible) subquotients of Π
(see Remark 2.4.2.8(iii)).

Still with GL2(Qpf ) but when P̃ρ = T , i.e. ρ = χ1 ⊕ χ2, then Π (compatible with
ρ) is semisimple, i.e. has the same form as above but with split extensions every-
where. This is consistent with the discussion at the end of [BP12, §19]. Note
that, if we only require Π to be compatible with P̃ρ (Definition 2.4.1.5), then Π
has the same form as above, but with arbitrary distinct supersingular representations

of GL2(Qpf ) and arbitrary distinct irreducible principal series Ind
GL2(Q

pf )

B−(Q
pf ) (η1ω

−1 ⊗ η2)

and Ind
GL2(Q

pf )

B−(Q
pf ) (η2ω

−1 ⊗ η1). See [HW, §10.6] and §3.4.4 for instances of represen-

tations Π (coming from mod p cohomology) satisfying (special cases of) the above
properties.

Example 2

We go on with GL3(Qp) as in Example 2.2.2.9(ii) and P̃ρ = Pρ = B, i.e. we have

ρ ∼=



χ1 ∗ ∗
0 χ2 ∗
0 0 χ3


 ,

where χi are three smooth characters Q×
p → F× (via class field theory) of ratio

6= 1, ω±1. For τ ∈W ∼= S3, we define

PSχτ(1),χτ(2),χτ(3)

def= IndGL3(Qp)
B−(Qp) (χτ(1)ω

−2 ⊗ χτ(2)ω
−1 ⊗ χτ(3)).

Let Π be compatible with ρ. Then Π has 7 irreducible constituents and the following
form:

PSχ1,χ2,χ3

PSχ2,χ1,χ3

PSχ1,χ3,χ2

SS

PSχ2,χ3,χ1

PSχ3,χ1,χ2

PSχ3,χ2,χ1

rrrrrrrrrr

▲▲
▲▲

▲▲
▲▲

▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲

rrrrrrrrrrr

rrrrrrrrrrr

▲▲
▲▲

▲▲
▲▲

▲▲
▲

rrrrrrrrrrr
▲▲

▲▲
▲▲

▲▲
▲▲

rrrrrrrrrr

where SS is a supersingular representation of GL3(Qp) over F such that Z(SS) =
det(ρ) · ω−3 and VG(SS) ∼= (χ1χ2χ3)⊕3 = det(ρ)⊕3. It follows from the proof of
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[Hau16, Thm.5.2.1], or from [Hau18, Thm.1.4(i)], combined with [Eme10a, Cor.4.3.5],
that the nonsplit extensions between two principal series in subquotient are automat-
ically parabolic inductions as required in condition (i) of Definition 2.4.1.5 (looking
at isotypic components of L

⊗
|ZMQ

with MQ ∈ {GL2×GL1,GL1×GL2}, see Example
2.2.2.9(ii)). Conditions (ii) to (iv) in Definition 2.4.1.5 are then easily checked. Con-
cerning Definition 2.4.2.7, the subquotients involving only principal series do satisfy
(90) and (91) by [Bre15, Rem.9.9]. The reader can then easily work out the remain-
ing conditions in (90) which all involve the supersingular representation SS, and also
work out the shape of a Π which is compatible with P̃ρ = B only (but not necessarily
with ρ).

Example 3

We stay with GL3(Qp) but where P̃ρ = Pρ = P with MP = diag(GL2,GL1), i.e. we
have

ρ ∼=

(
ρ1 ∗
0 χ2

)
,

where ρ1 : Gal(Qp/Qp) → GL2(F) is any absolutely irreducible representation and
χ is any smooth character Q×

p → F× (via class field theory). Note that such a ρ is
always generic (see the beginning of §2.4.2). Then Π is compatible with ρ if and only
Π has the same form as in Example 2.4.1.7:

IndGL3(Qp)
P−(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
SS IndGL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

)

and where moreover

• π1 is the supersingular representation of GL2(Qp) over F corresponding to
ρ1 by the mod p local Langlands correspondence for GL2(Qp), i.e. we have
Z(π1) = det(ρ1)ω−1 (via class field theory) and VGL2(π1) ∼= ρ1;

• Z(SS) = det(ρ)ω−3;

• VG(Π) ∼= ρ⊗F ∧
2
Fρ;

• VG

(
IndGL3(Qp)

P−(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
SS

)
∼= Ker(ρ⊗F ∧

2
Fρ։ χ2

2 ⊗ ρ1).

The properties of VG in §2.1.1 (in particular Lemma 2.1.1.5 which can be applied here
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thanks to Remark 2.1.1.7) then automatically give the remaining conditions in (90):

VG

(
IndGL3(Qp)

P−(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

))
∼= ρ1 ⊗F ∧

2
Fρ1
∼= ρ1 ⊗ det(ρ1)

VG

(
SS IndGL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

) )
∼= (ρ⊗F ∧

2
Fρ)/(ρ1 ⊗F ∧

2
Fρ1)

VG

(
IndGL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

))
∼= ρ1 ⊗ χ

2
2

VG(SS) ∼= (ρ⊗2
1 ⊗ χ2)⊕ det(ρ1)χ2.

The case P̃ρ = MP , i.e. ρ ∼=

(
ρ1 0
0 χ2

)
, is analogous and easier since Π is then semisim-

ple.

Example 4

We consider GL4(Qp) and P̃ρ = Pρ = P , where MP = diag(GL2,GL1,GL1), that is
we have a good conjugate

ρ ∼=



ρ1 ∗ ∗
0 χ2 ∗
0 0 χ3


 ,

where ρ1 : Gal(Qp/Qp)→ GL2(F) is any absolutely irreducible representation and χi
two smooth characters Q×

p → F× (via class field theory) of ratio 6= 1, ω±1. If 1 ≤ i ≤ 4
and

∑i
j=1 nj = 4 with 1 ≤ nj ≤ 4, we write Pn1,...,ni

for the standard parabolic
subgroup of GL4 of Levi diag(GLn1 , . . . ,GLni

) (so P2,1,1 = P , P1,1,1,1 = B, etc.). As
in Example 3 above, we let π1 be the supersingular representation of GL2(Qp) over
F corresponding to ρ1 by the mod p local Langlands correspondence for GL2(Qp)
(so Z(π1) = det(ρ1) · ω−1 and VGL2(π1) ∼= ρ1). We define the following parabolic
inductions:

PIπ1,χ2,χ3

def= IndGL4(Qp)

P−2,1,1(Qp)

(
π1 · (ω−2 ◦ det)⊗ χ2ω

−1 ⊗ χ3

)

PIπ1,χ3,χ2

def= IndGL4(Qp)

P−2,1,1(Qp)

(
π1 · (ω−2 ◦ det)⊗ χ3ω

−1 ⊗ χ2

)

PIχ2,π1,χ3

def= IndGL4(Qp)

P−1,2,1(Qp)

(
χ2ω

−3 ⊗ π1 · (ω−1 ◦ det)⊗ χ3

)

PIχ3,π1,χ2

def= IndGL4(Qp)

P−1,2,1(Qp)

(
χ3ω

−3 ⊗ π1 · (ω−1 ◦ det)⊗ χ2

)

PIχ2,χ3,π1

def= IndGL4(Qp)

P−1,1,2(Qp)

(
χ2ω

−3 ⊗ χ3ω
−2 ⊗ π1

)

PIχ3,χ2,π1

def= IndGL4(Qp)

P−1,1,2(Qp)

(
χ3ω

−3 ⊗ χ2ω
−2 ⊗ π1

)

and also, for ss1, ss2 two (not necessarily distinct) supersingular representations of
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GL3(Qp) over F:

PIss1,χ3

def= IndGL4(Qp)

P−3,1(Qp)

(
ss1 · (ω−1 ◦ det)⊗ χ3

)

PIss2,χ2

def= IndGL4(Qp)

P−3,1(Qp)

(
ss2 · (ω−1 ◦ det)⊗ χ2

)

PIχ2,ss2

def= IndGL4(Qp)

P−1,3(Qp)

(
χ2ω

−3 ⊗ ss2

)

PIχ3,ss1

def= IndGL4(Qp)

P−1,3(Qp)

(
χ3ω

−3 ⊗ ss1

)
.

We then let SS3, SS4, SS5, SS6 be 4 distinct supersingular representations of GL4(Qp)
over F. If Π is compatible with ρ, then it has the following form:

PIπ1,χ2,χ3

PIss1,χ3

PIχ2,π1,χ3

PIπ1,χ3,χ2

SS3

SS4

PIχ2,ss2

PIss2,χ2

SS5

SS6

PIχ2,χ3,π1

PIχ3,π1,χ2

PIχ3,ss1

PIχ3,χ2,π1
tttttt

❏❏
❏❏

❏❏

tttttt

❏❏
❏❏

❏❏
❏

ttttttt

ttttttt

❏❏
❏❏

❏❏
❏ ttttttt

❏❏
❏❏

❏❏
❏

ttttttt ❏❏
❏❏

❏❏
❏

ttttttt ❏❏
❏❏

❏❏
❏

ttttttt

ttttttt

ttttttt

❏❏
❏❏

❏❏
❏

ttttttt

ttttttt

❏❏
❏❏

❏❏
❏

❏❏
❏❏

❏❏

tttttt

tttttt

where we have

PIπ1,χ2,χ3 PIss1,χ3 PIχ2,π1,χ3
∼= IndGL4(Qp)

P−3,1(Qp)
(Π1 · (ω−1 ◦ det)⊗ χ3)

PIχ3,π1,χ2 PIχ3,ss1 PIχ3,χ2,π1
∼= IndGL4(Qp)

P−1,3(Qp)
(χ3ω

−3 ⊗ Π1)
(94)

for Π1
∼= IndGL3(Qp)

P−2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
ss1 IndGL3(Qp)

P−1,2(Qp)

(
χ2ω

−2 ⊗ π1

)
, and

also

PIπ1,χ2,χ3 PIπ1,χ3,χ2
∼=

IndGL4(Qp)

P−2,2(Qp)

(
π1 ·(ω−2◦det)⊗

(
IndGL2(Qp)

B−(Qp) (χ2ω
−1⊗χ3) IndGL2(Qp)

B−(Qp) (χ3ω
−1⊗χ2)

))
(95)

and an analogous isomorphism for PIχ2,χ3,π1 PIχ3,χ2,π1 . It actually easily follows
from [Hau18, Thm.1.4(i)] (together with [Eme10a, Cor.4.3.5]) that the isomorphism
(95) and the analogous isomorphism with PIχ2,χ3,π1 PIχ3,χ2,π1 are automatic. It also
follows from [Hau18, Thm.1.2(ii)] and [Hau18, Thm.1.2(ii)] that we automatically
have isomorphisms

PIπ1,χ2,χ3 PIss1,χ3
∼= IndGL4(Qp)

P−3,1(Qp)

(
IndGL3(Qp)

P−2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
ss1

)

PIss1,χ3 PIχ2,π1,χ3
∼= IndGL4(Qp)

P−3,1(Qp)

(
ss1 IndGL3(Qp)

P−1,2(Qp)

(
χ2ω

−2 ⊗ π1

))
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and likewise with the two “halves” of PIχ3,π1,χ2 PIχ3,ss1 PIχ3,χ2,π1 . It is likely that
the full isomorphisms (94) are in fact also automatic.

We must have moreover Z(ss1) = det(ρ1)χ2ω
−3, Z(ss2) = det(ρ1)χ3ω

−3, Z(SSi) =
det(ρ)ω−6 for i ∈ {3, 4, 5, 6} and

VGL3(ss1) ∼= (ρ⊗2
1 ⊗ χ2)⊕ det(ρ1)χ2

VGL3
(ss2) ∼= (ρ⊗2

1 ⊗ χ3)⊕ det(ρ1)χ3

VGL4(SS3) ∼=
(
ρ⊗2

1 ⊗ det(ρ1)χ2χ3

)⊕3
⊕
(
det(ρ1)

2χ2χ3

)⊕2

VGL4(SS4) ∼=
(
ρ1 ⊗ det(ρ1)χ2

2χ3

)⊕5
⊕
(
ρ1

⊗3 ⊗ χ2
2χ3

)

VGL4(SS5) ∼=
(
ρ1 ⊗ det(ρ1)χ2χ

2
3

)⊕5
⊕
(
ρ1

⊗3 ⊗ χ2χ
2
3

)

VGL4(SS6) ∼=
(
ρ⊗2

1 ⊗ χ
2
2χ

2
3

)⊕3
⊕
(
det(ρ1)χ

2
2χ

2
3

)⊕2
.

The reader can work out all the other conditions of Definition 2.4.2.7 (applying VG to
subquotients of Π). Note that by Proposition 2.4.2.11 the GL3(Qp)-representation Π1

is compatible with the subrepresentation
(
ρ1 ∗
0 χ2

)
of ρ (see the last part in Example 2).

Example 5

We stay with GL4(Qp) but where Pρ = P with MP = diag(GL1,GL2,GL1) and a
good conjugate of the form

ρ ∼=



χ2 ∗ ∗
0 ρ1 0
0 0 χ3


 ,

where the ∗ are nonzero, ρ1 : Gal(Qp/Qp) → GL2(F) is any absolutely irreducible
representation and χi are two smooth characters Q×

p → F× (via class field theory) of
ratio 6= 1, ω±1. One has (see (71)) Wρ = {Id, se2−e3se3−e4} = the set of permutations
of the last two blocks GL2 and GL1. Using the notation and conventions of the
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previous case, we can check that any Π compatible with ρ has the following form:

PIχ2,π1,χ3

PIss1,χ3

PIπ1,χ2,χ3

PIχ2,ss2

SS4

SS3

PIπ1,χ3,χ2

PIχ2,χ3,π1

SS6

SS5

PIss2,χ2

PIχ3,χ2,π1

PIχ3,ss1

PIχ3,π1,χ2

❥❥❥❥❥❥❥❥

❚❚❚
❚❚❚

❚❚❚
❚

❥❥❥❥❥❥❥❥

❚❚
❚❚

❚❚
❚❚

❚❚

❥❥❥❥❥❥❥❥❥❥

❚❚
❚❚

❚❚
❚❚

❚❚

❚❚❚
❚❚❚

❚

❥❥❥❥❥❥❥❥❥❥

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥

❚❚❚
❚❚❚

❚

❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥

❚❚
❚❚

❚❚
❚❚

❚❚

❚❚❚
❚❚❚

❚❚❚
❚

❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥

(recall the socle is the first layer on the left), where condition (i) in Definition 2.4.1.5
yields, when applied to a suitable CQ with MQ = diag(GL3,GL1):

PIχ2,π1,χ3 PIss1,χ3 PIπ1,χ2,χ3
∼= IndGL4(Qp)

P−3,1(Qp)
(Π1 · (ω−1 ◦ det)⊗ χ3)

PIχ3,χ2,π1 PIχ3,ss1 PIχ3,π1,χ2
∼= IndGL4(Qp)

P−1,3(Qp)
(χ3ω

−3 ⊗ Π1)
(96)

for Π1
∼= IndGL3(Qp)

P−1,2(Qp)

(
χ2ω

−2 ⊗ π1

)
ss1 IndGL3(Qp)

P−2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
,

and yields, when applied to a suitable CQ with MQ = diag(GL2,GL2) (that is,
se2−e3se3−e4Pρ ⊆ Q, note that here Pρ 6⊆ Q, see Remark 2.4.1.6(vii)):

PIχ2,χ3,π1 PIχ3,χ2,π1
∼=

IndGL4(Qp)

P−2,2(Qp)

((
IndGL2(Qp)

B−(Qp) (χ2ω
−3 ⊗ χ3ω

−2) IndGL2(Qp)
B−(Qp) (χ3ω

−3 ⊗ χ2ω
−2)
)
⊗ π1

)
(97)

and an analogous isomorphism for PIπ1,χ2,χ3 PIπ1,χ3,χ2 . As in Example 4, it follows
from [Hau18, Thm.1.4(i)] that (97) and the analogous isomorphism are automatic,
and from [Hau18, Thm.1.2(ii)], [Hau18, Thm.1.2(ii)] that isomorphisms as in (96) but
for every “half” only of the extensions on the left are also automatic.

One can again work out all the conditions of Definition 2.4.2.7 (conditions on
Z(ssi), Z(SSi) and on VGL3(ssi), VGL4(SSi) are the same as in Example 4).
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Example 6

We consider GL3(Qp2) and P̃ρ = Pρ = B, i.e.

ρ ∼=



χ1 ∗ ∗
0 χ2 ∗
0 0 χ3


 ,

where χi are three smooth characters Q×
p2 → F× (via class field theory) of ratio 6=

1, ω±1. We let ss1, ss2, ss3 be 3 (not necessarily distinct) supersingular representations
of GL2(Qp2) over F and SSi, i ∈ {4, . . . , 10} be 7 distinct supersingular representations
of GL3(Qp2) over F. We use without comment notation for GL3(Qp2) analogous to
the ones in Example 2, Example 4 and Example 5 to denote principal series and
parabolic inductions. If Π is compatible with ρ, then it has the following form:

PSχ1,χ2,χ3

PIss1,χ3

PSχ2,χ1,χ3

PIχ1,ss2

SS4

SS5

PIχ2,ss3

PSχ1,χ3,χ2

SS6

SS7

SS8

PSχ2,χ3,χ1

PIss3,χ2

SS9

SS10

PIss2,χ1

PSχ3,χ1,χ2

PIχ3,ss1

PSχ3,χ2,χ1

✇✇✇✇✇✇

●●
●●

●●

✇✇✇✇✇✇

●●
●●

●●

✇✇✇✇✇✇

✇✇✇✇✇✇

●●
●●

●● ✇✇✇✇✇✇

●●
●●

●●

✇✇✇✇✇✇ ●●
●●

●●

✇✇✇✇✇✇ ●●
●●

●●

✇✇✇✇✇✇

✇✇✇✇✇✇

✇✇✇✇✇✇

●●
●●

●●

✇✇✇✇✇✇

✇✇✇✇✇✇

●●
●●

●●

●●
●●

●●

✇✇✇✇✇✇

✇✇✇✇✇✇

●●
●●

●●

✇✇
✇✇
✇✇

●●
●●

●● ✇✇✇✇✇✇ ●●
●●

●●

●●
●●

●●

●●
●●

●●

✇✇✇✇✇✇

✇✇✇✇✇✇

where we have

PSχ1,χ2,χ3 PIss1,χ3 PSχ2,χ1,χ3
∼= Ind

GL3(Qp2 )

P−2,1(Qp2 )

(
Π1 · (ω−1 ◦ det)⊗ χ3

)

PSχ3,χ1,χ2 PIχ3,ss1 PSχ3,χ2,χ1
∼= Ind

GL3(Qp2 )

P−1,2(Qp2 )

(
χ3ω

−2 ⊗Π1

)

PSχ2,χ3,χ1 PIss2,χ1 PSχ3,χ2,χ1
∼= Ind

GL3(Qp2 )

P−2,1(Qp2 )

(
Π2 · (ω−1 ◦ det)⊗ χ1

)

PSχ1,χ2,χ3 PIχ1,ss2 PSχ1,χ3,χ2
∼= Ind

GL3(Qp2 )

P−1,2(Qp2 )

(
χ1ω

−2 ⊗Π2

)

(98)

for

Π1
∼= Ind

GL2(Qp2 )

B−(Qp2 )

(
χ1ω

−1 ⊗ χ2

)
ss1 Ind

GL2(Qp2 )

B−(Qp2 )

(
χ2ω

−1 ⊗ χ1

)

Π2
∼= Ind

GL2(Qp2 )

B−(Qp2 )

(
χ2ω

−1 ⊗ χ3

)
ss2 Ind

GL2(Qp2 )

B−(Qp2 )

(
χ3ω

−1 ⊗ χ2

)
.

By a straightforward induction, it follows from [Hau18, Thm.1.3] combined with
[Eme10a, Cor.4.3.5] that all isomorphisms (98) are actually true!
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We must have moreover Z(ss1) = χ1χ2ω
−1, Z(ss2) = χ2χ3ω

−1, Z(ss3) = χ1χ3ω
−1,

Z(SSi) = det(ρ)ω−3 for i ∈ {4, . . . , 10} and, denoting by σ the only nontrivial element
of Gal(Qp2/Qp):

VGL2(ss1) ∼= χ1χ
σ
2 ⊕ χ

σ
1χ2

VGL2(ss2) ∼= χ2χ
σ
3 ⊕ χ

σ
3χ2

VGL2(ss3) ∼= χ1χ
σ
3 ⊕ χ

σ
3χ1

VGL3(SS4) ∼=
(
χ2

1χ2 det(ρ)σ ⊕ (χ2
1χ2)σ det(ρ)

)⊕3

⊕
(
χ2

1χ3(χ2
2χ1)σ ⊕ (χ2

1χ3)σχ2
2χ1

)

VGL3(SSi) ∼= analogous for i ∈ {5, 6, 8, 9, 10} (left to reader)

VGL3(SS7) ∼=
(

det(ρ) det(ρ)σ
)⊕9
⊕
(
χ2

1χ2(χ2
3χ2)σ ⊕ (χ2

1χ2)σχ2
3χ2

)
⊕

(
χ2

1χ3(χ2
2χ3)σ ⊕ (χ2

1χ3)σχ2
2χ3

)
⊕
(
χ2

2χ1(χ2
3χ1)σ ⊕ (χ2

2χ1)σχ2
3χ1

)

(all obviously representations of Gal(Qp/Qp) over F). The reader can then work out
the conditions in (90) involving the various subquotients of Π. Finally, by Proposition
2.4.2.11 the GL2(Qp2)-representation Π1 (resp. Π2) is compatible with the subrepre-
sentation

(
χ1 ∗
0 χ2

)
(resp. with the quotient

(
χ2 ∗
0 χ3

)
) of ρ (see Example 1).

Example 7

We end up with GL4(Qp) and P̃ρ = Pρ = B, i.e.

ρ ∼=




χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 χ3 ∗
0 0 0 χ4


 ,

where χi are four smooth characters Q×
p → F× of ratio 6= 1, ω±1. The structure of a Π

compatible with ρ is given in the next 3D diagram. Just like the previous 2D diagrams
look like stacked squares, this 3D diagram looks like stacked cubes: there are 8 cubes,
one being entirely “behind”. As before, each vertex is an irreducible constituent
with PS (in green) meaning principal series, SS (in red) meaning supersingular and
PI1 (resp. PI2) (in blue) meaning parabolic induction from the standard parabolic
subgroup of Levi GL3×GL1 (resp. of Levi GL1×GL3). The socle is the principal
series at the very bottom and the cosocle is the principal series at the very top. Like
previously, each edge is a nonsplit extension between two irreducible constituents, the
dashed edges being those which are “behind” in the 3D picture. Near each vertex we
write the value of VGL4 applied to the corresponding irreducible constituent.

The interested reader can then check all the other conditions and compatibilities in
Definition 2.4.1.5 and Definition 2.4.2.7, for instance the two left faces on the bottom
correspond to the parabolic induction PI1 of Example 2 tensored by the character χ4.
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PS

PS

PS

PS

PI1
PI2

PS

SS

PS

PS

PS

PS

PI1

PI2

PS

PS

SS

SS

SS

PS

PS

SS

PS

PS

PI1

PI2

SS

PS

PS

PS

PS

PI2

PI1

PS

PS

PS

PS

PS

χ3

4
χ2

3
χ2

χ3

3
χ2

4
χ2

χ3

4
χ2

2
χ3

χ3

4
χ2

3
χ1

[(χ2χ3χ4)2]⊕3

[χ3

4
(χ1χ2χ3)]⊕3

χ3

3
χ2

4
χ1

[(χ3χ4)2(χ1χ2)]⊕8
χ3

4
χ2

1
χ3

χ3

4
χ2

2
χ1

χ3

3
χ2

2
χ4

χ3

2
χ2

4
χ3

[(χ1χ3χ4)2]⊕3

[χ3

3
(χ1χ2χ4)]⊕3

χ3

4
χ2

1
χ2

χ3

2
χ2

3
χ4

[(χ2χ4)2(χ1χ3)]⊕8

[(χ1χ4)2(χ2χ3)]⊕8

[(χ2χ3)2(χ1χ4)]⊕8

χ3

3
χ2

1
χ4

χ3

2
χ2

4
χ1

[(χ1χ3)2(χ2χ4)]⊕8
χ3

1
χ2

4
χ3

χ3

3
χ2

2
χ1

[(χ1χ2χ4)2]⊕3

[χ3

2
(χ1χ3χ4)]⊕3

[(χ1χ2)2(χ3χ4)]⊕8
χ3

1
χ2

4
χ2

χ3

1
χ2

3
χ4

χ3

2
χ2

3
χ1

χ3

3
χ2

1
χ2

[χ3

1
(χ2χ3χ4)]⊕3

[(χ1χ2χ3)2]⊕3

χ3

2
χ2

1
χ4

χ3

1
χ2

2
χ4

χ3

1
χ2

3
χ2

χ3

2
χ2

1
χ3

χ3

1
χ2

2
χ3
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2.5 Strong local-global compatibility conjecture

Back to the setting of §2.1 but assuming that F+
v is unramified and that rṽ (for ṽ|v)

is generic as at the beginning of §2.4.2, we conjecture that the G(Fṽ)-representation
HomUv(σv, S(V v,F)[mΣ]) is a direct sum of copies of a G(Fṽ)-representation which is
(up to twist) compatible with any good conjugate of rṽ (Definition 2.4.2.7).

We consider exactly the same global setting as in §2.1.2. We fix v|p in F+ such
that F+

v is an unramified extension of Qp and consider a continuous representation
r : Gal(F/F )→ GLn(F) such that

(i) rc ∼= r∨ ⊗ ω1−n (recall rc(g) = r(cgc) for g ∈ Gal(F/F ));

(ii) r is an absolutely irreducible representation of Gal(F/F );

(iii) rṽ for ṽ|v has distinct irreducible constituents and the ratio of any two irre-
ducible constituents of dimension 1 is not in {ω, ω−1}

(note that condition (iii) doesn’t depend on the place ṽ of F dividing v since rṽc
∼=

r∨
ṽ ⊗ ω

1−n).

The following is the main conjecture of this paper.

Conjecture 2.5.1. Let r : Gal(F/F ) → GLn(F) be a continuous homomorphism
that satisfies conditions (i) to (iii) above and fix a place v of F+ which divides
p such that F+

v is unramified. Assume that there exist compact open subgroups
V v ⊆ Uv ⊆ H(A∞,v

F+ ) with V v normal in Uv, a finite-dimensional representation
σv of Uv/V v over F and a finite set Σ of finite places of F+ as in §2.1.3 such
that HomUv(σv, S(V v,F)[mΣ]) 6= 0, where mΣ is the maximal ideal of T Σ associ-
ated to r. Let ṽ|v in F and see HomUv(σv, S(V v,F)[mΣ]) as a representation of
H(F+

v ) ∼= GLn(Fṽ) = G(Fṽ) via ιṽ (cf. §2.1.2). Then there is an integer d ∈ Z>0

depending only on v, Uv, V v, σv and r and an admissible smooth representation Πṽ

of G(Fṽ) over F (depending a priori on ṽ, Uv, V v, σv and r) such that

HomUv(σv, S(V v,F)[mΣ]) ∼=
(
Πṽ ⊗ (ωn−1 ◦ det)

)⊕d
,

where Πṽ is compatible with one (equivalently any by Proposition 2.4.2.9) good con-
jugate of rṽ in the sense of Definition 2.3.2.3.

Remark 2.5.2. (i) Conjecture 2.5.1 implies in particular that the G(Fṽ)-represen-
tation HomUv(σv, S(V v,F)[mΣ]) is of finite length with all constituents of multiplicity
d (under assumptions (i) to (iii) on r), which is already far from being known in
general. See however §3.4 below for nontrivial evidence in the case of GL2. It also
implies that HomUv(σv, S(V v,F)[mΣ]) has a central character, but this is known (at
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least under some extra assumptions), see Lemma 2.1.3.3.
(ii) When F+

v is unramified and rṽ is as in (iii) above, Conjecture 2.5.1 of course
implies (and is in fact much stronger than) Conjecture 2.1.3.1.
(iii) Assuming that p is unramified in F+ and that rw̃ is generic as in (iii) above for
all w|p, an even stronger conjecture would be as follows.

Conjecture 2.5.3. For Up ⊆ H(A∞,p
F+ ) such that S(Up,F)[mΣ] 6= 0 (where Σ contains

the set of places of F+ that split in F and divide pN , or at which Up is not unramified,
or at which r ramifies, and where S(Up,F)[mΣ] is defined as in §2.1.2 replacing Uv

by Up) and for any w̃|w in F with w|p, there is an integer d ∈ Z>0 depending only on
p, Up and r and admissible smooth representations Πw̃ of G(Fw̃) over F, where Πw̃ is
compatible with one (equivalently any) good conjugate of rw̃ such that

S(Up,F)[mΣ] ∼=
(⊗

w|p

(
Πw̃ ⊗ (ωn−1 ◦ det)

))⊕d
.

As in §2.1.3, we prove that Conjecture 2.5.1 holds for ṽ if and only if it holds for
ṽc (we do not need here extra assumptions). We start with two formal lemmas. We
use the previous notation and denote by w0 ∈ W the unique element with maximal
length.

Lemma 2.5.4. Let ρ : Gal(Qp/K) → P̃ρ(F) ⊆ Pρ(F) ⊆ G(F) be a good conjugate
as in §2.3.2. Then the continuous homomorphism Gal(Qp/K) → G(F) = GLn(F)
defined by

g 7−→ w0τ
(
ρ(g)

)−1
w0 (99)

is a good conjugate of the dual of the representation associated to ρ.

Proof. Denote by w0Pρ the standard parabolic subgroup of G with set of simple roots
−w0(S(Pρ)) ⊆ S. Using that W (w0Pρ) = w0W (Pρ)w0, one checks that−w0(Xρ) ⊆ R+

is a closed subset relative to w0Pρ (Definition 2.3.1.1) and thus corresponds to a
Zariski-closed algebraic subgroup w0P̃ρ

def= w0MPρ
w0N−w0(Xρ) of w0Pρ (Lemma 2.3.1.4).

Denote by w0τ(ρ)−1w0 the homomorphism (99), its associated representation is the
dual of the representation associated to ρ. Moreover one has P̃w0τ(ρ)−1w0

= w0P̃ρ
and Xhw0τ(ρ)−1w0h−1 = −w0(Xw0τ(h)−1w0ρw0τ(h)w0

) for any h ∈ w0Pρ(F) (note that
w0τ(h)−1w0 ∈ Pρ(F)). The result follows from Definition 2.3.2.3.

As in §2.1.3, if π is a smooth representation of G(K) over F we denote by π⋆ the
smooth representation of G(K) with the same underlying vector space as π but where
g ∈ G(K) = GLn(K) acts by τ(g)−1.
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Lemma 2.5.5. Let ρ : Gal(Qp/K) → G(F) be a continuous homomorphism such
that ρss has distinct irreducible constituents and the ratio of any two irreducible con-
stituents of dimension 1 is not in {ω, ω−1}. Let Π be a smooth representation of G(K)
over F. Then Π is compatible with one (equivalently any by Proposition 2.4.2.9) good
conjugate of ρ if and only if Π⋆ is compatible with one (ibid.) good conjugate of
ρ∨ ⊗ ωn−1 (denoting by ρ∨ the dual of the representation associated to ρ).

Proof. We use the notation in the proof of Lemma 2.5.4. Assuming ρ is a good conju-
gate, it is enough to show that if Π is compatible with ρ, then Π⋆ is compatible with
w0τ(ρ)−1w0⊗ω

n−1. If R is a (finite-dimensional) algebraic representation ofGGal(K/Qp)

over F, let R⋆ be the algebraic representation where g ∈ GGal(K/Qp) acts by τ(g)−1 (in-
verse transpose on each factor). Then one checks that L

⊗⋆ ∼= L
⊗
⊗ (det−(n−1))⊗[K:Qp].

Let Φ be a bijection as in Definition 2.4.2.7 and define Φ⋆ from the set of subquo-
tients Π′⋆ of Π⋆ (where Π′ is a subquotient of Π) to the set of good subquotients of
L

⊗
|
(w0P̃ρ)Gal(K/Qp) as follows: Φ⋆(Π′⋆) is the algebraic representation of (w0P̃ρ)Gal(K/Qp)

given by Φ⋆(Π′⋆)(g) def= Φ(Π′)(w0τ(g)−1w0)det(g)n−1 for g ∈ (w0P̃ρ)Gal(K/Qp) (with obvi-
ous notation). We leave to the reader the tedious but formal task to check that Φ⋆ sat-
isfies all conditions of Definitions 2.4.1.5 and 2.4.2.7 with w0P̃ρ and w0τ(ρ)−1w0⊗ω

n−1

instead of P̃ρ and ρ using (for Q any standard parabolic subgroup of G):

(
IndG(K)

Q−(K)(π1 ⊗ · · · ⊗ πd)
)⋆
∼= IndG(K)

(w0Q)−(K)(πd
⋆ ⊗ · · · ⊗ π1

⋆)

and Lemma 2.1.3.4.

Proposition 2.5.6. Conjecture 2.5.1 holds for ṽ if and only if it holds for ṽc.

Proof. This follows from Lemma 2.5.5 together with rṽc
∼= r∨

ṽ ⊗ ω1−n, Remark
2.4.2.8(iv) and an easy computation.

There is an obvious analogous statement with Conjecture 2.5.3 instead of Conjec-
ture 2.5.1.

Remark 2.5.7. Let π be an admissible smooth representation of G(K) over F with
a central character. In [Koh17, Cor.3.15], Kohlhaase associates higher smooth duals
Si(π), i ≥ 0 to π which are also admissible (smooth) representations of G(K) over
F with a central character. In view of the results when n = 2 (see condition (iii) in
§3.3.5 below and [HW, Thm.8.2]), it is natural to expect that, when K = Fṽ and Πṽ

is as in Conjecture 2.5.1, we have Si(Πṽ) 6= 0 if and only if i = i0
def= [K : Qp]

n(n−1)
2

and that Si0(Πṽ) is compatible with (a good conjugate of) r∨
ṽ ⊗ ω

n−1 (when n = 2,
this is indeed consistent with loc.cit. since r∨

ṽ
∼= rṽ ⊗ det(rṽ)−1). It is also natural to

ask if we have Si0(Πṽ) ∼= Π⋆
ṽ (see Lemma 2.5.5).
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From the results of [BH15, §4.4] and [Enn], we can at least give some very weak
evidence for Conjecture 2.5.1, more precisely for the stronger Conjecture 2.5.3 in
Remark 2.5.2(iii), when p is totally split in F+ and rw̃ is upper-triangular sufficiently
generic for all w|p in F+.

If Π is an admissible smooth representation ofG(K) over F, we denote by Πord ⊆ Π
the maximal G(K)-subrepresentation such that all its irreducible constituents are iso-
morphic to irreducible subquotients of principal series of G(K) over F. The following
lemma is not difficult using Proposition 2.2.3.3, [BH15, Thm.2.2.4] and the results of
[BH15, §3.3], [BH15, §3.4] (the proof is left to the reader).

Lemma 2.5.8. Assume K = Qp and let ρ : Gal(Qp/Qp)→ B(F) ⊆ G(F) be generic
(as at the beginning of §2.4.2) and a good conjugate (as in Definition 2.3.2.3). Let Π
be compatible with ρ (as in Definition 2.4.2.7). Then Πord ∼= Π(ρ)ord, where Π(ρ)ord

is the representation of G(Qp) over F defined in [BH15, §3.4].

Note that one can explicitly determine VG(Π(ρ)ord) inside L
⊗

(ρ), see [Bre15, §9].

We let Sp be the set of places of F+ dividing p. Recall that an injection between
two representations of a group is called essential if it induces an isomorphism on the
respective socles.

Theorem 2.5.9 ([Enn]). Assume that F/F+ is unramified at finite places, that H
is defined over OF+ with H ×OF +

F+ quasi-split at finite places of F+, and that p

is totally split in F . Assume that r : Gal(F/F ) → GLn(F) satisfies assumptions
A1 to A6 of [Enn, §3.1], let v1 be a finite place of F+ as in [Enn, Lemma 3.1.2]
and Σ def= Sp ∪ {v1}. Choose ṽ1|v1 in F and let Up =

∏
w∤p Uw ⊆ H(A∞,p

F+ ) such that
Uw = H(OF+

w
) if w splits in F , Uw is maximal hyperspecial in H(F+

w ) if w is inert
in F and ιṽ1

(Uv1) is the Iwahori subgroup of GLn(Fṽ1
). Then for any w̃|w in F and

any good conjugates rw̃ (where w ∈ Sp), we have an essential injection of admissible
smooth representations of

∏
w|pH(F+

w ) over F:

(⊗

w|p

(
Π(rw̃)ord ⊗ ωn−1 ◦ det

))⊕n!

→֒ S(Up,F)[mΣ]ord,

where S(Up,F)[mΣ]ord ⊆ S(Up,F)[mΣ] is defined as Πord ⊆ Π above replacing G(K)
by
∏
w|pH(F+

w ).

Proof. This follows from [Enn, Thm.3.3.3] (which itself improves [BH15, Thm.4.4.7])
and its proof (see just before [Enn, Lemma 3.2.1] for the n!).

Remark 2.5.10. The cokernel of the injection in Theorem 2.5.9 is an admissible
smooth representation of

∏
w|pH(F+

w ) over F, and its
∏
w|pH(F+

w )-socle is by con-
struction a direct sum of finitely many irreducible subquotients of principal series. If
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we could prove that all these irreducible subquotients are irreducible principal series
which do not appear in the

∏
w|pH(F+

w )-socle of
⊗
w|p(Π(rw̃)ord ⊗ ωn−1 ◦ det), then it

would follow from the mod p version of [Hau19, Cor.1.4] that the essential injection
in Theorem 2.5.9 is an isomorphism.
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3 The case of GL2(Qpf )

We give evidence for Conjecture 2.1.3.1 and Conjecture 2.5.1 when F+
v is unramified

and G = GL2. We now assume K = Qpf and n = 2 till the end. We fix an embedding
σ0 : Fpf = Fq →֒ F and let σi

def= σ0 ◦ ϕ
i for ϕ the arithmetic Frobenius and i ≥ 0.

3.1 (ϕ,O×K)-modules and (ϕ,Γ)-modules

We associate étale (ϕ,O×
K)-modules to certain admissible smooth representations of

GL2(K) over F and relate them to the étale (ϕ,Γ)-modules of §2.1.1.

We assume p > 2. We let I def=
( O×K OK

pOK O×K

)
be the Iwahori subgroup of GL2(OK),

K1
def=
(

1+pOK pOK
pOK 1+pOK

)
the pro-p radical of GL2(OK), I1

def=
(

1+pOK OK
pOK 1+pOK

)
the pro-p

radical of I, N0
def=
(

1 OK
0 1

)
⊆ I1, N−

0
def=
(

1 0
pOK 1

)
⊆ I1 and T0

def=
(

1+pOK 0
0 1+pOK

)
⊆ I1.

We denote by Z1 the center of I1. If C is a pro-p group then FJCK denotes its Iwasawa
algebra over F, which is a local ring, and mC the maximal ideal of FJCK. If R (resp.
M) is a filtered ring (resp. filtered module) in the sense of [LvO96, §I.2], we denote
by FnR (resp. FnM) for n ∈ Z its ascending filtration and gr(R) def= ⊕n∈ZFnR/Fn−1R
(resp. with M) the associated graded ring (resp. module). When R = FJCK, we set
FnR

def= m−n
R if n ≤ 0 and FnR

def= R if n ≥ 0. If M is an R-module, the filtration
FnM = m−n

R M if n ≤ 0 and FnM = M if n ≥ 0 is called the mR-adic filtration on M .

3.1.1 The ring A

We describe some properties of a complete noetherian ring A which will be a coefficient
ring for some multivariable (ψ,O×

K)-modules and (ϕ,O×
K)-modules.

Let vN0 be the mN0-adic valuation on the ring FJN0K so that FnFJN0K = {x ∈
FJN0K, vN0(x) ≥ −n} for n ∈ Z. We use the same notation to denote the unique
extension of vN0 to a valuation of the fraction field of FJN0K. For i ∈ {0, . . . , f − 1}
let

Yi
def=

∑

a∈F×q

σ0(a)−pi

(
1 ã
0 1

)
∈ mN0\m

2
N0

(100)

(where ã ∈ O×
K denotes the Teichmüller lift of a) and write yi

def= gr(Yi) for the image
of Yi in mN0/m

2
N0
⊆ gr(FJN0K). Then FJN0K is isomorphic to the power series ring

FJY0, . . . , Yf−1K and gr(FJN0K) to the polynomial algebra F[y0, . . . , yf−1]. Let S be
the multiplicative subset of FJN0K whose elements are the (Y0 · · ·Yf−1)n for n ≥ 0,
FJN0KS the corresponding localization and FnFJN0KS

def= {x ∈ FJN0KS, vN0(x) ≥ −n}.
We define the ring A as the completion of the filtered ring FJN0KS ([LvO96, §I.3.4]).
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Note that vN0 extends to A, which is thus a complete filtered ring. As A is complete,
an element x ∈ A is invertible in A if and only if gr(x) is invertible in gr(A) (as is
easily checked, here gr(x) is the “principal part” of x as in [LvO96, §I.4.2]).

Let M be a filtered FJN0K-module. The tensor product A ⊗FJN0K M is then a
filtered A-module for the tensor product filtration as defined in [LvO96, p.57]. We
let A⊗̂FJN0KM be its completion. This filtered A-module can also be described as
the completion of the localization MS endowed with the tensor product filtration
associated to the isomorphism MS

∼= FJN0KS ⊗FJN0K M .

Lemma 3.1.1.1. We have an isomorphism

gr(A⊗̂FJN0KM) ∼= gr(MS) ∼= gr(M)[(y0 · · · yf−1)−1]. (101)

Proof. As A⊗̂FJN0KM is the completion of MS, it is sufficient to prove that gr(MS) ∼=
gr(M)T , where T = {(y0 . . . yf−1)k, k ≥ 0}. Note that we have an isomorphism of
FJN0K-algebras FJN0KS ∼= FJN0K[T ]/((Y0 · · ·Yf−1)T − 1). Moreover if we endow the
ring FJN0K[T ] with the filtration

Fn(FJN0K[T ]) =
∑

k≥0

m
kf−n
N0

T k

(with the convention mi
N0

= FJN0K for i ≤ 0), the filtration on FJN0KS is the quotient
filtration via FJN0K[T ] ։ FJN0KS. Therefore the filtration on MS is the quotient
filtration of the tensor product filtration on M [T ] def= FJN0K[T ]⊗FJN0K M .

As the filtered FJN0K-module FJN0K[T ] is filtered-free by definition (see [LvO96,
Def.I.6.1]), it follows from [LvO96, Lemma I.6.14] that gr(M [T ]) ∼= gr(M)[T ] with
deg(T ) = f . We claim that the following sequence of filtered modules is strict exact:

M [T ]
(Y0···Yf−1)T−1
−−−−−−−−−→M [T ] −→ MS −→ 0.

Namely the exactness of the second arrow follows from the definition of the quotient
filtration. As (Y0 · · ·Yf−1)T and 1 have degree 0 in FJN0K[T ], the multiplication by
(Y0 · · ·Yf−1)T − 1 induces the multiplication by (y0 · · · yf−1)T − 1 on gr(M [T ]) ∼=
gr(M)[T ] which is injective. It follows from [LvO96, Thm.I.4.2.4(2)] (applied with
L = 0, M = N = M [T ], f = 0 and g being the multiplication by (Y0 · · ·Yf−1)T − 1)
that the multiplication by (Y0 · · ·Yf−1)T − 1 is a strict map.

It then follows from [LvO96, Thm.I.4.2.4(1)] that the following sequence is exact:

gr(M [T ])
(y0···yf−1)T−1
−−−−−−−−→ gr(M [T ]) −→ gr(MS) −→ 0. (102)

Finally, since gr(M [T ]) ∼= gr(M)[T ], we have gr(MS) ∼= gr(M)[(y0 · · · yf−1)−1].
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Corollary 3.1.1.2. We have an isomorphism gr(A) ∼= F[y0, . . . , yf−1, (y0 · · · yf−1)−1].
As a consequence the ring A is a regular domain, i.e. a noetherian domain which has
a finite global dimension ([Ser00, §IV.D]).

Proof. The first sentence is a direct consequence of Lemma 3.1.1.1 applied with
M = FJN0K. This implies that the ring gr(A) is a noetherian domain. Then the
noetherianity of A follows from [LvO96, Thm.I.5.7] applied to the ideals of A, and
the fact that A is a domain follows easily from gr(x) gr(y) = gr(xy) if x, y ∈ A\{0} (us-
ing gr(x) gr(y) 6= 0). As gr(A) is a regular commutative ring, it follows from [LvO96,
Thm.III.2.2.5] thatA is an Auslander regular ring (note thatA is Zariskian by [LvO96,
Prop.II.2.2.1]) and a fortiori has finite global dimension ([LvO96, Def.III.2.1.7]).

Remark 3.1.1.3. (i) The ring A can also be defined as the microlocalization of FJN0K
along the set {(y0 · · · yf−1)n, n ≥ 1} ⊆ gr(FJN0K) (see [LvO96, Cor.IV.1.20]). This
shows that the ring A does not depend on our choice of elements Yi but rather on the
elements yi.
(ii) If M is a filtered FJN0K-module, the filtration on MS is given explicitly by the
following formula:

Fn(MS) =
∑

k≥0

(Y0 · · ·Yf−1)−kFn−kf(M), n ∈ Z.

As (Y0 · · ·Yf−1)mFn(M) ⊆ Fn−mf(M) for all n ∈ Z and m ∈ N, we have

(Y0 · · ·Yf−1)−kFn−kf(M) ⊆ (Y0 · · ·Yf−1)−k−1Fn−(k+1)f (M)

so that Fn(MS) can also be described as the increasing union

Fn(MS) =
⋃

k≥0

(Y0 · · ·Yf−1)−kFn−kf(M).

Note that the filtration on MS is not necessarily separated even if the filtration on
M is separated.
(iii) The ring A can also be defined as the set of series

A =




∑

d≫−∞

Pd
(Y0 · · ·Yf−1)nd

, Pd ∈ (Y0, . . . , Yf−1)d+fnd , nd ≥ 0, d+ fnd ≥ 0



,

equivalently, A is the set of infinite sums of monomials in the Yi with F-coefficients
such that the total degree of the monomials tends to +∞.

Let n ≥ 0 be an integer and let Npn

0 ⊆ N0 be the subgroup of pn-th powers (which
is pnOK under the identification N0

∼= OK). Let Sp
n

be the set of pn-th powers
of S and let Ap

n
be the completion of FJNpn

0 KSpn for the filtration coming from the
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valuation vN0 |FJNpn

0 K
= pnv

Npn

0
. As the saturation of Sp

n
(see [LvO96, §IV.1]) contains

S, we have by [LvO96, Cor.IV.1.20]

FJN0KS = FJN0KSpn ∼= FJNpn

0 KSpn ⊗FJNpn

0 K
FJN0K. (103)

It is easy to check that FJN0K is a filtered free FJNpn

0 K-module with respect to the basis
(Y i0

0 · · ·Y
if−1

f−1 )0≤ij≤pn−1
0≤j≤f−1

. Hence, by [LvO96, Lemma I.6.15] and (103), we conclude

that FJN0KS is a filtered free FJNpn

0 KSpn -module with respect to the same basis, and
thus by [LvO96, Lemma I.6.13(3)] that A is a filtered free Ap

n
-module with respect to

the same basis again. Moreover, by [LvO96, Lemma I.6.14], we have an isomorphism
of graded modules

gr(A) ∼= gr(Ap
n

)⊗
gr(FJNpn

0 K)
gr(FJN0K). (104)

Note that the pn-power Frobenius map x 7→ xp
n

induces an isomorphism of fil-
tered rings (FJN0KS, vN0) ∼

−→ (FJNpn

0 KSpn , v
Npn

0
) and thus, as vN0 |FJNpn

0 K
= pnv

Npn

0
, an

isomorphism of topological rings (FJN0KS, vN0) ∼
−→ (FJNpn

0 KSpn , vN0|FJNpn

0 K
). It induces

an isomorphism of complete topological rings A ∼
−→ Ap

n
such that the composite map

A
∼
−→ Ap

n
→֒ A is the pn-power Frobenius. This implies that the image of Ap

n
in A

is the subring of pn-th powers of A.

The group O×
K acts on the group N0 via a · ( 1 b

0 1 ) = ( 1 ab
0 1 ) and thus on FJN0K,

preserving the valuation vN0 , and hence the filtration. This induces an action of O×
K

on the graded ring gr(FJN0K), where it is immediately checked that 1 + pOK acts
trivially. Moreover if a ∈ F×

q and 0 ≤ i ≤ f − 1, we have ã · yi = σi(a)yi.

Lemma 3.1.1.4. There is a unique continuous action of O×
K on the ring A extending

the action of O×
K on FJN0K.

Proof. As O×
K acts by ring endomorphisms on FJN0K and as FJN0KS is dense in A,

the uniqueness is clear.

For the existence, let a ∈ O×
K and consider the composition FJN0K

a
−→ FJN0K ⊆ A

which extends to a ring homomorphism FJN0KS → A since the elements of a(S)
are invertible in A (because they are invertible in gr(A) as gr(a(S)) = gr(S)). The
precomposition of the valuation vN0 onA with this map is a valuation on FJN0KS which
coincides with vN0 on FJN0K since the multiplication by a preserves the valuation on
FJN0K. Therefore the map FJN0KS → A is isometric and extends to a filtered ring
homomorphism A → A ([LvO96, Thm.I.3.4.5]). This defines an action of O×

K on
A.

We recall that ξ is the cocharacter x 7→ ( x 0
0 1 ) of GL2. The conjugation by the

matrix ξ(p) in GL2(K) induces a group endomorphism of N0 and a continuous endo-
morphism φ of FJN0K. We have φ(Yi) = Y p

i−1 for 1 ≤ i ≤ f − 1 and φ(Y0) = Y p
f−1.
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This implies that φ is the composite of the (relative) Frobenius endomorphism with
a permutation of the variables Yi. It follows that φ extends to a continuous injective
endomorphism of the ring A with image Ap. More generally, for n ≥ 0, the subring
Ap

n
is the image of φn.

Proposition 3.1.1.5. Let a ⊆ A be an ideal of A which is O×
K-stable. Then a is

controlled by Ap, which means

a = A(a ∩Ap).

Proof. The proof follows closely the strategy of [AW09].

We note that the pair (A,Ap) is a Frobenius pair in the sense of [AW09, Def.2.1]
(to see this use [AWZ08, Prop.6.6] applied to G = N0 together with [AW09, Lemma
2.2.(a)] and Remark 3.1.1.3(i)). We endow Ap with the filtration FnA

p def= Ap ∩ FnA
induced by the filtration of A.

Let F def= a/A(a ∩ Ap). Endow A(a ∩ Ap) and a with the filtration induced by
A, and F with the quotient filtration. Then by [LvO96, Rk.I.5.2(2)] and [LvO96,
Cor.I.5.5(1)] all these filtrations are good in the sense of [LvO96, Def.I.5.1]. Moreover
a and A(a ∩Ap) are complete filtered A-modules by [LvO96, Cor.I.6.3(2))] and thus
so is F by [LvO96, Prop.I.3.15].

We want to prove that F = 0. Assume for a contradiction that F 6= 0, or
equivalently gr(F ) 6= 0 by [LvO96, Prop.I.4.2(1)].

Let Γ def= 1 + pOK (this not the Γ of the (ϕ,Γ)-modules!). This is a uniform pro-
p-group. Note that the action of Γ on N0 is uniform in the sense of [AW09, §4.1].
In the notation of [AW09, §4.2], we have LN0 = OK , g = Fq and the action of Fq on
LN0/pLN0 is given by the multiplication in Fq.

Let P be a (homogeneous) prime ideal in the support of the gr(A)-module gr(F )
(which exists since gr(F ) 6= 0).

Let x ∈ F×
q and γx

def= exp(p[x]) ∈ FJN0K ⊆ A. It follows from [AW09, Prop.4.4]
and [AW09, Prop.3.2(a)] that the family

a(x) def= (γx, γpx, γ
p2

x , . . . )

is a source of derivations of (A,Ap) in the sense of [AW09, Def.3.2]. Let TP ⊆
gr(A) be the set of homogeneous elements of gr(A) which are not in P and let
T

(p)
P

def= TP ∩ gr(Ap). It follows again from [AW09, Prop.3.2(a)] that a(x) induces on
(QTP

(A), Q
T

(p)
P

(Ap)) a source of derivations aTP
(x), where QTP

(A) (resp. Q
T

(p)
P

(Ap))

is the microlocalization of A (resp. Ap) with respect to TP (resp. T (p)
P ). Let S def=

{a(x), x ∈ F×
q } and SP

def= {aTP
(x), x ∈ F×

q }.
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As a is Γ-invariant, a is also S-invariant, i.e. for all x ∈ F×
q and r ≥ 0, we have

γp
r

x a ⊆ a. Then aP
def= QTP

(a) ∼= QTP
(A)⊗A a ([LvO96, Cor.IV.1.18(2)], though here

everything is simpler as all rings are commutative) is an ideal of QTP
(A) which is

SP -invariant.

Let P0
def= P ∩ gr(FJN0K) (inside gr(A)). We prove that P0 contains LN0/pLN0 ,

where the latter is seen in gr−1(FJN0K) (recall LN0
∼= N0). Assume this is not true.

Let J def= gr(aP ) ∼= gr(a)P ([AWZ08, Lemma 4.4]), which is a graded ideal of the
localization gr(A)P of gr(A) with respect to the set of homogeneous elements which
are not in P , and let Y ∈ gr(A)P such that Y ∈ JSP (see [AW09, Def.3.4] for the
definition of JSP ). Noticing that gr(A)P = gr(FJN0K)P0 and that LN0/pLN0 is a 1-
dimensional Fq-vector space, we can apply [AW09, Prop.4.3] (together with [AW09,
Prop.4.4(c)]) to the graded prime ideal P0 of B = gr(FJN0K) and the graded ideal J
of gr(FJN0K)P0 . We deduce DP (Y ) ⊆ J (see [AW09, §4.3] for the definition of DP ).
It follows from [AW09, Thm.3.5] applied to the Frobenius pair (QTP

(A), Q
T

(p)
P

(Ap))

and the ideal aP that aP is controlled by Q
T

(p)
P

(Ap). Then [AW09, Lemma 2.3] shows

that gr(F )P = 0. This is a contradiction.

As LN0/pLN0 generates the F-vector space gr−1(FJN0K) = ⊕f−1
i=0 Fyi, it follows that

yi ∈ P for all 0 ≤ i ≤ f − 1 and then that gr(A) = P . This is a contradiction so that
F = 0 i.e. a = A(a ∩Ap).

Lemma 3.1.1.6. Let a ( A be a proper ideal of A. Then ∩n≥0(A(a ∩ Ap
n
)) = 0. In

particular, if φ(a) ⊆ a we have ∩n≥0Aφ
n(a) = 0.

Proof. Let an
def= A(a∩Ap

n
). We endow a∩Ap

n
with the induced filtration of Ap

n
(or

equivalently A). As A is a finite free Ap
n
-module, we have an

∼= A⊗Apn (a∩Ap
n
). We

endow this A-module with the tensor product filtration. Since A is a filtered free Ap
n
-

module, it follows from [LvO96, Lemma I.6.14] that gr(an) ∼= gr(A)⊗gr(Apn )gr(a∩Ap
n
).

Since gr(A) is a finite free gr(Ap
n
)-module, the natural map gr(an)→ gr(A) is injective

(and the filtration on an is in fact the one induced from A). Moreover from (104) we
deduce

gr(an) ∼= gr(FJN0K)⊗gr(FJNpn

0 K)
gr(a ∩ Ap

n

). (105)

Assume that a 6= A. Then as both a and A are complete and the injection a →֒ A
is strict, it follows as for the A-module F in the proof of Proposition 3.1.1.5 that
gr(A/a) 6= 0 (with the quotient filtration on A/a), hence by [LvO96, Thm.I.4.4(1)]
that gr(a) 6= gr(A), and a fortiori gr(an) 6= gr(A).

Using (105) and the fact gr(FJN0K) ∼= F[y0, . . . , yf−1] is free of finite rank over
gr(FJNpn

0 K) ∼= F[yp
n

0 , . . . , yp
n

f−1], we have inside gr(A) that

gr(an) ∩ gr(FJN0K) ∼= gr(FJN0K)⊗gr(FJNpn

0 K)
(gr(a ∩Ap

n

) ∩ gr(FJNpn

0 K)). (106)
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The ideal gr(an) ∩ gr(FJN0K) is therefore generated by homogeneous elements of
gr(FJN0K) which are of degree ≤ −pn since homogeneous elements of F[yp

n

0 , . . . , yp
n

f−1]
of degree zero are invertible and gr(an) does not contain invertible elements (as
gr(an) 6= gr(A)). We conclude that

gr(an) ∩ gr(FJN0K) ⊆ F−pn(gr(FJN0K)).

Consequently (recall
⋂
n≥0 an has the induced filtration from A)

gr
( ⋂

n≥0

an

)
∩ gr(FJN0K) ⊆

⋂

n≥0

(gr(an) ∩ gr(FJN0K)) = 0. (107)

As gr(
⋂
n≥0 an) is an ideal in gr(A) ∼= F[y0, . . . , yf−1, (y0 · · · yf−1)−1], it follows from

(107) that we must have gr(
⋂
n≥0 an) = 0, and hence that

⋂
n≥0 an = 0 by [LvO96,

Prop.I.4.2(1)].

Corollary 3.1.1.7. The only ideals of A which are O×
K-stable are 0 and A.

Proof. Let a be such an ideal and assume that a 6= A. It follows from Proposition
3.1.1.5 applied recursively with A, Ap, etc. that a = A(a ∩ Ap

n
) for all n ≥ 0. Then

Lemma 3.1.1.6 implies a = 0.

An O×
K-module over A is a finitely generated A-module with a semilinear action

of O×
K .

Proposition 3.1.1.8. Let M be an O×
K-module over A. Then M is a finite projective

A-module.

Proof. (We thank Gabriel Dospinescu for suggesting the following proof which is
shorter than our original one.) Let M be an O×

K-module. For k ≥ −1 let Fitk(M)
be the k-th Fitting ideal (see for example [Sta19, Def. 07Z9]). As M is a finitely
generated A-module, it follows from [Sta19, Lemma 07ZA] that there exists some
r ≥ 0 such that Fitr(M) 6= 0. Let r ≥ 0 be the smallest integer such that Fitr(M) 6= 0.
Let γ ∈ O×

K . It follows easily from the definition of Fitk(M) that Fitk(M ⊗A,γ A) =
γ(Fitk(M)) as ideals of A. The action of γ on M induces an A-linear isomorphism
M ⊗A,γ A

∼
−→ M , showing that γ(Fitk(M)) = Fitk(M). It follows then from Corollary

3.1.1.7 that all the ideals Fitk(M) are zero or A. Therefore we have Fitr−1(M) = 0
and Fitr(M) = A and we deduce from [Sta19, Lemma 07ZD] that M is projective of
rank r.

3.1.2 Multivariable (ψ,O×
K)-modules

We define a functor from a certain abelian category of admissible smooth represen-
tations of GL2(K) over F to a category of multivariable (ψ,O×

K)-modules.
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Let R be a noetherian commutative ring of characteristic p endowed with an
injective ring endomorphism FR such that R is a finite free FR(R)-module. If M is
an R-module, we define F ∗

R(M) def= R ⊗FR,R M . Examples of such pairs (R,FR) are
given by (FJN0K, φ) and (A, φ) in §3.1.1.

A ψ-module over R is a pair (M,β), where M is an R-module and β is an R-
linear homomorphism M → F ∗

R(M). When R is a regular ring, FR is the Frobenius
endomorphism of R and β is an isomorphism, we recover the notion of FR-module of
[Lyu97, Def.1.1]. We say that a ψ-module (M,β) is étale if β is injective.

If (M,β) is a ψ-module, the exact functor F ∗
R gives us, for each n ≥ 0, an R-linear

map (F ∗
R)n(β) : (F ∗

R)n(M)→ (F ∗
R)n+1(M) and we can define

βn
def= (F ∗

R)n−1(β) ◦ · · · ◦ (F ∗
R)(β) ◦ β : M −→ (F ∗

R)n(M).

The inductive limit of the system ((F ∗
R)n(M), (F ∗

R)n(β))n gives rise to a ψ-module
(M, β) with β an isomorphism. Then (M,β) generates (M, β) in the sense of [Lyu97,
Def.1.9]. Let M ét be the image of M inM and M0 the kernel of M →M ét. The map
β induces a structure of ψ-module on M0 and M ét and M ét is an étale ψ-module.
The ψ-module M ét is called the étale part of M and M0 the nilpotent part of M . We
note that (M,β) and (M ét, β ét) generate the same FR-module and (M0, β0) generates
the trivial FR-module whose underlying module is zero. Note that the constructions
(M,β) 7→ (M ét, β ét) and (M,β) 7→ (M0, β0) are functorial in (M,β) and that, if β is
injective, we have M0 = 0. This implies that if f : (M,β)→ (M ′, β ′) is a morphism
of ψ-modules with (M ′, β ′) étale, then f factors through M ét.

We are mainly interested in a special kind of ψ-module that we call (ψ,O×
K)-

module over A. If M is a finitely generated A-module, we always endow it with
the topology defined by any good filtration (note that good filtrations generate the
same topologies, cf. [LvO96, Lemma I.5.3]). It is also the quotient topology given
by any surjection A⊕d

։ M (as follows from [LvO96, Rk.I.5.2(2)]), and we call it
the canonical topology on M . The group O×

K acts continuously on A and this action
commutes with the endomorphism φ. If M is an A-module which is endowed with an
action of O×

K , we consider the diagonal action on φ∗(M), which is well defined since
φ commutes with O×

K .

Definition 3.1.2.1. A (ψ,O×
K)-module over A is a ψ-module (M,β) over A such

that M is a finitely generated A-module with a continuous semilinear action of O×
K

such that β is O×
K-equivariant (here, continuity means that the map O×

K×M → M is
continuous). We say that a (ψ,O×

K)-module over A is étale if the underlying ψ-module
over A is.

We remark that if (M,β) is a (ψ,O×
K)-module, then M is an O×

K-module and is
therefore finite projective as an A-module by Proposition 3.1.1.8.

107



Proposition 3.1.2.2. Let (M,β) be an étale (ψ,O×
K)-module over A. Then β is an

isomorphism.

Proof. We note that the two A-modules M and φ∗(M) = A ⊗φ,A M have the same
generic rank. As β is an injective A-linear map between two finitely generated modules
of the same generic rank over a noetherian domain, its cokernel is torsion. This
cokernel is then an O×

K-module which is moreover torsion as an A-module, it follows
from Proposition 3.1.1.8 that it is zero and β is an isomorphism.

We now define a functor from certain representations of GL2(K) over F to (ψ,O×
K)-

modules over A.

Let π be an admissible smooth representation of GL2(K) over F. Its (F-linear)
dual π∨ is then a finitely generated FJI1K-module. We fix a good filtration on π∨. As
above, we endow A⊗FJN0Kπ

∨ with the tensor product filtration and define the filtered
A-module

DA(π) def= A⊗̂FJN0Kπ
∨ ∼= (̂π∨)S. (108)

As all the good filtrations on π∨ are equivalent ([LvO96, Lemma I.5.3]), the underlying
topological A-module does not depend on the choice of the good filtration on π∨. An
example of a good filtration on π∨ is given by the mI1-adic filtration, as follows directly
from the definition. It is very important to note that the topology used on π∨ is not
the mN0-adic topology but the mI1-adic topology, which is actually coarser.

Proposition 3.1.2.3. The functor π 7−→ DA(π) is exact.

Proof. Let 0 → π′ → π → π′′ → 0 be an exact sequence of admissible smooth
representations of GL2(K) over F. The sequence 0→ (π′′)∨ → π∨ → (π′)∨ → 0 is still
exact. We endowed π∨ with a good filtration, (π′)∨ with the quotient filtration and
(π′′)∨ with the induced filtration (which are again good by e.g. [LvO96, Prop.II.1.2.3]).
With these choices, the exact sequence remains exact after applying the functor gr
(see for example [LvO96, Thm.I.4.2.4(1)]). It follows from Lemma 3.1.1.1, from the
exactness of localization and from [LvO96, Thm.I.4.2.4(2)]) that the sequence 0 →
(π′′)∨

S → (π∨)S → (π′)∨
S → 0 is exact and strict. The exactness of 0 → DA(π′′) →

DA(π)→ DA(π′)→ 0 then follows from [LvO96, Thm.I.3.4.13].

We define a continuous action of O×
K on π∨ as follows, for f ∈ π∨, γ ∈ O×

K we
have

(γ · f)(x) def= f

((
γ−1 0
0 1

)
x

)
∀ x ∈ π.

As O×
K normalizes I1, the action of O×

K on π∨ is continuous for the mI1-adic topology.
We use the continuous action of O×

K on A to extend this action diagonally to A⊗FJN0K
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π∨ and, by continuity, to DA(π). The action of O×
K is continuous and A-semilinear

in the sense that

γ · (af) = (γ · a)(γ · f) ∀ (γ, a, f) ∈ O×
K × A×DA(π).

We define an F-linear endomorphism ψ of π∨ by the formula

ψ(f)(x) = f(ξ(p)x) ∀(f, x) ∈ π∨ × π. (109)

This endomorphism is continuous, clearly commutes with the action of O×
K and sat-

isfies the relation
ψ(φ(a)f) = a(ψ(f))

for all a ∈ FJN0K, f ∈ π∨.

Lemma 3.1.2.4. Let M be some FJN0K-module and let ψ be an F-linear endomor-
phism of M satisfying the relation

ψ(φ(a)m) = aψ(m) ∀ (a,m) ∈ FJN0K×M.

Then for all integers n ≥ 0, we have

ψ(mpf−(f−1)+pn
N0

M) ⊆ mn+1
N0

M.

As a consequence, for n ≥ pf − (f − 1), we have

ψ(mn
N0
M) ⊆ m

⌈ n
p

⌉−f
N0

M.

Proof. For n = 0, the result follows from the fact that, if Y i0
0 · · ·Y

if−1

f−1 ∈ m
pf−(f−1)
N0

,
there exists some 0 ≤ j ≤ f − 1 such that ij ≥ p. Then, for all m ∈M , we have

ψ(Y i0
0 · · ·Y

if−1

f−1 m) = Yj+1ψ(Y i0
0 · · ·Y

ij−p
j · · ·Y

if−1

f−1 m) ∈ mN0M.

The general statement follows from a simple induction on n.

For the last statement, we choose m such that

pm+ pf − (f − 1) ≤ n < p(m+ 1) + pf − (f − 1)

and we use the first statement to deduce that

ψ(mn
N0
M) ⊆ ψ(mpm+pf−(f−1)

N0
M) ⊆ mm+1

N0
M ⊆ m

⌈ n
p

⌉−f
N0

M.

We extend ψ to an F-linear map (π∨)S → (π∨)S (recall (π∨)S = FJN0KS⊗FJN0Kπ
∨)

by the formula

ψ

(
m

(Y0 · · ·Yf−1)pn

)
=

ψ(m)
(Y0 · · ·Yf−1)n

(110)

for all m ∈ π∨ and n ≥ 0. Each element of (π∨)S can be written as (Y0 · · ·Yf−1)−pnm
for some m ∈ π∨ and n ≥ 0, and it follows from the properties of ψ on π∨ that the
right-hand side of (110) does not depend on this choice. For any element g in I1, we
denote by δg the corresponding element [g] in FJI1K.
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Lemma 3.1.2.5. The map ψ : (π∨)S → (π∨)S is continuous.

Proof. As all the good filtrations on π∨ are equivalent, we choose the mI1-adic filtra-
tion on π∨ for this proof, i.e. Fnπ∨ = m−n

I1
π∨ for n ≤ 0 and Fnπ

∨ = π∨ for n > 0.
From the proof of [BHH+, Prop.5.3.3] we have an equality for n ≥ 0:

mn
I1

=
∑

r,s,t≥0
r+2s+t=n

mr
N0
ms
T0
mt
N−0
. (111)

As ξ(p) commutes with each element in T0, and ξ(p)−1 ( 1 0
z 1 ) ξ(p) = ( 1 0

z 1 )p for any
( 1 0
z 1 ) ∈ N−

0 , it is easily checked from the definition of ψ and the FJI1K-action on π∨

that
ψ(δhδz · f) = δhδzpψ(f) (112)

for all h ∈ T0, z ∈ N−
0 . In particular,

ψ(ms
T0
mt
N−0
π∨) ⊆ ms

T0
m
pt

N−0
π∨,

and it follows from Lemma 3.1.2.4 that if r ≥ pf − (f − 1) we have

ψ(mr
N0
ms
T0
mt
N−0
π∨) ⊆ m

⌈ r
p

⌉−f
N0

ms
T0
m
pt

N−0
π∨ ⊆ m

⌈ r
p

⌉+2s+pt−f
I1

π∨ ⊆ m
⌈ r+2s+t

p
⌉−f

I1
π∨. (113)

If r < pf − (f − 1), we need the following lemma.

Lemma 3.1.2.6. Let M ⊆ π∨ be a closed FJN−
0 K-submodule. Then

ψ(FJN0KmN−0
M) ⊆ mI1ψ(FJN0KM).

As a consequence, for all t ≥ 0, ψ(FJN0Km
t
N−0
π∨) ⊆ mt

I1
π∨.

Proof. Note that mI1 × FJN0K×M is compact, as M is closed, hence so is the image
mI1ψ(FJN0KM) of the continuous map mI1 × FJN0K×M → π∨, (a, b,m) 7→ aψ(bm).
As mN−0

is generated as right FJN−
0 K-module by the δy − 1 for y ∈ N−

0 and as ψ is
continuous on π∨, it is thus sufficient to prove that, for y ∈ N−

0 , x ∈ N0 and m ∈M ,
we have ψ(δx(δy − 1)m) ∈ mI1ψ(FJN0KM). As N−

0 ⊆ K1, K1 is normalized by N0

and K1 = Np
0T0N

−
0 , we can write xy = xp1t1y1x with (x1, t1, y1) ∈ N0 × T0 × N−

0 .
Therefore

ψ(δx(δy − 1)m) = ψ(δxp
1
δt1δy1δxm)− ψ(δxm)

= δx1t1y
p
1
ψ(δxm)− ψ(δxm) = (δx1t1y

p
1
− 1)ψ(δxm)

⊆ mI1ψ(FJN0KM).

For the second statement, inductively apply the first to M = mt−1
N−0
π∨, M = mt−2

N−0
π∨,

etc.
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When r < pf − (f − 1) = (p− 1)f + 1, we have 2s+ t ≥ r + 2s+ t− (p− 1)f so
that, using Lemma 3.1.2.6 and the fact that T0 normalizes N0, we obtain

ψ(mr
N0
ms
T0
mt
N−0
π∨) ⊆ ms

T0
ψ(FJN0Km

t
N−0
π∨) ⊆ m2s+t

I1
π∨ ⊆ m

r+2s+t−(p−1)f
I1

π∨. (114)

We deduce from (110), (113) and (114) that, for all n ∈ Z, r ≥ 0, s ≥ 0, t ≥ 0 and
k ≥ 0 such that r + 2s+ t ≥ pf , we have

ψ

(
1

(Y0 · · ·Yf−1)pk
mr
N0
ms
T0
mt
N−0
π∨
)
⊆

1
(Y0 · · ·Yf−1)k

m
⌈ r+2s+t

p
⌉−f

I1
π∨

so that, for n ≥ pf by (111) we have

ψ

(
1

(Y0 · · ·Yf−1)pk
mn
I1
π∨
)
⊆

1
(Y0 · · ·Yf−1)k

m
⌈ n

p
⌉−f

I1
π∨ ⊆ Fkf+f−⌈ n

p
⌉((π∨)S).

From Remark 3.1.1.3(ii), we know that, for n ∈ Z, Fn((π∨)S) is the increasing union
over k ≥ max{0, n

pf
} of the subspaces

1
(Y0 · · ·Yf−1)pk

m
−n+pkf
I1

π∨,

hence we deduce for all n ∈ Z that

ψ(Fn((π∨)S)) ⊆
⋃

k≥max{0, n
pf

}
Fkf+f−⌈−n+pkf

p
⌉((π

∨)S) ⊆ Ff+⌊ n
p

⌋((π∨)S).

This proves the continuity of ψ.

We can therefore extend ψ to a continuous F-linear map ψ : DA(π)→ DA(π) such
that

ψ(φ(a)m) = aψ(m) ∀ (a,m) ∈ A× π∨.

We fix {a0, . . . , aq−1} a system of representatives of the cosets of Np
0
∼= pOK

in N0
∼= OK , so that FJN0K =

⊕q−1
i=0 δai

FJNp
0 K. As φ(FJN0K) = FJNp

0 K and A =⊕q−1
i=0 δai

φ(A), we have a canonical isomorphism for any A-module M :

φ∗(M) ∼=
q−1⊕

i=0

(Fδai
⊗F M).

We define an F-linear map β : DA(π)→ φ∗(DA(π)) = A⊗φ,A DA(π) by

DA(π) −→
⊕q−1
i=0 (Fδai

⊗F DA(π))
m 7−→

∑q−1
i=0 δai

⊗φ ψ(δ−1
ai
m)

(115)

(we write x⊗φ y instead of just x⊗ y in order not to forget the map φ in the tensor
product).
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Remark 3.1.2.7. The definition of the map β does not depend on the choice of the
system {ai}, namely, replacing ai with aib

p for some b ∈ N0, we have

δaibp ⊗φ ψ(δ−1
aibpm) = δaibp ⊗φ ψ(φ(δb)−1δ−1

ai
m) = δaibp ⊗φ δ

−1
b ψ(δ−1

ai
m)

= δaibpδ−1
bp ⊗φ ψ(δ−1

ai
m) = δai

⊗φ ψ(δ−1
ai
m).

Using Remark 3.1.2.7, we easily check that β is actually an A-linear map (note
that it is enough to check it for an element in δai

φ(A) using A =
⊕q−1
i=0 δai

φ(A), and
thus for δai

and for an element in φ(A)), hence β : DA(π) → φ∗(DA(π)) can be seen
as a “linearization” of ψ : DA(π) → DA(π). Moreover, letting O×

K act diagonally on
A⊗φ,ADA(π), the map β is then O×

K-equivariant. Indeed, for a ∈ O×
K and m ∈ DA(π),

we have

a · β(m) = a ·



q−1∑

i=0

δai
⊗φ ψ(δ−1

ai
m)


 =

q−1∑

i=0

δa·ai
⊗φ a · ψ(δ−1

ai
m)

=
q−1∑

i=0

δa·ai
⊗φ ψ(a · δ−1

ai
m) =

q−1∑

i=0

δa·ai
⊗φ ψ(δ−1

a·ai
(a ·m))

= β(a ·m),

the last equality coming from Remark 3.1.2.7 and the fact that {a · a0, . . . , a · aq−1}
is another system of representatives of Np

0 in N0.

It is convenient to assume that the admissible smooth representation π has a
central character, in which case Z1 acts trivially on π and π∨ is a finitely generated
FJI1/Z1K-module. We recall from [BHH+, §5.3] that the graded ring gr(FJI1/Z1K) of
FJI1/Z1K is isomorphic to a tensor product of (noncommutative) graded rings

f−1⊗

i=0

F[yi, zi, hi], (116)

where variables with different indices commute, where [yi, zi] = hi, [hi, yi] = [hi, zi] =
0, where yi, zi are homogeneous of degree −1, and hi is homogeneous of degree
−2. Note that the mI1/Z1

-adic topology on FJI1/Z1K induces the mN0-adic topol-
ogy on FJN0K via the inclusion FJN0K ⊆ FJI1/Z1K. Therefore the map gr(FJN0K) →
gr(FJI1/Z1K) is injective and its image is F[y0, . . . , yf−1] in gr(FJI1/Z1K).

Remark 3.1.2.8. The A-module DA(π) can also be defined as the microlocaliza-
tion of π∨ with respect to the multiplicative subset T def= {(y0 · · · yf−1)k, k ∈ N} ⊆
gr(FJI1/Z1K). This shows that DA(π) can be promoted to a module over the noncom-
mutative ring which is the microlocalization of FJI1/Z1K with respect to T .

We now let C be the category of admissible smooth representations π of GL2(K)
over F with a central character and such that there exists a good filtration on the
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FJI1/Z1K-module π∨ such that gr(DA(π)) is a finitely generated gr(A)-module, or
equivalently by Lemma 3.1.1.1 and Corollary 3.1.1.2 gr(π∨)[(y0 · · · yf−1)−1] is finitely
generated over gr(FJN0K)[(y0 · · · yf−1)−1]. By [LvO96, Thm.I.5.7] this is also equiva-
lent to require that DA(π) is finitely generated over A and that its natural filtration
in (108) is good (equivalently gives the canonical topology). In particular, if this
holds for one good filtration on π∨, then this holds for all good filtrations. It easily
follows from the proof of Proposition 3.1.2.3 and the noetherianity of gr(A) (Corollary
3.1.1.2) that C is an abelian subcategory stable under subquotients and extensions in
the category of smooth representations of GL2(K) over F with a central character.

For π in C, the pair (DA(π), β) is an example of (ψ,O×
K)-module over A as in

Definition 3.1.2.1. We can in particular consider its étale part DA(π)ét. The action
of O×

K on DA(π) preserves its nilpotent part DA(π)0 and thus induces a continuous
action of O×

K on DA(π)ét. In particular, DA(π)ét is an étale (ψ,O×
K)-module over A.

Note that the canonical topology on the finitely generated A-module DA(π)ét is also
the quotient topology of DA(π) ։ DA(π)ét.

Corollary 3.1.2.9. Let π in C. Then the A-modules DA(π) and DA(π)ét are finite
projective over A. Moreover the map β ét : DA(π)ét → φ∗DA(π)ét is an isomorphism.

Proof. This is a special case of Propositions 3.1.1.8 and 3.1.2.2.

Remark 3.1.2.10. If π is 1-dimensional (a character of GL2(K)), then DA(π) =
DA(π)ét = 0.

We give an important condition on an admissible smooth representation π (with
a central character) which ensures that π is in C. Let J be the following graded ideal
of gr(FJI1/Z1K):

J
def= (yizi, hi, 0 ≤ i ≤ f − 1). (117)

From the definition of equivalent filtrations (see [LvO96, §I.3.2]), one easily sees (using
[LvO96, Lemma I.5.3]) that if gr(π∨) is annihilated by some power of J for one good
filtration on π, then it is so for all good filtrations (but note that the power of J
which annihilates gr(π∨) may depend on the fixed good filtration).

Proposition 3.1.2.11. Assume that gr(π∨) is annihilated by some power of J . Then
the A-module DA(π) is finite projective and the gr(A)-module gr(DA(π)) is finitely
generated.

Proof. As the hypothesis does not depend on the choice of the good filtration on
π∨, we are free to work with the mI1/Z1-adic topology on π∨. Let us first prove that
gr(DA(π)) is a finitely generated gr(A)-module. It follows from the admissibility
of π and from the hypothesis that gr(π∨) is a finitely generated gr(FJI1/Z1K)/JN -
module for some N ≥ 1. Lemma 3.1.1.1 then implies that gr(DA(π)) is a finitely
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generated (gr(FJI1/Z1K)/JN)[(y0 · · · yf−1)−1]-module. It is therefore sufficient to prove
that (gr(FJI1/Z1K)/JN)[(y0 · · · yf−1)−1] is a finitely generated gr(A)-module. Since
gr(FJI1/Z1K) is noetherian, we are reduced by dévissage to the case N = 1, where we
have

(
gr(FJI1/Z1K)/J

)
[(y0 · · · yf−1)−1] ∼= (F[yi, zi, hi]/(yizi, hi))[(y0 · · · yf−1)−1]

= F[y±1
i ] ∼= gr(A).

Finally, as DA(π) is a complete filtered A-module, it then follows from [LvO96,
Thm.I.5.7] that DA(π) is finitely generated over A and from Proposition 3.1.1.8 that
it is projective.

It follows from Proposition 3.1.2.11 that the admissible smooth representations π
(with a central character) such that gr(π∨) is annihilated by some power of J for at
least one good filtration is a full subcategory of the category C. Moreover this full
subcategory is abelian and stable under subquotients and extensions in C. Namely,
for a short exact sequence 0 → π′ → π → π′′ → 0 in C, the filtrations induced on
(π′′)∨ and (π′)∨ by a good filtration of π∨ are good. For these filtrations we have a
short exact sequence 0 → gr((π′′)∨) → gr(π∨) → gr((π′)∨) → 0 which shows that
gr(π∨) is annihilated by a power of J if and only if gr((π′)∨) and gr((π′′)∨) are.

Remark 3.1.2.12. It is natural to consider the image D♮
A(π) of π∨ in DA(π) =

A⊗̂FJN0Kπ
∨. Indeed, as the map π∨ → DA(π) is continuous and π∨ is compact, it

follows that D♮
A(π) is a compact FJN0K-submodule of DA(π). However, the FJN0K-

module D♮
A(π) is not finitely generated when π is an irreducible admissible supersin-

gular representation and [K : Qp] > 1 (even if DA(π) is finitely generated over A).
Namely, if this was the case, this would give us the existence of a nontrivial finitely
generated FJN0K[( p 0

0 1 )]-submodule of π that is admissible as FJN0K-module and this
would contradict the results of [Sch15] and [Wu]. Likewise, the image of π∨ in the
quotient DA(π)ét of DA(π) won’t be finitely generated over FJN0K in general (see
Remark 3.3.5.4(ii)).

3.1.3 Multivariable (ϕ,O×
K)-modules

Using the results of §3.1.2, we promote the functor π 7→ DA(π)ét to an exact functor
from C to a category of étale multivariable (ϕ,O×

K)-modules (Theorem 3.1.3.3) and
we compare DA(π)ét with the functor D∨

ξ (π) of §2.1.1 (Theorem 3.1.3.7).

Let R be a noetherian commutative ring of characteristic p endowed with an
injective ring endomorphism FR such that R is a finite free FR(R)-module (as at
the beginning of §3.1.2). A ϕ-module (D,ϕ) over R is an R-module D with an FR-
semilinear map ϕ : D → D. We say that a ϕ-module (D,ϕ) is étale if the R-linear
map F ∗

R(D)→ D defined by a⊗ d 7→ aϕ(d) is an isomorphism.
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Definition 3.1.3.1. A (ϕ,O×
K)-module over A is a ϕ-module (D,ϕ) over A such

that D is a finitely generated A-module, the endomorphism ϕ is continuous (for the
canonical topology on D as at the beginning of §3.1.2) and D is endowed with a
continuous A-semilinear action of O×

K commuting with ϕ. We say that a (ϕ,O×
K)-

module over A is étale if the underlying ϕ-module over A is.

We note that, by Proposition 3.1.1.8, if (D,ϕ) is a (ϕ,O×
K)-module over A, then

D is a finite projective A-module.

If (D, β) is an étale (ψ,O×
K)-module over A as in Definition 3.1.2.1, by Proposition

3.1.2.2 we can define a φ-semilinear endomorphism ϕ of D such that Id⊗ϕ = β−1,
so that (D,ϕ) is an étale (ϕ,O×

K)-module over A. (Note that ϕ is continuous, as the
topology of D is defined by any good filtration and φ : A→ A is continuous.)

We now go back to representations π of GL2(K), but we first need some more
notation. The trace map tr : N0

∼= OK → Zp induces a ring homomorphism tr :
FJN0K→ FJZpK ∼= FJXK, where we recall that X = ( 1 1

0 1 )− 1. Moreover, for Yi as in
(100), we have tr(Yi) ≡ −X mod X2 (see Lemma 3.2.2.2 and the last statement in
Lemma 3.2.2.4 below) and the universal property of the ring A shows that this map
extends to a continuous ring homomorphism tr : A→ F((X)). We let

p
def= Ker(tr : A→ F((X))).

Then p is a closed maximal ideal of A. Note that

p ∩ FJN0K = Ker(tr : FJN0K→ FJXK) = mN1FJN0K = (Y0 − Y1, . . . , Y0 − Yf−1),

where N1 ⊆ N0 is as in (11) (for the second isomorphism write N0
∼= N1⊕Zpe, where

tr(e) = 1, noting that tr : OK → Zp is surjective, as K is unramified, and for the
third use the first statement of Lemma 3.2.2.4 below).

Remark 3.1.3.2. Let B be the completion of FJN0KS along the prime ideal generated
by (Y0 − Y1, . . . , Y0 − Yf−1) (see the beginning of §3.1.1 for S). Expanding Y n

i =
(Y0 − (Y0 − Yi))n if n ≥ 0, and writing Y n

i = (
∑+∞
m=0

(Y0−Yi)
m

Y m+1
0

)−n and expanding

everything if n < 0, one can see using Remark 3.1.1.3(iii) that the ring A embeds
into B. The endomorphism φ on A extends to B but only the action of Z×

p ⊆ O
×
K

extends to B, as (Y0 − Y1, . . . , Y0 − Yf−1) is not preserved by all of O×
K . Then from

Corollary 3.1.2.9 and as B is a local ring, we see that DA(π)ét⊗AB is a finite free étale
(ϕ,Z×

p )-module over B, which is similar to the generalized (ϕ,Γ)-modules defined in
[SV11] (though loc.cit. only considers split algebraic groups over Qp).

Let π be in the category C. Using Corollary 3.1.2.9, we can define a φ-semilinear
endomorphism ϕ of DA(π)ét such that Id⊗ϕ = (β ét)−1, so that DA(π)ét is an étale
(ϕ,O×

K)-module over A. As p is a φ-stable ideal of A, we deduce that DA(π)ét/p ∼=
DA(π)ét ⊗A F((X)) is an étale (ϕ,Z×

p )-module over F((X)).
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Theorem 3.1.3.3.

(i) The functor π 7−→ DA(π)ét is exact from the category C to the category of étale
(ϕ,O×

K)-modules over A.

(ii) The functor π 7−→ DA(π)ét⊗AF((X)) is exact from the category C to the category
of étale (ϕ,Z×

p )-modules over F((X)).

Proof. (i) is a consequence of Proposition 3.1.2.3, of the exactness of φ∗ and of the
exactness of direct limits, together with the description (see the beginning of §3.1.2)

DA(π)ét ∼= lim−→
(φ∗)n(βét)

(φ∗)n(DA(π)ét) ∼= lim−→
(φ∗)n(β)

(φ∗)n(DA(π)).

(ii) is a consequence of (i), of Corollary 3.1.2.9 and of the exactness of (−)⊗A F((X))
on short exact sequences of finite projective A-modules.

Remark 3.1.3.4. One can prove that if π ∈ C then the endomorphism ψ : DA(π)→
DA(π) (defined right after Lemma 3.1.2.6) is always surjective. (This follows ulti-
mately from the fact that the image of the natural map A ⊗FJN0K π

∨ → DA(π) is
surjective since A is complete and Noetherian, and A ⊗FJN0K π

∨ is endowed with a
surjective endomorphism that is compatible with ψ on DA(π).) In particular, this
implies that DA(π)ét 6= 0 as soon as DA(π) 6= 0, since ψ cannot be nilpotent if it is
surjective on DA(π) and the latter is nonzero. Note that for the representations π of
particular interest for us here, we will actually have DA(π) = DA(π)ét; see Remark
3.3.5.4(ii).

We now compare the étale (ϕ,Z×
p )-module DA(π)ét/p with D∨

ξ (π) (15).

Let ψ be the F-linear endomorphism of π∨/mN1
∼= (πN1)∨ defined by

ψ(x) def=
∑

b∈N1/N
p
1

ψ(δb̃x̃) mod mN1 , (118)

where b̃ ∈ N1 is a lift of b, x̃ ∈ π∨ is a lift of x and ψ is as in (109) (it is easy to
check that the definition of ψ does not depend on the choice of these lifts). We have
ψ(S(Xp)m) = S(X)ψ(m) for all S(X) ∈ FJXK and m ∈ π∨/mN1 , and ψ is the dual
of the endomorphism F of πN1 in §2.1.1. We define an endomorphism ψ of DA(π)/p
(resp. DA(π)ét/p) by the same formula replacing π∨ by DA(π) (resp. DA(π)ét) and
mN1 by p, it is then clear that the following diagram commutes:

π∨/mN1 π∨/mN1

DA(π)/p DA(π)/p,

ψ

ψ

(119)
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together with an analogous diagram with DA(π)/p ։ DA(π)ét/p that we leave to the
reader.

Let β : DA(π)/p → φ∗(DA(π)/p) ∼= FJXK ⊗ϕ,FJXK (DA(π)/p) ∼= φ∗(DA(π))/p be
the F((X))-linear map defined by

β(m) def=
p−1∑

i=0

(1 + X)−i ⊗φ ψ((1 +X)im).

Lemma 3.1.3.5. The following diagram is commutative (where the horizontal maps
are the canonical surjections):

DA(π) DA(π)/p

φ∗(DA(π)) φ∗(DA(π)/p).

β β

Proof. We choose a system of representatives (g−ibj) 0≤i≤p−1
1≤j≤pf−1

of N0/N
p
0 such that

g
def= ( 1 1

0 1 ) ∈ N0 and b1, . . . , bpf−1 are in N1. We then have for m ∈ DA(π) that

β(m) =
p−1∑

i=0

pf−1∑

j=1

(
δ−1
gi δbj

⊗φ ψ(δ−1
bj
δgim)

)

≡
p−1∑

i=0

(
δ−1
gi ⊗φ

pf−1∑

j=1

ψ(δ−1
bj

(δgim))
)

mod pφ∗(DA(π))

≡
p−1∑

i=0

δ−1
gi ⊗φ ψ(δgim) mod pφ∗(DA(π)),

where the first equality follows from (115), the second from δbj
− 1 ∈ p ⊆ A (and the

commutativity of N0), and the third from the analog of (118) for DA(π)/p. Noting
that the image of δgi in FJXK is (1 +X)i, we obtain the desired compatibility.

Lemma 3.1.3.6. Let M ⊆ πN1 be an FJXK-submodule that is admissible as FJXK-
module. Then the surjective map π∨

։ M∨ is continuous for the mI1-adic topology
on π∨ and the X-adic topology on M∨.

Proof. Since M is an admissible FJXK-module, the FJXK-module M∨ is finitely gen-
erated. As a consequence, M∨/XnM∨ is finite for every n ≥ 1 and the inverse image
of XnM∨ in π∨ is a cofinite F-vector subspace. As π∨ is a compact FJI1K-module,
its mI1-adic topology is separated, which implies that there exists N ≥ 1 such that
mN
I1
π∨ is contained in the inverse image of XnM∨. This gives the continuity.
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Recall that we defined in (15) a projective limit D∨
ξ (π) of étale (ϕ,Z×

p )-modules
over F((X)) associated to π.

Theorem 3.1.3.7. We have an isomorphism of étale (ϕ,Z×
p )-modules over F((X)):

DA(π)ét/p
∼
−→ D∨

ξ (π).

In particular, D∨
ξ (π) is finite-dimensional over F((X)) and the functor π 7−→ D∨

ξ (π)
is exact on C.

Proof. As a first step we construct the map. Let M ⊆ πN1 be a finitely generated
FJXK[F ]-submodule that is admissible as FJXK-module and Z×

p -stable. By Lemma
3.1.3.6, the map π∨

։ M∨ is continuous. It extends to a surjection of FJN0KS-
modules (π∨)S ։ M∨[X−1]. By definition of the tensor product filtration on (π∨)S,
this surjection is continuous if M∨[X−1] is endowed with its natural topology of
finite-dimensional F((X))-vector space. As M∨[X−1] is complete for this topology, by
completion we obtain a continuous surjection of topological A-modules ζM : DA(π) ։
M∨[X−1]. Since N1 acts trivially on M , ζM factors through a surjection of F((X))-
vector spaces ζM : DA(π)/p ։ M∨[X−1]. By definition of ψ, we obtain a commutative
diagram (where F∨ is the F-linear dual of F : M → M that we extend to M∨[X−1]
using F∨(X−if) = X−iF (X i(p−1)f))

DA(π)/p M∨[X−1]

DA(π)/p M∨[X−1].

ζM

ψ F∨

ζM

It then follows from Lemma 3.1.3.5 that, identifying φ∗(M∨) ∼= FJXK⊗ϕ,FJXKM
∨ with

(FJXK⊗ϕ,FJXK M)∨ via (14), the following diagram is commutative:

DA(π) DA(π)/p M∨[X−1]

φ∗(DA(π)) φ∗(DA(π)/p) φ∗(M∨[X−1]),

β

ζM

β (Id ⊗F )∨

Id ⊗ζM

(120)

where (Id⊗F )∨ comes from F-linear dual of Id⊗F : FJXK ⊗ϕ,FJXK M → M . As
(Id⊗F )∨ is an isomorphism (see just after (14)), the map ζM : DA(π) ։ M∨[X−1]
factors through DA(π)ét and the map ζM : DA(π)/p ։ M∨[X−1] factors through
DA(π)ét/p. The map ζM : DA(π)ét/p ։ M∨[X−1] clearly commutes with the action
of Z×

p and the commutative diagram (120) shows that it is a morphism ϕ-modules.
These maps are obviously compatible when M is varying among the finitely generated
FJXK[F ]-submodules of πN1 that are admissible as FJXK-modules and Z×

p -stable so
that we obtain a map

ζ : DA(π)ét/p −→ lim
←−
M

M∨[X−1] = D∨
ξ (π).
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We prove that the map ζ is surjective. Since DA(π)ét/p is a finite-dimensional
F((X))-vector space, the dimension of the vector spaces M∨[X−1] when M is varying
is bounded. This implies that there exists some M such that D∨

ξ (π) = M∨[X−1] and
that the map ζ : DA(π)ét/p → D∨

ξ (π) is surjective. In particular, dimF((X)) D
∨
ξ (π) <

+∞.

We prove that the map ζ is an isomorphism. Let D♮(π)ét be the image of π∨ in
DA(π)ét/p. This is a compact FJXK-module in the finite-dimensional F((X))-vector
space DA(π)ét/p, hence a finite free FJXK-module. Since the maps π∨ → DA(π)/p ։

DA(π)ét/p commute with the action of Z×
p , D♮(π)ét is preserved by Z×

p . The image
of (π∨)S in DA(π)ét/p coincides with D♮(π)ét[X−1]. As (π∨)S has a dense image in
DA(π) by definition, D♮(π)ét[X−1] is a dense F((X))-vector subspace of DA(π)ét/p
and thus equal to DA(π)ét/p by finiteness of the dimension. The surjective map
π∨

։ D♮(π)ét factors through π∨/mN1
∼= (πN1)∨ so that the topological F-linear dual

(D♮(π)ét)∨ of D♮(π)ét is identified with an FJXK-submodule of πN1 (endowed with the
discrete topology) preserved by Z×

p . As D♮(π)ét is stable by ψ by (119), (D♮(π)ét)∨

is actually an FJXK[F ]-submodule of πN1. Since β ét : DA(π)ét ∼
−→ φ∗(DA(π)ét) is an

isomorphism, it easily follows from Lemma 3.1.3.5 that the map β induces a surjective
map of finite-dimensional F((X))-vector spaces β

ét
: DA(π)ét/p ։ φ∗(DA(π)ét/p).

As these spaces have the same dimension, β
ét

is actually an isomorphism, and in
particular β

ét
|D♮(π)ét : D♮(π)ét → FJXK⊗ϕ,FJXKD

♮(π)ét is an injection and becomes an
isomorphism after inverting X.

We claim that (D♮(π)ét)∨ is finitely generated as FJXK[F ]-module. Note that
(D♮(π)ét)∨ is admissible as an FJXK-module since D♮(π)ét is a finitely generated FJXK-
module. Hence, the claim follows from [Bre15, Lemma 5.2] using the last statement
of the previous paragraph.

We now give another proof of the claim using results of [Lyu97, §4]. In fact,
we even prove that (D♮(π)ét)∨ is of finite length as FJXK[F ]-module. As F is a
finite extension of Fp, the FpJXK-module (D♮(π)ét)∨ is artinian so that the FpJXK[F ]-
module (D♮(π)ét)∨ is a cofinite FpJXK[F ]-module in the sense of [Lyu97, §4] (the ring
FpJXK[F ] is isomorphic to the ring A{f} of loc. cit. where A = FpJXK). It follows
from Theorem 4.7 in loc. cit. that (D♮(π)ét)∨ has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆Mr = (D♮(π)ét)∨

by FpJXK[F ]-submodules such that Mi+1/Mi is a simple FpJXK[F ]-module or a nilpo-
tent FpJXK[F ]-module, i.e. such that some power of F is zero on Mi+1/Mi. Let
M⊥

i be the kernel of D♮(π)ét → M∨
i for all i. As β

ét
|D♮(π)ét coincides with (Id⊗F )∨

(this is analogous to (120) using (14) with M = (D♮(π)ét)∨), the map β
ét

induces
an isomorphism of Fp((X)) ⊗FpJXK M

⊥
i onto Fp((X)) ⊗ϕ,FpJXK M

⊥
i . In particular, if

Mi+1/Mi is nilpotent then F∨ induces a nilpotent endomorphism of M⊥
i /M

⊥
i+1 so that

Fp((X))⊗FpJXK M
⊥
i = Fp((X))⊗FpJXK M

⊥
i+1 (as Fp((X))⊗ϕ,FpJXK (M⊥

i /M
⊥
i+1) = 0 in this

119



case) and hence M⊥
i /M

⊥
i+1 is a torsion FpJXK-module. As D♮(π)ét is a finitely gener-

ated FpJXK-module, we conclude that when Mi+1/Mi is nilpotent the FpJXK-module
M⊥

i /M
⊥
i+1 is finite-dimensional over Fp, in particular it is an FpJXK[F ]-module of fi-

nite length. Since Mi+1/Mi is obviously of finite length when Mi+1/Mi is irreducible,
the claim follows.

The claim implies that (D♮(π)ét)∨ is one of the modules M ⊆ πN1 in §2.1.1, in
particular

dimF((X)) D
∨
ξ (π) ≥ dimF((X))(D♮(π)ét[X−1]) = dimF((X))(DA(π)ét/p).

This implies that the map ζ is an isomorphism (and that DA(π)ét/p = D♮(π)ét[X−1] ∼=
D∨
ξ (π)). The very last statement follows from Theorem 3.1.3.3(ii).

3.1.4 An upper bound for the ranks of DA(π)ét and D∨
ξ (π)

For π in C we bound the dimension of D∨
ξ (π) in terms of gr(π∨). When gr(π∨) is

killed by some Jn, we give an interpretation of this bound as a certain multiplicity.

We keep all previous notation. We start by the following lemma.

Lemma 3.1.4.1. Let M be a finitely generated A-module endowed with a good filtra-
tion. Then the generic rank of the A-module M and the generic rank of the gr(A)-
module gr(M) coincide.

Proof. We first note that if N is an A-module of generic rank 0, thenN⊗AFrac(A) = 0
and N is a torsion module. This implies that gr(N) is a torsion module and that its
generic rank is 0.

Let d be the generic rank of M and f : A⊕d → M ⊗A Frac(A) be a morphism of
A-modules sending an A-basis of the left-hand side to a Frac(A)-basis of the right-
hand side. The kernel of f is then a torsion A-submodule of A⊕d and is zero since A
is a domain. Moreover there exists a ∈ A\{0} such that the image of af is contained
in M . As Frac(A) is a flat A-module, the generic rank is an additive map on the
abelian category of finitely generated A-modules. As af is injective and A⊕d and M
have identical generic ranks, this implies that the cokernel Q of af has generic rank
0. We fix a good filtration on M : it induces good filtrations on af(A⊕d) and on Q.
For these filtrations we have a short exact sequence

0 −→ gr(af(A⊕d)) −→ gr(M) −→ gr(Q) −→ 0.

As Q has generic rank 0, so does gr(Q) so that it suffices to prove that gr(af(A⊕d))
has generic rank d. It follows from the second paragraph after [Bjö89, Def.4.2] that,
for a finitely generated A-module N , the generic rank of gr(N) does not depend on
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the choice of good filtration. We can thus choose a good filtration af(A⊕d) ∼= A⊕d

which is filtered free with respect to the canonical basis of A⊕d, for which the result
is obvious.

Let π be in the category C and choose a good filtration on the FJI1/Z1K-module π∨.
Since the finitely generated A-module DA(π) doesn’t depend up to isomorphism on
the choice of this good filtration (see §3.1.2), it follows from Lemma 3.1.4.1 (applied
to M = DA(π)) and Lemma 3.1.1.1 (applied to M = π∨) that the generic rank of
gr(A)⊗gr(FJN0K) gr(π∨) also doesn’t depend on this choice.

Proposition 3.1.4.2. Let π ∈ C. Then rkA(DA(π)ét) = dimF((X)) D
∨
ξ (π) is bounded

by the generic rank of the gr(A)-module gr(A)⊗gr(FJN0K) gr(π∨).

Proof. As DA(π)ét is a quotient of DA(π), the result follows from Lemma 3.1.4.1,
Lemma 3.1.1.1 and Theorem 3.1.3.7.

When gr(π∨) is moreover killed by the ideal Jn for some n ≥ 1 (here J is as
in (117) and recall this doesn’t depend on the good filtration), the generic rank of
gr(A)⊗gr(FJN0K) gr(π∨) has a nice and useful interpretation that we give now.

We define R def= gr(FJI1/Z1K)/J . Recall using (116) that we have

R ∼= F[yi, zi, 0 ≤ i ≤ f − 1]/(yizi, 0 ≤ i ≤ f − 1). (121)

Therefore R has 2f minimal prime ideals which are the ideals (yi, zj , i ∈ J , j /∈ J )
with J a subset of {0, . . . , f − 1}. Let

p0
def= (zj , 0 ≤ j ≤ f − 1)

be the minimal prime ideal corresponding to the choice of J = ∅.

If N is a finitely generated module over R and q is a minimal prime ideal of R, we
denote by mq(N) the length of Nq over Rq. More generally, if N is a finitely generated
gr(FJI1/Z1K)-module annihilated by Jn for some n ≥ 1, we define the multiplicity of
N at q to be

mq(N) =
n−1∑

i=0

mq(J iN/J i+1N). (122)

Lemma 3.1.4.3. If 0 → N1 → N → N2 → 0 is a short exact sequence of finitely
generated gr(FJI1/Z1K)/Jn-modules, then mq(N) = mq(N1) +mq(N2).

Proof. This is checked by a standard dévissage. If n = 1, the statement is obvious
since gr(FJI1/Z1K)/J = R is commutative (and noetherian). Assume n ≥ 2 and by
induction we assume that the result holds if N is annihilated by Jn−1.
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Assume first that N1 and N2 are both annihilated by Jn−1 (but not necessarily
N). Then N2 is a quotient of N/Jn−1N . Let Ker def= Ker(N/Jn−1N ։ N2) be the
corresponding kernel. Then we have two short exact sequences

0→ Ker→ N/Jn−1N → N2 → 0

0→ Jn−1N → N1 → Ker→ 0. (123)

By definition of mq(N) and the inductive hypothesis, we then obtain

mq(N) = mq(Jn−1N) +mq(N/Jn−1N) = mq(N1) +mq(N2).

Assume now that N2 is annihilated by Jn−1 (but not necessarily for N1). Then
the surjection N ։ N2 factors through the quotient N/Jn−1N of N . Again let
Ker def= Ker(N/Jn−1N ։ N2). Then mq(N/Jn−1N) = mq(Ker) + mq(N2) by the
inductive hypothesis. On the other hand, both Jn−1N and Ker are annihilated by
Jn−1, thus mq(·) is additive for the short exact sequence (123) by the discussion in
last paragraph. The result also holds in this case.

To finish the proof it suffices to decompose further N as 0 → Ker′ → N →
N2/J

n−1N2 → 0 and apply the above discussion.

If N is a finitely generated module over gr(FJI1/Z1K)/Jn for some n ≥ 1 recall
that the gr(A)-module gr(A)⊗gr(FJN0K)N is finitely generated by Proposition 3.1.2.11.

Lemma 3.1.4.4. Let N be a finitely generated module over gr(FJI1/Z1K)/Jn for some
n ≥ 1. Then the generic rank of the gr(A)-module gr(A) ⊗gr(FJN0K) N is equal to
mp0(N).

Proof. By Corollary 3.1.1.2, gr(A) is flat over gr(FJN0K), so gr(A)⊗gr(FJN0K) N has a
finite filtration with graded pieces given by gr(A)⊗gr(FJN0K) (J iN/J i+1N) for 0 ≤ i ≤
n − 1. Since taking generic rank and taking mp0(·) are both additive in short exact
sequences (by Lemma 3.1.4.3 for the latter), we are reduced to the case where N is
killed by J .

In that case we have

gr(A)⊗gr(FJN0K) N ∼= (gr(A)⊗gr(FJN0K) R)⊗R N.

Since the image of gr(FJN0K) in R is F[y0, . . . , yf−1], we have

gr(A)⊗gr(FJN0K) R ∼= R[(y0 · · · yf−1)−1] ∼= gr(A).

Since the fraction field of R[(y0 · · · yf−1)−1] is just Rp0 , we see that the generic rank
of the R[(y0 · · · yf−1)−1]-module gr(A)⊗gr(FJN0K) N is equal to mp0(N).
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We finally deduce from Proposition 3.1.4.2 and Lemma 3.1.4.4:

Corollary 3.1.4.5. Let π be an admissible smooth representation of GL2(K) over F
with a central character having at least one good filtration such that the gr(FJI1/Z1K)-
module gr(π∨) is killed by some power of J . Then we have

rkA(DA(π)ét) = dimF((X)) D
∨
ξ (π) ≤ mp0(gr(π∨)).

3.2 Tensor induction for GL2(Qpf )

We prove that VGL2(π) (as defined in (16)) contains some copies of a tensor induction
as in Example 2.1.2.1 for certain admissible smooth representations π of GL2(K) over
F (Theorem 3.2.1.1).

We recall that the definition of the functor VGL2 depends on the choice of a charac-
ter ξGL2, which we have fixed to be ξGL2(x) = diag(x, 1), and depends on a normalizing
character δGL2 = ind⊗Qp

K (ω) (cf. Example 2.1.1.3).

3.2.1 Lower bound for VGL2(π): statement

We state the main theorem of this section on VGL2(π) for certain admissible smooth
representations π of GL2(K) over F (Theorem 3.2.1.1). After some simple reductions,
this theorem will be proved in §§3.2.2 to 3.2.4.

We keep all the previous notation and denote by IK the inertia subgroup of
Gal(Qp/K). We fix an embedding σ′

0 : Fp2f →֒ F such that σ′
0|Fpf

= σ0 (see the
very beginning of §3), and denote by ωf , ω2f : IK → F× Serre’s corresponding funda-
mental characters of level f and 2f .

We consider ρ : Gal(Qp/K)→ GL2(F) of the following form up to twist:

ρ|IK
∼=




ω

∑f−1

j=0
(rj+1)pj

f ⊕ 1 if ρ is reducible,

ω

∑f−1

j=0
(rj+1)pj

2f ⊕ ω

∑f−1

j=0
(rj+1)pj+f

2f if ρ is irreducible,
(124)

where the integers ri satisfy the following (strong) genericity condition:

2f − 1 ≤ rj ≤ p− 2− 2f if j > 0 or ρ is reducible,

2f ≤ r0 ≤ p− 1− 2f if ρ is irreducible
(125)

(note that this implies in particular p ≥ 4f + 1). Let χ : Gal(Qp/K)→ F× such that

(ρ⊗ χ)|IK
is as in (124) and moreover det(ρ⊗ χ) = ω

∑
j
(rj+1)pj

f .
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We refer to [Paš04] and [BP12, §§9,13] (and the references therein) for the back-
ground and definitions about diagrams.

We choose one diagram D(ρ⊗χ) = (D1 →֒ D0) associated to ρ⊗χ in [Bre11, §5],
and we set

D(ρ) = (D1(ρ) →֒ D0(ρ))
def=
(
D1 ⊗ (χ−1 ◦ det) →֒ D0 ⊗ (χ−1 ◦ det)

)
, (126)

where the actions of GL2(OK) and the center K× on D0(ρ) (resp. of I,
(

0 1
p 0

)
and K×

on D1(ρ)) are multiplied by χ−1 ◦det via local class field theory for K (note that χ is
trivial on K1 and I1 and recall that

(
0 1
p 0

)
normalizes I and I1). Recall that the action

of GL2(OK) on D0(ρ) factors through GL2(OK) ։ GL2(Fq). More precisely, denoting
by W (ρ) the set of Serre weights of ρ defined in [BDJ10, §3], D0(ρ) is the (unique)
maximal finite-dimensional representation of GL2(Fq) over F with socle isomorphic
to ⊕σ∈W (ρ)σ such that each σ ∈ W (ρ) occurs with multiplicity 1 in D0(ρ). Finally
K× acts on D0(ρ) by the character det(ρ)ω−1.

If π is an admissible smooth representation of GL2(K) over F, recall that (πI1 →֒
πK1) is naturally a diagram. We aim to prove the following theorem.

Theorem 3.2.1.1. Let π be an admissible smooth representation of GL2(K) over
F. Assume that there exists an integer r ≥ 1 such that one has an isomorphism of
diagrams

D(ρ)⊕r ∼
−→ (πI1 →֒ πK1).

Then one has an IQp-equivariant injection
(

ind⊗Qp

K (ρ)
)
|⊕rIQp

→֒ VGL2
(π)|IQp

. If we

assume moreover that the constants νi associated to D(ρ ⊗ χ) at the beginning of
[Bre11, §6] are as in [Bre11, Thm.6.4], then one has a Gal(Qp/Qp)-equivariant injec-

tion
(

ind⊗Qp

K (ρ)
)⊕r
→֒ VGL2(π).

Let us first make some straightforward reductions. In order not to repeat argu-
ments, we assume from now on that the constants νi associated to D(ρ⊗χ) in [Bre11,
§6] are as in [Bre11, Thm.6.4] and we will prove the last statement of Theorem 3.2.1.1
(the proof for the first one being the same up to some trivial modifications). It is
enough to prove Theorem 3.2.1.1 for the GL2(K)-subrepresentation of π generated by
D0(ρ)⊕r. Hence we can assume that π has a central character which is χπ

def= det(ρ)ω−1.
Using Remark 2.1.1.4(ii) (for n = 2), it is also enough to prove Theorem 3.2.1.1 for

ρ⊗ χ as above, i.e. we can assume ρ|IK
is as in (124) and det(ρ) = ω

∑
j
(rj+1)pj

f .

In the sequel, for any FJXK[F ]-submodule M of πN1 which is stable under Z×
p ,

denote by M ⊗ χ−1
π the same FJXK-module but where the action of F is multiplied

by χπ(p)−1 and the action of x ∈ Z×
p is multiplied by χπ(x)−1.
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Lemma 3.2.1.2. With the notation in §2.1.1, it is enough to prove that (π⊗χ−1
π )N1

contains a finite type FJXK[F ]-submodule M which is admissible as FJXK-module and

stable under Z×
p such that V(M∨[1/X]) ∼=

(
ind⊗Qp

K (ρ)
)⊕r

.

Proof. As (π ⊗ χ−1
π )N1 = πN1 as F-vector subspaces of π, we can assume that πN1

contains a finite type FJXK[F ]-submodule M which is admissible as FJXK-module and

stable under Z×
p such that V((M⊗χ−1

π )∨[1/X]) ∼=
(

ind⊗Qp

K (ρ)
)⊕r

. From the definition

of VGL2 in (16), it is enough to prove V∨(M∨[1/X])⊗ δGL2
∼=
(

ind⊗Qp

K (ρ)
)⊕r

. From
Example 2.1.1.3 and as in Remark 2.1.1.4(ii) (both for n = 2), we have

V∨(M∨[1/X])⊗ δGL2
= V

(
(M ⊗ χ−1

π )∨[1/X]
)∨
⊗ (χπω)|Q×p

=
((

ind⊗Qp

K (ρ)
)⊕r)∨

⊗ ind⊗Qp

K

(
det(ρ)

)

(21)
=

(
ind⊗Qp

K (ρ)
)⊕r

which finishes the proof.

The sections that follow will be devoted to the proof that there exists a certain
finite type FJXK[F ]-submodule Mπ of πN1 which is admissible as FJXK-module and

stable under Z×
p such that V((Mπ ⊗ χ

−1
π )∨[1/X]) ∼=

(
ind⊗Qp

K (ρ)
)⊕r

(see Proposition

3.2.4.6). Note that the assumption det(ρ) = ω

∑
j
(rj+1)pj

f implies χπ(p) = 1, so that
the operator F on Mπ ⊗ χ

−1
π is the same as on Mπ, but the action of γ ∈ Z×

p now

comes from the action of
(

1 0
0 γ−1

)
on πN1 .

3.2.2 Preliminaries

We give some technical results on FJN0K, FJN0/N1K and on certain modules over these
rings coming from Serre weights.

We let H def=
(
F×q 0

0 F×q

)
∼= I/I1 ⊆ GL2(Fq) (this finite group H shouldn’t be confused

with the algebraic group H in §2.1.1 or in §2.1). Note that the trace TrK/Qp : OK →
Zp is surjective (using that K is unramified) hence directly induces an isomorphism
N0/N1

∼
→ Zp. Recall we defined the elements Yi for i ∈ {0, . . . , f − 1} in (100). We

define analogously

Y
def=

∑

a∈F×p

a−1

(
1 ã
0 1

)
∈ FJZpK = FJN0/N1K.

We write i for an element (i0, . . . , if−1) in Zf , Y i for Y i0
0 · · ·Y

if−1

f−1 and set ‖i‖ def=
∑f−1
j=0 ij . We also write i ≤ i′ to mean ij ≤ i′j for 0 ≤ j ≤ f − 1.
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Lemma 3.2.2.1. We have the following isomorphisms and equalities:

(i) FJN0K ∼= FJY0, . . . , Yf−1K and F[N0/N
p
0 ] ∼= FJY0, . . . , Yf−1K/(Y

p
0 , . . . , Y

p
f−1);

(ii) Y p
i

(
p 0
0 1

)
=
(
p 0
0 1

)
Yi+1 and

(
λ̃ 0
0 µ̃

)
Yi = (λµ−1)p

i
Yi
(
λ̃ 0
0 µ̃

)
for λ, µ ∈ F×

q ;

(iii) FJN0/N1K ∼= FJY K and
(
λ̃ 0
0 µ̃

)
Y = (λµ−1)Y

(
λ̃ 0
0 µ̃

)
for λ, µ ∈ F×

p .

Proof. Note that F[N0/N
p
0 ] ∼= F

[(
1 Fq

0 1

)]
. The first equality in (i) and the explicit

action of
(
λ̃ 0
0 µ̃

)
on Y i in (ii) are immediately obtained from [Mor17, Lemma 3.2]

(after conjugating by the element
(

0 1
p 0

)
). The second equality in (i) follows from the

first by dimension reasons, as Y p
i = 0 in F[N0/N

p
0 ]. The action of

(
p 0
0 1

)
on Yi+1 in

(ii) is a direct computation (see also [Mor17, Lemma 5.1]). Finally, (iii) is a special
case of (i) and (ii).

Note that FJN0/N1K ∼= FJXK ∼= FJY K with X =
(

1 1
0 1

)
−1 as in §2.1.1, but it is

more convenient in the computations to use the “H-eigenvariable” Y rather than the
variable X. To compare them the following lemma will be useful.

Lemma 3.2.2.2. We have X ∈ −Y (1 + Y FJY K) and Y ∈ −X(1 + XFJXK) in
FJN0/N1K.

Proof. Equivalently, we have to prove Y = −X in m/m2, where m is the maximal
ideal of FJN0/N1K. We can work modulo mp, i.e. in F[N0/N1N

p
0 ] ∼= F

[(
1 Fp

0 1

)]
. In that

group ring we have

Y =
∑

a∈F×p

a−1
(

1 a
0 1

)
=

p−1∑

a=1

a−1(1 +X)a = −X.

For λ, µ ∈ F×
q we set

α
((

λ̃ 0
0 µ̃

))
def= λµ−1 ∈ F×.

Remark 3.2.2.3. By Lemma 3.2.2.1(ii), if V is a representation of GL2(Fq) and

v ∈ V H=χ, then Y iv ∈ V H=χαi
, where αi def= α

∑f−1

j=0
ijpj

.

Lemma 3.2.2.4. Assume p > 2. The kernel of the map h : FJN0K ։ FJN0/N1K is
generated by the elements Yi−Yj (i 6= j). Moreover, there exists f(Y ) ∈ FJN0/N1K ∼=
FJY K such that h(Yi) = Y + Y pf(Y ).
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Proof. Note that TrK/Qp(λ̃p
i
) = TrK/Qp(λ̃) for all λ ∈ F×

q and i ∈ Z, hence Yi − Yj ∈
Ker(h). As FJN0K/(Yi − Yj, i 6= j) and FJN0/N1K are both power series rings in
one variable, the quotient map FJN0K/(Yi − Yj, i 6= j) ։ FJN0/N1K has to be an
isomorphism. To establish the final claim it suffices to prove that the image of Y0 in
FJY K/(Y p) ∼= F[N0/N1N

p
0 ] ∼= F

[(
1 Fp

0 1

)]
is Y . We compute

∑

λ∈F×q

λ−1
(

1 TrFq/Fp(λ)

0 1

)
=
∑

a∈Fp

( ∑

λ∈F×q
TrFq/Fp(λ)=a

λ−1

)(
1 a
0 1

)
. (127)

If a 6= 0, we sum over the distinct roots of Y pf−1
+ Y pf−2

+ · · ·+ Y − a = 0, so the
inside sum on the right hand side of (127) equals 1/a (from the last two coefficients).
If a = 0 we sum over the distinct roots of Y pf−1−1 + · · ·+ Y p−1 + 1 = 0, so the inside
sum in (127) equals 0 as p > 2. Hence the right-hand side of (127) is just Y .

By Lemma 3.2.2.4, if V is a representation of GL2(Fq), then Yi = Y on V N1 .

For 0 ≤ i ≤ q − 1, we set

θi
def=
∑

λ∈Fq

λi
(

1 λ
0 1

)
∈ F[N0/N

p
0 ] ∼= F

[(
1 Fq

0 1

)]
.

So Yi = θq−1−pi in F[N0/N
p
0 ].

Lemma 3.2.2.5. Suppose i ∈ {0, . . . , p− 1}f and let i
def=
∑f−1
j=0 ijp

j.

(i) We have

θi = (−1)f−1

( f−1∏

j=0

ij!

)
Y p−1−i

in F[N0/N
p
0 ] for 0 ≤ i < q − 1.

(ii) For f0, . . . , fq−1 and φ as defined in [BP12, §2] we have

fi = (−1)f−1

( f−1∏

j=0

ij!

)
Y p−1−i

(
0 1
1 0

)
φ

for 0 ≤ i < q − 1.

Proof. Part (i) follows from [Mor, Lemma 0.2] after conjugation by
(

0 1
p 0

)
. Indeed,

in the notation of loc.cit. we take m = n = 1 (so that A1,1 is the group algebra of(
1 0

pOK/p
2OK 1

)
): we see that θi corresponds (under conjugation) to Fi if 0 ≤ i ≤ q− 1,

and the constant κp−1−i equals (−1)f−1
(∏f−1

j=0 ij!
)−1

. Part (ii) follows immediately
from (i) and the definition of θi.
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As in [BP12] we write (s0, s1, . . . , sf−1)⊗ η for the Serre weight

Syms0 F2 ⊗F (Syms1 F2)Fr ⊗ · · · ⊗F (Symsf−1 F2)Frf−1

⊗F η ◦ det,

where the si are integers between 0 and p−1, η is a character F×
q → F× and GL2(Fq)

acts on (Symsi F2)Fri
via σi : Fq →֒ F. If χ = χ1 ⊗ χ2 is a character of H =

(
F×q 0

0 F×q

)
,

we let χs def= χ2 ⊗ χ1.

Lemma 3.2.2.6. Let σ
def= (s0, . . . , sf−1)⊗ η, s

def= (s0, s1, . . . , sf−1) ∈ {0, . . . , p− 1}f ,
and fix v ∈ σN0, v 6= 0. Let χσ denote the H-eigencharacter on σN0.

(i) The FJN0/N1K = FJY K-module σN1 is cyclic of dimension min{s0, . . . , sf−1}+1.

(ii) If 0 ≤ i ≤ s and i < p− 1 then σ contains a unique H-eigenvector Y −iv

that is sent by Y i to v. The corresponding H-eigencharacter is χσα
−i. Also,

YjY
−iv = 0 if ij = 0.

(iii) If 0 ≤ i ≤ min{s0, . . . , sf−1} and i < p−1, then σN1 contains a unique
(
F×p 0

0 F×p

)
-

eigenvector Y −iv that is sent by Y i to v. The corresponding eigencharacter is
χσα

−i. We have Y −iv =
∑
i,‖i‖=i Y

−iv.

Proof. (i) Note that σN1 is a torsion module over FJN0/N1K = FJY K as σN1 is finite-
dimensional. To show cyclicity it suffices to note that σN0 = σN1 [X] is 1-dimensional.
Then from [Mor17, Prop. 3.3] applied with n = 1 we have an isomorphism

FJY0, . . . , Yf−1K/(Y
sj+1
j , 0 ≤ j ≤ f − 1) ∼

−→ σ

g(Y ) 7−→ g(Y )
(

0 1
1 0

)
v.

(128)

(Restrict equation (9) in [Mor17] to
(

1 0
pOK 1

)
and conjugate by

(
0 1
p 0

)
. Note that σ is

self-dual up to twist.) In particular, {Y k
(

0 1
1 0

)
v, 0 ≤ k ≤ s} is a basis of σ consisting

of H-eigenvectors.

Let m def= min{s0, . . . , sf−1}. We claim that the vectors

vi
def=

∑

0≤k≤s
‖k‖=‖s‖−i

Y k
(

0 1
1 0

)
v 0 ≤ i ≤ m (129)

form a basis of σN1 . If i < m and ‖k‖ = ‖s‖ − i, then kj > 0 for all j. By
using also (128) we see that vi = Yjvi+1. Also, Yjv0 = 0 for all j. In particular,
Yj − Yj′ annihilates vi for all i, so vi ∈ σN1 by Lemma 3.2.2.4. Moreover, Xvi+1 = vi
(0 ≤ i < m) and Xv0 = 0. It remains to show that vm /∈ XσN1 . Choose j0 such
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that sj0 = m. Then
∏
j 6=j0

Y
sj

j

(
0 1
1 0

)
v is the only term appearing in the sum (129) for

i = m that is not divisible by Yj0. Hence vm /∈ Yj0σ, and thus vm /∈ XσN1 .

(ii) Let v′ def= Y s
(

0 1
1 0

)
v, which is a scalar multiple of v. By (128),

(
Y k
(

0 1
1 0

)
v
)

0≤k≤s
forms a basis of σ consisting of H-eigenvectors with eigencharacters χsσα

k = χσα
k−r.

The eigencharacters are pairwise distinct, except if s = p− 1 where Y p−1
(

0 1
1 0

)
v and(

0 1
1 0

)
v have the same eigencharacter. Hence, as i < p− 1, the unique H-eigenvector

in the preimage (Y i)−1(v′) is Y s−i
(

0 1
1 0

)
v. Note also that YjY s−i

(
0 1
1 0

)
v = 0 if ij = 0

by (128).

(iii) Using the notation in (ii), we have vi =
∑

‖i‖=i Y
−iv′ for 0 ≤ i ≤ m and it

is a
(
F×p 0

0 F×p

)
-eigenvector with eigencharacter χσα−i. These characters for 0 ≤ i ≤ m

are pairwise distinct, except if s = p− 1, in which case v0 and vp−1 have the same
eigencharacter. As we assume i < p− 1 the claim follows.

Lemma 3.2.2.7. Suppose V is a representation of GL2(Fq) generated by some vector
v ∈ V N0 that is an eigenvector for the action of H. If dimF V ≤ q, then the map

FJY0, . . . , Yf−1K −→ V

f(Y ) 7→ f(Y )
(

0 1
1 0

)
v

is surjective and its kernel is generated by monomials. In particular, if Y i
(

0 1
1 0

)
v =

Y j
(

0 1
1 0

)
v 6= 0, then i = j.

Proof. Let χ denote the eigencharacter of H on v. Then we have a GL2(Fq)-equiva-
riant surjection S : IndGL2(OK)

I (χ) ։ V sending φ to v, where φ is the unique function
supported on I which sends 1 to 1. Consider i : F[Y0, . . . , Yf−1]/(Y

p
0 , . . . , Y

p
f−1) →

IndGL2(OK)
I (χ) sending f(Y ) to f(Y )

(
0 1
1 0

)
φ. By Lemma 3.2.2.5, fj ∈ Im(i) for all j

(even if j = q−1), so by [BP12, Lemma 2.5], IndGL2(OK)
I (χ) = Im(i)⊕Fφ (as F-vector

spaces) and i is injective.

Suppose first χ 6∼= χs. By [BP12, Lemma 2.7(i)] and as dim V ≤ q we have fr±φ ∈
Ker(S) for some r =

∑f−1
j=0 p

jsj ∈ {0, . . . , q − 2} and some sign ± (both depending
on χ), so S ◦ i is surjective. If Ker(S) is irreducible (as a GL2(Fq)-representation),
then by [BP12, Lemma 2.7], Ker(S) = 〈f∑ pjdj

, 0 ≤ dj ≤ sj (not all equal), fr ± φ〉F.
Intersecting with Im(i) = 〈f∑ pjdj

, 0 ≤ dj ≤ p− 1〉F we get

Ker(S) ∩ Im(i) =
〈
f∑ pjdj

, 0 ≤ dj ≤ sj (not all equal)
〉
F
.

By Lemma 3.2.2.5(ii), it follows in particular that Ker(S ◦ i) is generated by mono-
mials. If Ker(S) is reducible, the argument is analogous using [BP12, Lemma 2.7(ii)].
If χ = χs, it is again almost identical, using [BP12, Lemma 2.6] instead.
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Lemma 3.2.2.8. Suppose f > 1. In F[N0/N
p
0 ] we have

∑

λ∈Fq,TrFq/Fp (λ)=0

(
1 λ
0 1

)
= (−1)f−1

(
Y p−1 +

∑

‖i‖=(p−1)(f−1)
0≤ij≤p−1

Y i

)
.

Proof. First we have (using xp−1 = 1 if x ∈ F×
p ):

∑

λ∈Fq ,TrFq/Fp(λ)6=0

(
1 λ
0 1

)
=
∑

λ∈Fq

(TrFq/Fp(λ))p−1
(

1 λ
0 1

)

=
∑

λ∈Fq

(λ+ λp + · · ·+ λp
f−1

)p−1
(

1 λ
0 1

)

=
∑

λ∈Fq

∑

i∈Zf
≥0

‖i‖=p−1

(p− 1)!
∏
j ij!

λi0+i1p+···+if−1p
f−1
(

1 λ
0 1

)

=
∑

i∈Zf
≥0

‖i‖=p−1

(p− 1)!
∏
j ij !

(−1)f−1

(∏

j

ij !

)
Y p−1−i,

where the last equality follows from Lemma 3.2.2.5(i), noting that
∑f−1
j=0 ijp

j < q − 1
since f > 1. Letting i′ def= p− 1− i we get (as (p− 1)! = −1 in Fp):

∑

λ∈Fq ,TrFq/Fp(λ)6=0

(
1 λ
0 1

)
= (−1)f

∑

i′∈Zf
≥0

‖i′‖=(p−1)(f−1)

Y i′ .

On the other hand, Lemma 3.2.2.5(i) gives

∑

λ∈Fq

(
1 λ
0 1

)
= (−1)f−1Y p−1.

The result follows.

Proposition 3.2.2.9. Fix j0 ∈ {0, . . . , f − 1}. In

FJN0/N
p
1 K ∼= FJY0, . . . , Yf−1K/

(
(Yi − Yj)p, i 6= j

)

we have ∑

n∈N1/N
p
1

n = (−1)f−1
∏

j 6=j0

(Yj − Yj0)
p−1

modulo terms of degree ≥ f(p− 1).
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Proof. The statement being trivial if f = 1, we can assume f > 1. We prove the
first isomorphism. As Yi − Yj ∈ Ker

(
FJN0K → FJN0/N1K

)
by Lemma 3.2.2.4, we

deduce that (Yi − Yj)p ∈ Ker
(
FJN0K → FJN0/N

p
1 K
)
, and we thus have a surjection

FJY0, . . . , Yf−1K/
(
(Yi − Yj)p, i 6= j

)
։ FJN0/N

p
1 K. Since both terms are free modules

of rank p(f − 1) over a power series ring in one variable over F, the surjection has to
be an isomorphism.

Let A def= FJN1/N
p
1 K, B def= FJN0/N

p
1 K and B

def= FJN0/N
p
0 K, they are complete

local commutative rings of respective maximal ideals denoted by mA, mB, mB. Let
Z

def=
∑
n∈N1/N

p
1
n ∈ A. As A ∼= F[Z1, . . . , Zf−1]/(Z

p
1 , . . . , Z

p
f−1) and Z is killed by mA

(as N1/N
p
1 is a group) we deduce that Z ∈ m

(p−1)(f−1)
A . Note that m

(p−1)(f−1)+1
A = 0.

Let ı : A →֒ B denote the inclusion and denote by grm(ı) the induced map
mm
A/m

m+1
A → mm

B/m
m+1
B for m ≥ 0. We claim that gr1(ı) is injective with image

generated by all Yj−Yj0 (j 6= j0) in mB/m
2
B. If so, then gr(p−1)(f−1)(ı) has to send the

1-dimensional F-vector space m
(p−1)(f−1)
A to a multiple of

∏
j 6=j0

(Yj − Yj0)
p−1 modulo

m
(p−1)(f−1)+1
B . But

(
λ̃ 0
0 µ̃

)
Z = Z

(
λ̃ 0
0 µ̃

)
for λ, µ ∈ F×

p , and considering the action of H ,
it follows from the sentence following Lemma 3.2.2.1 that we must have

ı(Z) = c
∏

j 6=j0

(Yj − Yj0)
p−1 + (element of mf(p−1)

B )

for some c ∈ F (note that every element of B can be written uniquely as
∑
i ciY

i with
ij < p for all j 6= j0 and that mB is generated by the Y i, i 6= 0). By passing to B and
using Lemma 3.2.2.8, we deduce that we must have c = (−1)f−1.

It remains to prove the claim. As B ∼= B/(Y p
0 , . . . , Y

p
f−1), we have mB/m

2
B

∼
→

mB/m
2
B

and it is equivalent to prove the claim with ı : A → B. As N1/N
p
1
∼= Ff−1

p

and N0/N
p
0
∼= Ffp , it is clear that ı is injective. Consider the natural map s : B ։

C
def= F[N0/N1N

p
0 ] ∼= F[Y ]/(Y p). As gr1(s ◦ ı) = 0 and s(Yi) = Y by Lemma 3.2.2.4,

we deduce from loc.cit. that the image of gr1(ı) is indeed spanned by all Yj − Yj0

(j 6= j0).

3.2.3 A computation for the operator F

We give a crucial computation for the operator F on πN1 for π as at the end of §3.2.1.
The main result of this section is Proposition 3.2.3.1(ii).

We keep the notation of §3.2.2. For σ = (t0, . . . , tf−1) ⊗ η ∈ W (ρ), recall we
have tj ∈ {rj, rj + 1, p − 2 − rj, p − 3 − rj} if j > 0 or ρ is reducible and t0 ∈
{r0 − 1, r0, p− 1− r0, p− 2− r0} if ρ is irreducible (see e.g. [Bre11, §2]). We deduce
from (125) that

tj ∈ {2f − 1, . . . , p− 1− 2f} for all j. (130)
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We identify W (ρ) with the subsets of {0, 1, . . . , f − 1} as in [Bre11, §2] and let
Jσ ⊆ {0, . . . , f−1} be the subset associated to σ. We have tj ∈ {p−2−rj, p−3−rj}
for j ∈ Jσ if j > 0 or ρ is reducible, t0 ∈ {p − 2 − r0, p − 1 − r0} if 0 ∈ Jσ and ρ is
irreducible.

Let σ = (t0, . . . , tf−1) ⊗ η ∈ W (ρ). Denote δ(σ) def= δred(σ) if ρ is reducible and
δ(σ) def= δirr(σ) if ρ is irreducible the Serre weights δred(σ), δirr(σ) defined in [Bre11,
§5]. We write δ(σ) = (s0, . . . , sf−1) ⊗ η′. Let xσ ∈ σN0 \ {0} and let χσ : H → F×

denote the H-eigencharacter of xσ. We also identify the irreducible constituents
of IndGL2(OK)

I (χsσ) with the subsets of {0, . . . , f − 1} as in [BP12, §2] (for instance ∅
corresponds to the socle σ of IndGL2(OK)

I (χsσ)). For any J ⊆ {0, . . . , f−1} let Q(χsσ, J)
denote the unique quotient of IndGL2(OK)

I (χsσ) whose GL2(OK)-socle is parametrized
by J (see [BP12, Thm.2.4(iv)]). We know that the Serre weight δ(σ) occurs in
IndGL2(OK)

I (χsσ) (see the proof of [Bre11, Prop.5.1]) and we denote by Jmax(σ) ⊆
{0, . . . , f − 1} the associated subset. We thus have

socGL2(OK) Q(χsσ, J
max(σ)) ∼= δ(σ)

(by definition of δ(σ), it is the only constituent of Q(χsσ, J
max(σ)) that is in W (ρ)).

We also have from [BP12, §2] (with −1 = f − 1):

sj = p− 2− tj + 1Jmax(σ)(j − 1) if j ∈ Jmax(σ),

sj = tj − 1Jmax(σ)(j − 1) if j /∈ Jmax(σ).
(131)

Moreover, using [BP12, Lemma 2.7] it is a combinatorial exercise (left to the reader)
to prove

Jmax(σ) = (Jσ ∪ Jδ(σ)) \ (Jσ ∩ Jδ(σ)). (132)

We define
m

def= |Jmax(σ)| ∈ {0, . . . , f}.

We have m = 0 if and only if δ(σ) ∼= σ, and this occurs precisely if ρ is reducible and
σ is an “ordinary” Serre weight of ρ, i.e. such that Jσ = ∅ or Jσ = {0, . . . , f −1} (this
follows, for example, from the proof of Lemma 3.2.3.2 below).

We consider a GL2(K)-representation π as at the end of §3.2.1, and fix an embed-
ding σ →֒ socGL2(OK)(π) (recall there are r copies of σ inside socGL2(OK)(π)). From
the assumption on π, we know that

(
0 1
p 0

)
xσ generates Q(χsσ, J

max(σ)) as GL2(OK)-
subrepresentation of π|GL2(OK), in particular δ(σ) can also be seen in socGL2(OK)(π)
(its embedding being determined by that of σ).

Proposition 3.2.3.1.

(i) The vector

xδ(σ)
def=

∏

j∈Jmax(σ)

Y
sj

j

∏

j /∈Jmax(σ)

Y p−1
j

(
p 0
0 1

)
xσ (133)

spans δ(σ)N0 as F-vector space.
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(ii) We have in πN1 that

Y
∑

j∈Jmax(σ)
sjF (Y 1−mxσ) = (−1)f−1Y 1−mxδ(σ) if m > 0,

Y p−1F (xσ) = (−1)f−1xδ(σ) if m = 0.

Proof of Proposition 3.2.3.1(i). Suppose first m > 0. From [BP12, Lemma 2.7(ii)]
and Lemma 3.2.2.5(ii) we see that δ(σ) has basis Y i

(
p 0
0 1

)
xσ, where 0 ≤ ij ≤ sj if

j ∈ Jmax(σ) and p − 1 − sj ≤ ij ≤ p − 1 if j /∈ Jmax(σ). Hence the only vectors
in δ(σ) that are killed by all Yj are the multiples of xδ(σ). The statement follows by
an inspection of the H-action on this basis (which is formed by H-eigenvectors), see
Remark 3.2.2.3.

If m = 0, then δ(σ) is the socle of IndGL2(OK)
I (χsσ). By [BP12, Lemma 2.7(i)], f0

is the unique I-invariant element of δ(σ) ⊆ IndGL2(OK)
I (χsσ). The statement follows

from Lemma 3.2.2.5(ii).

In order to prove Proposition 3.2.3.1(ii), we first need several lemmas.

Lemma 3.2.3.2. We have |Jmax(σ)| = |Jmax(δ(σ))|.

Proof. If ρ is reducible, identifying {0, . . . , f} with Z/f we have Jδ(σ) = Jσ − 1 as
subsets of Z/f by [Bre11, §5], and the statement follows in that case by (132). If ρ
is irreducible, let J ′

σ
def= Jσ

∐
(Jσ + f) ⊆ {0, . . . , 2f − 1} as in [Bre11, §5], where Jσ

is the complement of Jσ in {0, . . . , f − 1}. It follows from (132) that |Jmax(σ)| =
1
2
|(J ′

σ ∪ J
′
δ(σ)) \ (J ′

σ ∩ J
′
δ(σ))|. Identifying {0, . . . , 2f − 1} with Z/2f , we again have

J ′
δ(σ) = J ′

σ − 1 as subsets of Z/(2f) by [Bre11, §5], and the statement follows.

The three lemmas that follow only apply to m > 0. In these three lemmas, we
identify without comment {0, . . . , f − 1} with Z/fZ (so −1 = f − 1, f = 0, etc.).

Lemma 3.2.3.3. Assume m > 0 and let i ∈ Zf≥0 with ‖i‖ ≤ m− 1. Then we have

〈
GL2(OK)

(
p 0
0 1

)
Y −ixσ

〉/ ∑

0≤j<i

〈
GL2(OK)

(
p 0
0 1

)
Y −jxσ

〉

∼= Q
(
χsσα

i, {j ∈ Jmax(σ), ij+1 = 0}
)
. (134)

Proof. Note first that tj ∈ {2ij + 1, . . . , p− 2} for all j by (130) and the assumption
on i, so that the vectors Y −ixσ and Y −jxσ are well-defined elements of σ by Lemma
3.2.2.6(ii). We rewrite 〈GL2(OK)

(
p 0
0 1

)
Y −jxσ〉 = 〈GL2(OK)

(
0 1
p 0

)
Y −jxσ〉 and, using

notation from [BHH+, §§2.1,2.2], σ ∼= F (λ) where λ = (λ0, . . . , λf−1) with λj =
(λj,1, λj,2) ∈ {0, . . . , p− 1}2. We have λj,1 − λj,2 = tj for all j.

133



Let W ′ (resp. W ) be the I-subrepresentation of π generated by Y −ixσ (resp.(
0 1
p 0

)
Y −ixσ). We deduce from Lemma 3.2.2.6(ii) that W ′ = 〈N0Y

−ixσ〉 has F-basis

Y −jxσ for all 0 ≤ j ≤ i, and socI(W ′) = Fxσ. We moreover have W =
(

0 1
p 0

)
W ′

since I is normalized by
(

0 1
p 0

)
. In particular we see that W injects into the I-

representation Jχσ of [BHH+, Cor.6.1.4] and that W has Jordan–Hölder factors χsσα
j

for 0 ≤ j ≤ i, each occurring with multiplicity 1. Let V def= IndGL2(OK)
I (W ). Then V is

the representation appearing in the first paragraph of the proof of [BHH+, Prop.6.2.2],
with Bj taken to be 2ij + 1 for all j (and note the bounds on λj,1 − λj,2 which let us
invoke loc.cit.). Hence, by [BHH+, Prop.6.2.2] and its proof in the case εj = −1 and
Bj = 2ij + 1 for all j, we get that V is multiplicity-free, has Jordan–Hölder factors
σa

def= F (tλ(−
∑
ajηj)) for 0 ≤ a ≤ 2i + 1 with the notation of [BHH+, §2.4], and

GL2(OK)-socle σ. Moreover, the unique subrepresentation of V with cosocle σa has
constituents σb for 0 ≤ b ≤ a. On the other hand, IndGL2(OK)

I (W ) has a filtration
with subquotients IndGL2(OK)

I (χsσα
j) for 0 ≤ j ≤ i, and by [BHH+, Lemma 6.2.1(i)]

the constituents of IndGL2(OK)
I (χsσα

j) are the Serre weights σa with 2j ≤ a ≤ 2j + 1.
By the proof of [BHH+, Lemma 6.2.1(i)], one easily checks that the constituent σa of
IndGL2(OK)

I (χsσα
j) corresponds to the subset {ℓ, aℓ+1 is odd} ⊆ {0, . . . , f − 1} in the

parametrization of [BP12, §2] (note that twisting χsσ by αj corresponds to shifting by
−2

∑
jℓηℓ in the extension graph).

By Frobenius reciprocity V
def= 〈GL2(OK)

(
0 1
p 0

)
Y −ixσ〉 is the image of a nonzero

map IndGL2(OK)
I (W ) → π and any Serre weight in its GL2(OK)-socle has to be in

W (ρ). By [BHH+, Prop.2.4.2] if σa ∈ W (ρ), then 0 ≤ a ≤ 1, so σa is a constituent
of IndGL2(OK)

I (χsσ) ⊆ V . Thus by the definition of δ(σ) and as πK1/ socGL2(OK) π does
not contain any Serre weight of W (ρ) it follows that V is the unique quotient of V
with GL2(OK)-socle δ(σ). By the previous paragraph and the definition of Jmax(σ),
we have δ(σ) ∼= σb, where bj = 1Jmax(σ)+1(j) for all j, and V has constituents σa with
1Jmax(σ)+1(j) ≤ aj ≤ 2ij + 1 for all j. By construction, the left-hand side of (134) is a
quotient of IndGL2(OK)

I (χsσα
i). Moreover, by what is before, it must have constituents

σa with max(1Jmax(σ)+1(j), 2ij) ≤ aj ≤ 2ij + 1 for all j. It follows that its GL2(OK)-
socle is irreducible and isomorphic to σc, where cj

def= max(1Jmax(σ)+1(j), 2ij) for all j.
Since 2ij+1 is even and > 1 as soon as ij+1 6= 0, we see that cj+1 is odd if and only if
ij+1 = 0. Hence the GL2(OK)-socle of this quotient of IndGL2(OK)

I (χsσα
i) corresponds

to the subset {j ∈ Jmax(σ), ij+1 = 0}, as required.

Lemma 3.2.3.4. Assume m > 0 and let i ∈ Zf≥0, ℓ ∈ Jmax(σ) such that ‖i‖ ≤ m− 1
and iℓ+1 = 0. Then

Y p−tℓ+2iℓ
ℓ

(
p 0
0 1

)
Y −ixσ = 0.

Proof. Recall p − tℓ + 2iℓ ≥ 1 by (130), so that Y p−tℓ+2iℓ
ℓ

(
p 0
0 1

)
Y −ixσ is well-defined.
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Suppose on the contrary that Y p−tℓ+2iℓ
ℓ

(
p 0
0 1

)
Y −ixσ 6= 0 for some ℓ ∈ Jmax(σ) such

that iℓ+1 = 0 and ‖i‖ ≤ m−1. By Lemma 3.2.2.1(ii) and Lemma 3.2.2.6(ii) this is an
eigenvector for {

(
λ̃ 0
0 µ̃

)
, λ, µ ∈ F×

q } with eigencharacter χσα−iα(p−tℓ+2iℓ)pℓ
. By Lemma

3.2.3.3 it suffices to show that the H-eigencharacter χσα−iα(p−tℓ+2iℓ)pℓ
does not occur

in
Vi′

def= Q(χsσα
i′ , Ji′)

for any i′ such that 0 ≤ i′ ≤ i, where Ji′
def= {j ∈ Jmax(σ), i′j+1 = 0}.

Using the notation λ = (λ0(x0), . . . , λf−1(xf−1)) and P(x0, . . . , xf−1) of [BP12,
Thm.2.4], the irreducible constituents of Vi′ are given by the Serre weights (λ0(t0 −
2i′0), . . . , λf−1(tf−1 − 2i′f−1)) (up to twist) for those λ ∈ P(x0, . . . , xf−1) such that
J(λ) ⊇ Ji′ . Recall that λj(x) = p − 2 − x + 1J(λ)(j − 1) if j ∈ J(λ) and λj(x) =
x − 1J(λ)(j − 1) if j /∈ J(λ). By [BP12, Lemma 2.5(i)] and [BP12, Lemma 2.7], the
H-eigencharacters that occur in Vi′ are χσα−i′αk, where

0 ≤ kj ≤ p− 2− (tj − 2i′j) + 1J(λ)(j − 1) if j ∈ J(λ),

p− 1− (tj − 2i′j − 1J(λ)(j − 1)) ≤ kj ≤ p− 1 if j /∈ J(λ).
(135)

(Note that Ji′ 6= ∅ as ‖i′‖ ≤ m− 1 ≤ f − 1.)

Assume χσα−iα(p−tℓ+2iℓ)pℓ
= χσα

−i′αk for some λ and k as above. Then

−
f−1∑

j=0

ijp
j + (p− tℓ + 2iℓ)pℓ ≡ −

f−1∑

j=0

i′jp
j +

f−1∑

j=0

kjp
j (mod q − 1)

or equivalently

(p− tℓ + 2iℓ)pℓ −
f−1∑

j=0

(ij − i′j)p
j ≡

f−1∑

j=0

kjp
j (mod q − 1). (136)

Note that ℓ ∈ Ji′, as 0 ≤ i′ℓ+1 ≤ iℓ+1 = 0 and ℓ ∈ Jmax(σ), so ℓ ∈ J(λ).

If i′j = ij for all j 6= ℓ (for example if i′ = i or if f = 1), then (136) gives
(p − tℓ + iℓ + i′ℓ)p

ℓ ≡
∑
j kjp

j , so kℓ = p − tℓ + iℓ + i′ℓ as (using (130) for tℓ and
i′ℓ ≤ iℓ ≤ m− 1 ≤ f − 1):

p− tj + ij + i′j ∈ {2 + ij + i′j, . . . , p− 1− (ij − i′j)}. (137)

This contradicts (135) as ℓ ∈ J(λ) and i′ℓ ≤ iℓ. Therefore f > 1 and i′j < ij for some
j 6= ℓ. For m ∈ Z≥0, let [m] the unique element of {0, . . . , f − 1} which is congruent
to m modulo f . In particular pm ≡ p[m] (mod q − 1). Let h ∈ {ℓ+ 1, . . . , ℓ+ f − 1}
be minimal such that i′[h] < i[h]. Then modulo q − 1:

f−1∑

j=0

(ij − i′j)p
j ≡

ℓ+f∑

j=ℓ+1

(i[j] − i′[j])p
[j] =

ℓ+f∑

j=h

(i[j] − i′[j])p
[j]
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and we deduce the following congruences modulo q − 1:

(p−tℓ + 2iℓ)pℓ −
f−1∑

j=0

(ij − i′j)p
j

≡ (p− 1− tℓ + 2iℓ)pℓ + pℓ −
ℓ+f∑

j=h

(i[j] − i′[j])p
[j]

≡ (p− 1− tℓ + 2iℓ)pℓ +
ℓ+f−1∑

j=h+1

(p− 1)pj + ph+1 −
ℓ+f∑

j=h

(i[j] − i′[j])p
[j]

≡ (p− 1− tℓ + 2iℓ)pℓ +
ℓ+f−1∑

j=h+1

(p− 1)p[j] + p[h]+1 −
ℓ+f∑

j=h

(i[j] − i′[j])p
[j]

≡ (p−1−tℓ+iℓ+i′ℓ)p
ℓ +

ℓ+f−1∑

j=h+1

(p−1−(i[j]−i′[j]))p
[j] + (p−(i[h]−i

′
[h]))p

[h]. (138)

Note that all powers of p in (138) are distinct in {0, . . . , f −1} and all coefficients are
in {0, . . . , p− 1}. Moreover these coefficients cannot all equal 0 as p− (i[h]− i

′
[h]) 6= 0,

nor p− 1 by (137). Hence by (136) we get kℓ = p− 1− tℓ + iℓ + i′ℓ. As ℓ ∈ J(λ) and
i′ℓ ≤ iℓ, we get from (135) that iℓ = i′ℓ and ℓ− 1 ∈ J(λ). By (135) for j = ℓ− 1 and
by (138), (136) we get

p− 1− (iℓ−1 − i
′
ℓ−1) ≤ kℓ−1 ≤ p− 1− tℓ−1 + 2i′ℓ−1

(note that by (138) the left-hand side is an equality as soon as ℓ−1 6= h mod f which
can only occur if f > 2). This implies tℓ−1 ≤ iℓ−1 + i′ℓ−1 ≤ 2(m− 1) ≤ 2f − 2, which
contradicts genericity (130). This finishes the proof.

Lemma 3.2.3.5. Assume m > 0 and let k ∈ Zf≥0.

(i) If Y k
(
p 0
0 1

)
Y 1−mxσ 6= 0, then

‖k‖ ≤ (f − 1)(p− 1) + (m− 1) +
∑

j∈Jmax(σ)

sj .

If moreover equality holds, then Y k
(
p 0
0 1

)
Y 1−mxσ = xδ(σ) (see (133)) and

kj ≡ sj (mod p) if j ∈ Jmax(σ),

kj ≡ −1 (mod p) if j /∈ Jmax(σ).

(ii) If ‖k‖ = (f−1)(p−1)+
∑
Jmax(σ) sj then Y k

(
p 0
0 1

)
Y 1−mxσ ∈ δ(σ), more precisely:

Y k
(
p 0
0 1

)
Y 1−mxσ ∈

〈
Y −ℓxδ(σ), ‖ℓ‖ = m− 1

〉
F
.
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Proof. We prove the following statements inductively on ‖i‖ ≤ m− 1 for i ∈ Zf≥0:

(a) If Y k
(
p 0
0 1

)
Y −ixσ 6= 0 then

‖k‖ ≤ (f − 1)(p− 1) + (m− 1) +
∑

j∈Jmax(σ)

sj − (m− 1− ‖i‖)p.

If moreover equality holds, then Y k
(
p 0
0 1

)
Y −ixσ = xδ(σ) and

kj = ij+1p+ sj if j ∈ Jmax(σ),

kj = ij+1p+ (p− 1) if j /∈ Jmax(σ).

(b) If ‖k‖ = (f − 1)(p− 1) +
∑
j∈Jmax(σ) sj − (m− 1− ‖i‖)p then

Y k
(
p 0
0 1

)
Y −ixσ = Y −ℓxδ(σ)

for some ‖ℓ‖ = m− 1, or it is zero.

By Lemma 3.2.2.6(iii) we have

Y 1−mxσ =
∑

i∈Zf
≥0

‖i‖=m−1

Y −ixσ

and we see that (a) and (b) for ‖i‖ = m − 1 imply (i) and (ii) (note that in (a)
if Y k

(
p 0
0 1

)
Y −ixσ 6= 0 and equality holds, then i is uniquely determined by k and

Jmax(σ)).

We first prove by induction on ‖i‖ ≤ m−1 for i ∈ Zf≥0 that if ‖k‖ ≥ (f−1)(p−1)+
∑
Jmax(σ) sj−(m−1−‖i‖)p and Y k

(
p 0
0 1

)
Y −ixσ 6= 0, then Y k

(
p 0
0 1

)
Y −ixσ = Y k′

(
p 0
0 1

)
xσ

for k′ ∈ Zf≥0 such that k′
j = kj − ij+1p for all j. A examination of (a) and (b) shows

it will then be enough to prove them for i = 0 (replacing k by k′).

There is nothing to prove for i = 0, so we can assume i 6= 0. If kj0 ≥ p for some
j0, then using Lemma 3.2.2.1(ii):

Y k
(
p 0
0 1

)
Y −ixσ = Y k−pεj0Y p

j0

(
p 0
0 1

)
Y −ixσ = Y k−pεj0

(
p 0
0 1

)
Y −(i−εj0+1)xσ,

where εj
def= (0, . . . , 0, 1, 0, . . . , 0) with 1 in position j and 0 elsewhere (note that

Yj0+1Y
−ixσ = Y −(i−εj0+1)xσ is nonzero by assumption, and hence i− εj0+1 ∈ Zf≥0 by

the last statement in Lemma 3.2.2.6(ii)). As ‖i− εj0+1‖ = ‖i‖ − 1 and ‖k − pεj0
‖ =

‖k‖ − p ≥ (f − 1)(p − 1) +
∑
Jmax(σ) sj − (m − 1 − ‖i − εj0+1‖)p, we can apply the

induction hypothesis and a small computation shows that k′ is the right one, so we
are done in that case.
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We assume kj < p for all j and derive below a contradiction (so this case can’t
happen). Define

J
def= {j ∈ Jmax(σ), ij+1 = 0},

then by Lemma 3.2.3.4 (applied to ℓ = j and using Yjkj

(
p 0
0 1

)
Y −ixσ 6= 0):

kj ≤ p− 1− tj + 2ij if j ∈ J ,

kj ≤ p− 1 if j /∈ J,

which implies ‖k‖ ≤ (f − |J |)(p− 1) +
∑
j∈J(p− 1− tj + 2ij). From (131) we deduce

‖k‖ ≤ (p− 1)(f − |J |) +
∑

j∈J
(sj + 2ij) + |J \ (Jmax(σ) + 1)|.

So to get a contradiction it is enough to show that

(p− 1)(f − |J |) +
∑

j∈J
(sj + 2ij) + |J \ (Jmax(σ) + 1)| < (p− 1)(f − 1)

+
∑

j∈Jmax(σ)

sj − (m− 1− ‖i‖)p,

or equivalently

pm+ |J \(Jmax(σ) + 1)| ≤ (p− 1)|J |+ p
∑

j 6∈J
ij + (p− 2)

∑

j∈J
ij +

∑

j∈Jmax(σ)\J
sj

= (p− 2)‖i‖+ (p− 1)|J |+
(

2
∑

j 6∈J
ij +

∑

j∈Jmax(σ)\J
sj

)
.(139)

Case 1: assume |Jmax(σ) \ J | > 0.
If j ∈ Jmax(σ) \ J , then ij+1 > 0, so |Jmax(σ) \ J | ≤ ‖i‖. As |Jmax(σ) \ J | = m− |J |,
this means m ≤ ‖i‖+ |J |, hence (139) is implied by

2m+ |J \ (Jmax(σ) + 1)| ≤ |J |+
(

2
∑

j 6∈J
ij +

∑

j∈Jmax(σ)\J
sj

)
. (140)

Using |J \ (Jmax(σ) + 1)| ≤ |J |, (140) is implied by

2m ≤
∑

j∈Jmax(σ)\J
sj . (141)

Genericity (130) with (131) give sj ≥ 2f − 1 ≥ 2m− 1 for j ∈ Jmax(σ), hence (141)
holds if either sj ≥ 2m for at least one j ∈ Jmax(σ) \ J or if |Jmax(σ) \ J | ≥ 2 (using
2m− 2 ≥ 0 for the latter). Therefore, the only way inequality (140) may fail is when
Jmax(σ) \ J = {j0} (for some j0) and moreover J \ (Jmax(σ) + 1) = J and ij = 0 for
all j 6∈ J . But then ij0+1 > 0 so we have j0 + 1 ∈ J ∩ (Jmax(σ) + 1), which contradicts
J ∩ (Jmax(σ) + 1) = ∅. Hence inequality (140) holds.
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Case 2: assume Jmax(σ) = J .
Then using

|J \(Jmax(σ)+1)| ≤ |{0, . . . , f−1}\(Jmax(σ)+1)| = |{0, . . . , f−1}\Jmax(σ)| = f−m

and |J | = m, we see that (139) is implied by (p− 1)m + f ≤ (p− 2)‖i‖ + (p− 1)m
which is true as ‖i‖ > 0 and f ≤ p− 2 by (125).

To prove (a) and (b), it therefore suffices to consider the case i = 0, which we
prove now.

Recall
〈
GL2(OK)

(
0 1
p 0

)
xσ
〉
∼= Q(χsσ, J

max(σ)). By [BP12, Thm.2.4(iv)] the con-
stituents of this GL2(OK)-representation are the Serre weights (λ0(t0), . . . , λf−1(tf−1))
up to twist, where λ ∈ P(x0, . . . , xf−1), J(λ) ⊇ Jmax(σ) and λj(tj) = p − 2 − tj +
1J(λ)(j − 1) if j ∈ J(λ) (we use the notation of [BP12, §2] as in the proof of Lemma
3.2.3.4). By [BP12, Lemma 2.7, Lemma 2.6] and Lemma 3.2.2.5(ii), Q(χsσ, J

max(σ))
has F-basis Y k

(
p 0
0 1

)
xσ, where

0 ≤ kj ≤ λj(tj) if j ∈ J(λ),

p− 1− λj(tj) ≤ kj ≤ p− 1 if j 6∈ J(λ)
(142)

for some λ ∈ P(x0, . . . , xf−1) with J(λ) ⊇ Jmax(σ). We see that (142) implies

‖k‖ ≤ (p− 1)(f − |J(λ)|) +
∑

j∈J(λ)

(p− 2− tj + 1J(λ)(j − 1)) (143)

with equality if and only if kj = λj(tj) if j ∈ J(λ) and kj = p − 1 otherwise.
Moreover, Y k

(
p 0
0 1

)
xσ ∈ δ(σ)\ {0} if and only if (142) holds with J(λ) = Jmax(σ).

Hence if Y k
(
p 0
0 1

)
xσ 6∈ δ(σ) we deduce that (142) holds for some λ ∈ P(x0, . . . , xf−1)

with J(λ) ) Jmax(σ).

We claim that the right-hand side of (143) is smaller or equal than (p − 1)(f −
1) + m − 1 +

∑
Jmax(σ) sj − p(m − 1) if J(λ) = Jmax(σ) and strictly smaller than

(p− 1)(f − 1) +
∑
Jmax(σ) sj − p(m− 1) if J(λ) ) Jmax(σ). Recalling that sj = p− 2−

tj +1Jmax(σ)(j−1) for j ∈ Jmax(σ), the first case follows from (p−1)(f−|Jmax(σ)|) =
(p−1)(f −1) +m−1−p(m−1). For the second case, as (p−1)(f −1)−p(m−1) =
(p− 1)(f − |Jmax(σ)|)− (m− 1), it is enough to prove

(p− 1)(f − |J(λ)|) +
∑

j∈J(λ)

(p− 2− tj) + |J(λ) ∩ (J(λ) + 1)|

< (p− 1)(f−|Jmax(σ)|) +
∑

j∈Jmax(σ)

(p− 2− tj) + |Jmax(σ) ∩ (Jmax(σ) + 1)|

− (m− 1),
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or equivalently (by an easy calculation):

(m− 1) + |J(λ) ∩ (J(λ) + 1)| − |Jmax(σ) ∩ (Jmax(σ) + 1)| <
∑

j∈J(λ)\Jmax(σ)

(tj + 1).

This is true, as m − 1 ≤ f − 1 (so the left-hand side is at most (f − 1) + f),
J(λ) \ Jmax(σ) 6= ∅ and tj + 1 ≥ 2f for any j by genericity (130).

Therefore ‖k‖ ≤ (p−1)(f−1)+(m−1)+
∑
Jmax(σ) sj−p(m−1) if Y k

(
p 0
0 1

)
xσ 6= 0

and Y k
(
p 0
0 1

)
xσ ∈ δ(σ) if ‖k‖ ≥ (p− 1)(f − 1) +

∑
Jmax(σ)

sj − p(m− 1).

We prove the remaining statements in (a) and (b) (for i = 0). If ‖k‖ ≥ (p−1)(f−
1) +

∑
Jmax(σ)

sj−p(m−1) and Y k
(
p 0
0 1

)
xσ 6= 0, we know by above that J(λ) = Jmax(σ).

By (142) we then have kj ≤ sj if j ∈ Jmax(σ) and kj ≤ p− 1 if j /∈ Jmax(σ). By the
definition of xδ(σ) in (133) and by Lemma 3.2.2.6(ii) (and Remark 3.2.2.3) we deduce
Y k
(
p 0
0 1

)
xσ = Y −ℓxδ(σ), where ℓj = sj − kj if j ∈ Jmax(σ) and ℓj = p − 1 − kj if

j /∈ Jmax(σ). This implies ‖ℓ‖ = (p − 1)(f −m) +
∑

Jmax(σ)
sj − ‖k‖, and in particular

‖ℓ‖ = 0 if ‖k‖ = (p− 1)(f − 1) + (m− 1) +
∑

max(σ) sj − (m− 1)p and ‖ℓ‖ = m− 1 if
‖k‖ = (p−1)(f −1) +

∑
Jmax(σ)

sj−p(m−1). This finishes the proof of (a) and (b).

Now we can finally complete the proof of Proposition 3.2.3.1.

Proof of Proposition 3.2.3.1(ii). Suppose first that m > 0 and fix j0 ∈ J
max(σ). By

Lemma 3.2.2.4 and Proposition 3.2.2.9, we have

Y
∑

j∈Jmax(σ)
sjF (Y 1−mxσ)

=


(−1)f−1

∏

j∈Jmax(σ)

Y
sj

j

∏

j 6=j0

(Yj − Yj0)
p−1 + f(Y )



(
p 0
0 1

)
Y 1−mxσ

for some f(Y ) ∈ FJY0, . . . , Yf−1K of total Y -adic valuation ≥
∑
Jmax(σ) sj + (p − 1)f .

As p > f ≥ m we have (p − 1)f > (p − 1)(f − 1) + m − 1 and by Lemma 3.2.3.5(i)
we get f(Y )

(
p 0
0 1

)
Y 1−mxσ = 0, hence

Y
∑

Jmax(σ)
sjF (Y 1−mxσ) = (−1)f−1

∏

j∈Jmax(σ)

Y
sj

j

∏

j 6=j0

(Yj − Yj0)
p−1
(
p 0
0 1

)
Y 1−mxσ.

Moreover, the right-hand side is contained in 〈Y −ℓxδ(σ), ‖ℓ‖ = m − 1〉F ⊆ δ(σ)
by Lemma 3.2.3.5(ii). As it is also N1-invariant, it is contained in FY 1−mxδ(σ) by

Lemma 3.2.2.6(iii). It is therefore enough to show that Y m−1+
∑

Jmax(σ)
sjF (Y 1−mxσ) =
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(−1)f−1xδ(σ), or again by Lemma 3.2.2.4, Proposition 3.2.2.9 and Lemma 3.2.3.5(i)
that

Y m−1
j0

∏

j∈Jmax(σ)

Y
sj

j

∏

j 6=j0

(Yj − Yj0)
p−1
(
p 0
0 1

)
Y 1−mxσ = xδ(σ).

As
(
p−1
i

)
= (−1)i for 0 ≤ i ≤ p− 1, the left-hand side equals

Y m−1
j0

∏

Jmax(σ)

Y
sj

j

∑

‖k′‖=(p−1)(f−1)
k′j≤p−1 if j 6= j0

Y k′
(
p 0
0 1

)
Y 1−mxσ. (144)

By Lemma 3.2.3.5(i), as k′
j + sj can never be congruent to sj modulo p when k′

j ∈
{1, . . . , p− 1}, only the terms with k′

j = 0 for j ∈ Jmax(σ) \ {j0} and k′
j = p − 1 for

j /∈ Jmax(σ) survive. As ‖k′‖ = (p − 1)(f − 1), we must have k′
j0

= (p − 1)(m − 1),
and by Lemma 3.2.3.5(i) again it follows that (144) equals xδ(σ), as required.

Finally suppose m = 0. As Y p
j

(
p 0
0 1

)
xσ = 0 for all j, we get again by Lemma

3.2.2.4, Proposition 3.2.2.9 and (133):

Y p−1F (xσ) = (−1)f−1Y p−1
0

∏

j 6=0

(Yj − Y0)p−1
(
p 0
0 1

)
xσ

= (−1)f−1
f−1∏

j=0

Y p−1
j

(
p 0
0 1

)
xσ = (−1)f−1xδ(σ).

3.2.4 Lower bound for VGL2(π): proof

We prove Theorem 3.2.1.1.

We keep the notation of §§3.2.1, 3.2.2, 3.2.3. Fix σ ∈W (ρ) and define σi ∈W (ρ)
inductively by σ1

def= σ and σi
def= δ(σi−1) for i > 1 (σi here shouldn’t be confused with

the embedding σi = σ0 ◦ ϕ
i). Let n ≥ 1 be the smallest integer such that σn+1

∼= σ1

and write σi = (s(i)
0 , . . . , s

(i)
f−1) ⊗ ηi. Recall that n = 1 if and only if Jmax(σ) = ∅ if

and only if ρ is reducible and σ corresponds to Jσ = ∅ or Jσ = S (see the beginning
of §3.2.3). We set m def= |Jmax(σi)| if n > 1 (this doesn’t depend on i ∈ {1, . . . , n} by
Lemma 3.2.3.2) and m

def= 1 if n = 1, so that m ∈ {1, . . . , f}. For i ∈ {1, . . . , n} we
let χi denote the H-eigencharacter on σN0

i = σI1
i . We also define for i ∈ {1, . . . , n}:

si
def=

∑

j∈Jmax(σi)

s
(i+1)
j if n > 1,

s1
def= p− 1 if n = 1.

The following lemma will be useful later.
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Lemma 3.2.4.1. We have
∑n
i=1 si ≡ 0 (mod p− 1).

Proof. Let s(χi) ∈ {0, . . . , q − 1} such that χi+1 = χiα
−s(χi) and denote by |s(χi)| ∈

{0, . . . , (p − 1)f} the sum of the digits of s(χi) in its p-expansion. Then it follows
from (151) below that we have

α
∑

j∈Jmax(σi)
s

(i+1)
j pj+

∑
j /∈Jmax(σi)

(p−1)pj

χi = χi+1

and so
s(χi) =

∑

j∈Jmax(σi)

(p− 1− s(i+1)
j )pj (145)

which implies |s(χi)| = (p − 1)m − si. As χn+1 = χ1 = χ1α
−
∑n

i=1
s(χi), we have∑n

i=1 s(χi) ≡ 0 (mod q − 1), hence
∑n
i=1 |s(χi)| ≡ 0 (mod p − 1) and the result

follows.

Recall π is as at the end of §3.2.1. In [Bre11, §4] there is defined an F-linear
isomorphism

S : (socGL2(OK) π)I1 ∼
−→ (socGL2(OK) π)I1. (146)

Fixing an embedding σ →֒ socGL2(OK) π, for i ∈ {2, . . . , n} there are unique embed-
dings σi →֒ socGL2(OK) π such that the morphism S cyclically permutes the lines σI1

i .
In particular there exists ν ∈ F× (which depends on σ but not on the fixed embedding
σ →֒ socGL2(OK) π) such that Sn|

σ
I1
i

is the multiplication by ν for all i ∈ {1, . . . , n}.

We define µi ∈ F× for 1 ≤ i ≤ n by µ1
def= ν if n = 1 and if n > 1:

µi
def=





(∏
1≤i′≤n

∏
j∈Jmax(σi′ )

(p− 1− s(i′+1)
j )!

)−1

ν if i = n,

1 otherwise.

We let Mσ be the FJXK[F ]-submodule of πN1 , or equivalently the FJY K[F ]-submo-
dule, generated by Y 1−mσN0

i = Y 1−mσI1
i for 1 ≤ i ≤ n. Recall γ ∈ Z×

p acts on

Mσ ⊗ χ
−1
π by the action of

(
1 0
0 γ−1

)
(see the end of §3.2.1).

Proposition 3.2.4.2. The module Mσ ⊗ χ
−1
π is admissible as an FJXK-module (see

§2.1.1), Z×
p -stable, and such that (Mσ ⊗ χ−1

π )∨ is free of rank n as FJXK-module.
Moreover the étale (ϕ,Γ)-module (Mσ ⊗ χ

−1
π )∨[1/X] admits a basis (e1, . . . , en) over

FJXK[1/X] such that for i ∈ {1, . . . , n} (with en+1
def= e1):

ϕ(ei) = µ−1
i Xsiei+1, (147)

γ(ei) ∈ χi
((

1 0
0 γ

))
γm(1 +XFJXK)ei for all γ ∈ Z×

p , (148)

where γ is the image of γ ∈ Z×
p in F. Moreover γ(ei) is uniquely determined by (147)

and (148).
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To prepare for the proof, fix x1 ∈ σ
N0
1 \ {0} and define for 1 ≤ i ≤ n− 1:

xi+1
def= (−1)f−1

∏

j∈Jmax(σi)

Y
s

(i+1)
j

j

∏

j /∈Jmax(σi)

Y p−1
j

(
p 0
0 1

)
xi ∈ σ

N0
i+1 \ {0}

and xn+1
def= x1 (note that this formula is (133) multiplied by (−1)f−1).

Lemma 3.2.4.3. For i ∈ {1, . . . , n} we have

S(xi) =
( ∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)
µixi+1 (149)

and
Y siF (Y 1−mxi) = µiY

1−mxi+1. (150)

Proof. If i ∈ {1, . . . , n} we have

(−1)f−1
∏

j∈Jmax(σi)

Y
s

(i+1)
j

j

∏

j /∈Jmax(σi)

Y p−1
j

(
p 0
0 1

)
xi

=
( ∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)−1

θ∑
Jmax(σi)

(p−1−s(i+1)
j )pj

(
p 0
0 1

)
xi

=
( ∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)−1

S(xi), (151)

where the first equality follows from Lemma 3.2.2.5(i) and the second from the defi-
nition of the function S in [Bre11, §4]. From the definition of xi+1, we obtain (149)
for i < n. For i = n, using inductively

xi+1 =
( ∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)−1

S(xi)

for i = n− 1, i = n− 2 till i = 1 we obtain (as S is F-linear):

S(xn) =
( ∏

j∈Jmax(σn−1)

(p− 1− s(n)
j )!

)−1

S2(xn−1)

= · · ·

=
( ∏

1≤i≤n−1

∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)−1

Sn(x1).

Since Sn(x1) = νx1 and from the definition of µn, we get (149) for i = n. The last
part follows from Proposition 3.2.3.1 combined with (151) and (149).

143



The following lemma is stated with the variable Y , but remains the same with
the variable X.

Lemma 3.2.4.4. Suppose M is a torsion FJY K-module. Let Σ ⊆ M be a subset

spanning M as F-vector space and set Σ̃ def=
⋃
v∈Σ F×v. If

(i) Y Σ ⊆ Σ̃ ∪ {0};

(ii) FY v1 = FY v2 6= 0 =⇒ v1 = v2 for v1, v2 ∈ Σ;

(iii) Σ ∩M [Y ] is a finite set of F-linearly independent vectors,

then Σ is an F-basis of M and M is an admissible FJY K-module. If moreover Y Σ̃ =
Σ̃ ∪ {0}, then M∨ is a finite free FJY K-module of rank dimFM [Y ].

Proof. Write Σ ∩ M [Y ] = {v1, . . . , vd} (assuming Σ ∩ M [Y ] 6= ∅ otherwise M =
0 and there is nothing to prove). For ℓ ∈ {1, . . . , d} let Σℓ

def= {v ∈ Σ, Y jv ∈

F×vℓ for some j ≥ 0}. Then Mℓ
def= ⊕v∈Σℓ

Fv is an FJY K-module using (i). If v, v′ ∈ Σℓ,
then using (ii) there is j ≥ 0 such that either Fv = FY jv′, or Fv′ = FY jv, from which
one easily deduces Mℓ[Y ] = Fvℓ, in particular Mℓ is admissible. Since Σ spans M
over F and Σ =

∐n
ℓ=1 Σℓ, the natural map f :

⊕d
ℓ=1 Mℓ → M is surjective, and thus

M is also admissible. Since
⊕
ℓMℓ[Y ] =

⊕
ℓ Fvℓ →֒ M [Y ] (the last injection following

from (iii)), we deduce that Ker(f)[Y ] = 0, hence Ker(f) = 0 and f is an isomor-
phism. This proves the first part of the statement. It follows from Y Σ̃ = Σ̃ ∪ {0}
that the multiplication by Y is surjective on each Mℓ, i.e. we have exact sequences
0 → Fvℓ → Mℓ

Y
→ Mℓ → 0. Dualizing, this gives 0 → M∨

ℓ
Y
→ M∨

ℓ → (Fvℓ)∨ → 0,
which shows M∨

ℓ is free of rank 1 over FJY K. The last statement follows.

Recall that Mσ is the FJY K[F ]-submodule of πN1 generated by Y 1−mxi for 1 ≤
i ≤ n. Let

Σ def=

{
Y jF k(Y 1−mxi), 1 ≤ i ≤ n, k ≥ 0, 0 ≤ j < pk−1si if k ≥ 1

0 ≤ j < m if k = 0

}
.

We now check that Mσ and Σ satisfy all the assumptions in Lemma 3.2.4.4. Define
for ℓ ∈ Z≥1:

Σℓ
def=
{
Y jF k(Y 1−mxi) ∈ Σ, k + i ≡ ℓ (mod n)

}

and Mℓ,σ
def=
⊕

v∈Σℓ
Fv. We have Σ =

∐n
ℓ=1 Σℓ. Applying F k−1 to (150) for k ≥ 1 we

get (recall that F ◦ Y = Y p ◦ F on πN1):

Y pk−1siF k(Y 1−mxi) ∈ F×F k−1(Y 1−mxi+1), (152)
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hence Σ spans Mσ and condition (i) of Lemma 3.2.4.4 holds for Σ. Using (152) we also
see that the multiplication by Y induces an injection Σℓ →֒ Σ̃ℓ ∪{0} and that Y Σ̃ℓ =
Σ̃ℓ∪{0}, hence Mℓ,σ is an F JY K-submodule of Mσ and condition (ii) of Lemma 3.2.4.4
holds for Σℓ and Σ. Moreover, Y Σ̃ = Σ̃ ∪ {0}. Finally, Σ ∩Mσ[Y ] = {x1, . . . , xn}
(and Σ ∩Mℓ,σ[Y ] = xℓ). By Lemma 3.2.4.4 and its proof, we deduce that Σ is an
F-basis of Mσ, that Mσ =

⊕n
ℓ=1 Mℓ,σ and that each M∨

ℓ,σ is free of rank 1 over F JY K.
In fact one can visualize the “Y -divisible line” Mi+1,σ as follows using (150):

Fxi+1
Y m−1

←− FY 1−mxi+1
Y si
←− FF (Y 1−mxi)

Y psi−1

←− FF 2(Y 1−mxi−1)

Y p2si−2

←− FF 3(Y 1−mxi−2)←− · · · ,

where Fxi+1 = Mi+1,σ[Y ] and the arrows mean “multiplication by the power of Y
just above”. In particular we see that if d(v) def= min{j ≥ 1, Y jv = 0} for v ∈ Σ, then
v ∈ Σi+1 is contained in F (Σ̃) if and only if d(v) ≡ si +m (mod p).

Define a basis f1, . . . , fn of the free F JY K-module M∨
σ by

fi(xi)
def= 1 and fi(Σ \ {xi})

def= 0, i ∈ {1, . . . , n}.

From what is above we then easily deduce the following formula, where F (f)(v) def=
f(F (v)) for f ∈M∨

σ and v ∈Mσ (and using conventions as in §2.1.1):

F (Y ℓ+(si+m−1)fi+1) =




µiY

m−1fi if ℓ = 0,

0 if 1 ≤ ℓ ≤ p− 1.
(153)

Lemma 3.2.4.5. The module Mσ⊗χ
−1
π is Z×

p -stable, hence Z×
p acts on (Mσ⊗χ

−1
π )∨.

Moreover we have for γ ∈ Z×
p (recall γ(f)(v) = f

((
1 0
0 γ

)
v
)

for f ∈ (Mσ ⊗ χ−1
π )∨,

v ∈Mσ):
γ(fi) ∈ χi

((
1 0
0 γ

))
(1 + Y FJY K)fi

for 1 ≤ i ≤ n.

Proof. As Mσ =
⊕n
i=1 FJY K[F ]Y 1−mxi and Y 1−mxi is a Z×

p -eigenvector by Lemma
3.2.2.6(iii) we deduce that Mσ, and hence Mσ ⊗ χ

−1
π , are Z×

p -stable.

From γ◦X = ((1+X)γ−1)◦γ and Lemma 3.2.2.2 it is easy to deduce that γ◦Y =
fγ(Y ) ◦ γ for some fγ(Y ) ∈ γY + Y 2FJY K, hence Z×

p preserves the decomposition of
FJY K-modules Mσ⊗χ

−1
π =

⊕n
i=1 Mi,σ⊗χ

−1
π . In particular, γ(fi) annihilates Mi′,σ⊗χ

−1
π

for all i′ 6= i. Let Y −jxi for j ≥ 0 denote the unique element of Σ̃i such that
Y j(Y −jxi) = xi (this is compatible with our previous notation in Lemma 3.2.2.6(iii)).
Then

γ(fi) =
∑

j≥0

(γ(fi)(Y −jxi))Y jfi ∈ χi
((

1 0
0 γ

))
(1 + Y FJY K)fi.
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Proof of Proposition 3.2.4.2. We have already seen above thatMσ⊗χ
−1
π is admissible,

Z×
p -stable, and that (Mσ ⊗ χ

−1
π )∨ is free of rank n as FJN0/N1K-module. To find the

basis (ei)i, first note from Lemma 3.2.2.2 and (153) that (using F ◦ Y p = Y ◦ F on
(Mσ ⊗ χ

−1
π )∨):

F (Xsi+m−1fi+1) = F
(∑

j≥0

cjY
si+m−1+jfi+1

)

= µi
∑

j≥0

cjpY
m−1+jfi

∈ (−1)siµi(1 +XFJXK)Xm−1fi (154)

for some cj ∈ F with c0 = (−1)si+m−1. Similarly for ℓ ∈ {1, . . . , p− 1}:

F
(
Xsi+m−1+ℓfi+1

)
∈ FJXKXmfi. (155)

It easily follows from (14) that

p−1∑

ℓ=0

(1 +X)−ℓϕ
(
F ((1 +X)ℓf)

)
= f (156)

for all f ∈ (Mσ ⊗ χ
−1
π )∨[1/X]. Let f def= Xsi+m−1fi+1, by (154) and (155) we have for

ℓ ∈ {0, . . . , p− 1}:

F ((1 +X)ℓf) ∈ (−1)siµi(1 +XFJXK)Xm−1fi,

and so
ϕ
(
F ((1 +X)ℓf)

)
∈ (−1)siµi(1 +XpFJXK)ϕ(Xm−1fi).

Using
p−1∑

ℓ=0

(1 +X)−ℓ =
(

X

1 +X

)p−1

≡ Xp−1 (mod Xp),

we see that (156) applied to f = Xsi+m−1fi+1 becomes

(−1)siµiX
p−1ϕ(Xm−1fi) ∈ (1 +XFJXK)Xsi+m−1fi+1

or equivalently in (Mσ ⊗ χ
−1
π )∨[1/X]:

ϕ(Xmfi) = (−1)siµ−1
i gi(X)Xsi+mfi+1 (157)

for some gi(X) ∈ 1 +XFJXK.

Let ei
def= (−1)

∑i−1

j=1
sjhi(X)Xmfi for some hi(X) ∈ 1 + XFJXK and note that the

sign doesn’t change if i is replaced by i+n by Lemma 3.2.4.1. Then (147) is equivalent
to

hi(Xp)ϕ(Xmfi) = (−1)siµ−1
i hi+1(X)XsiXmfi+1,
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or equivalently hi(Xp)gi(X) = hi+1(X) by (157). This system has the unique solution

hi(X) =
∞∏

j=1

gi−j(Xpj−1

)

in 1 + XFJXK, where the indices are considered modulo n. Then (148) follows from
Lemma 3.2.4.5. The final uniqueness assertion follows from γ ◦ ϕ = ϕ ◦ γ and is left
as an exercise (similar to [Bre11, Lemma 4.5]).

Let O(π) (resp. O(ρ)) be a set of representatives for the orbits of δ on the set of
Serre weights in socGL2(OK) π counted with their multiplicity r (resp. on the set W (ρ)).
We define Mπ

def=
⊕
σ∈O(π) Mσ (with Mσ as above). It follows from the assumptions

on π that we have
Mπ
∼=

⊕

σ∈O(ρ)

M⊕r
σ .

In particular (Mπ⊗χ
−1
π )∨[1/X] is an étale (ϕ,Γ)-module over F((X)) of rank r|W (ρ)| =

r2f . From the description of Mσ[X], we also see that the natural map Mπ → πN1 of
torsion F JXK-modules is injective as the following composition is injective:

Mπ[X] ∼= ⊕σI1 →֒ πI1 ⊆ πN1 [X],

where the direct sum is over all Serre weights σ in socGL2(OK) π (counting their mul-
tiplicity r).

Proposition 3.2.4.6. We have an isomorphism of representations of Gal(Qp/Qp)
over F:

V((Mπ ⊗ χ
−1
π )∨[1/X]) ∼=

(
ind⊗Qp

K (ρ)
)⊕r

.

Proof. We are going to use a computation of [Bre11, §4]. Associated to the diagram
D

def= D(ρ)⊕r of §3.2.1, there is defined in loc.cit. an étale (ϕ,Γ)-module over F((X))
denoted thereM(D) and which is of the formM(D) = ⊕σ∈O(π)M(D)σ2, whereM(D)σ
is a rank n étale (ϕ,Γ)-module over F((X)) associated to the orbit of σ, i.e. to the
cycle σ = σ1, . . . , σn as above (so in fact one has M(D) = ⊕σ∈O(ρ)M(D)⊕r

σ ).

Let N def= F((X))e be the rank 1 étale (ϕ,Γ)-module over F((X)) defined by

ϕ(e) = X−(p−1)
∑

j
(rj+1)e,

γ(e) =

(
γX

(1 +X)γ − 1

)∑
j
(rj+1)

e.

2A more consistent notation with the ones of this article would have been M(D)∨ and M(D)∨

σ . . .
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We have V(N) ∼= ω
∑

j
(rj+1) = ind⊗Qp

K (det ρ) (using ind⊗Qp

K (ωf) ∼= ω) by [Bre11,
Prop.3.5] and

V(M(D)) ∼=
(

ind⊗Qp

K (ρ⊗ (det ρ)−1)
)⊕r ∼=

(
ind⊗Qp

K (ρ)⊗ ind⊗Qp

K (det ρ−1)
)⊕r

by [Bre11, Thm.6.4]. We therefore deduce

V(M(D)⊗F((X)) N) ∼=
(

ind⊗Qp

K (ρ)
)⊕r

.

Therefore it suffices to show that M(D)σ ⊗F((X)) N ∼= M∨
σ [1/X] for each σ ∈ O(π), or

equivalently each σ ∈ O(ρ).

Let x∨
1 , . . . , x

∨
n ∈ (

⊕n
i=1 σ

I1
i )∨ be the dual basis of the F-basis (xi)i of

⊕n
i=1 σ

I1
i ,

it follows from its definition in [Bre11, §4] and from (145) that M(D)σ has basis
x∨

1 , . . . , x
∨
n as F((X))-module with

ϕ(x∨
i ) = Xsi+(p−1)(f−m)

( ∏

j∈Jmax(σi)

(p− 1− s(i+1)
j )!

)
(x∨

i ◦ S|
−1

⊕σI1
i

),

where S−1 is the inverse of the bijection S of (146) (which preserves
⊕n

i=1 σ
I1
i ). By

(149) we have

x∨
i ◦ S|

−1

⊕σI1
i

=

( ∏

Jmax(σi)

(p− 1− s(i+1)
j )!

)−1

µ−1
i x∨

i+1,

so we obtain
ϕ(x∨

i ) = µ−1
i Xsi+(p−1)(f−m)x∨

i+1.

Also we have for γ ∈ Z×
p (using the hypothesis on the central character of π):

x∨
i ◦

(
γ−1 0

0 1

)
= γ

−
∑

j
rj
(
x∨
i ◦

(
1 0
0 γ

))

= γ−
∑

j
rjχi

((
1 0
0 γ

))
x∨
i ,

hence with the definition of γ(x∨
i ) given in [Bre11, Lemma 4.5]:

γ(x∨
i ) ∈ χi

((
1 0
0 γ

))
γ−
∑

j
rj (1 +XFJXK)x∨

i .

We deduce that M(D)σ ⊗F((X)) N ∼=
⊕n
i=1 FJXK(x∨

i ⊗ e) with

ϕ(x∨
i ⊗ e) = µ−1

i Xsi−(p−1)(m+
∑

j
rj)(x∨

i+1 ⊗ e),

γ(x∨
i ⊗ e) ∈ χi

((
1 0
0 γ

))
γ−
∑

j
rj (1 +XFJXK)(x∨

i ⊗ e).
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Now, let e′
i

def= X
m+
∑

j
rj (x∨

i ⊗e) for all i. Then e′
1, . . . , e

′
n is a basis of M(D)σ⊗F((X))N

and we have for i ∈ {1, . . . , n} (with e′
n+1

def= e′
1):

ϕ(e′
i) = µ−1

i Xsie′
i+1,

γ(e′
i) ∈ χi

((
1 0
0 γ

))
γm(1 +XFJXK)e′

i.

From Proposition 3.2.4.2 we see that M(D)σ ⊗F((X)) N ∼= M∨
σ [1/X].

By Lemma 3.2.1.2 this completes the proof of Theorem 3.2.1.1 when the constants
νi are as in [Bre11, Thm.6.4]. When they are arbitrary, the proof of Proposition
3.2.4.6 gives V((Mπ⊗χ

−1
π )∨[1/X])|IQp

∼=
(

ind⊗Qp

K (ρ)
)
|⊕rIQp

using [Bre11, Cor.5.4], which
finishes the proof of Theorem 3.2.1.1.

3.3 On the structure of some representations of GL2(K)

We prove results on the structure of an admissible smooth representation π of GL2(K)
over F associated to a semisimple sufficiently generic representation ρ of Gal(Qp/K)
as in [BP12] when π satisfies a further multiplicity one assumption as in [BHH+] and
a self-duality property. In particular we prove that such a π is irreducible if and only
if ρ is, and is semisimple when f = 2 (Corollary 3.3.5.8 and Corollary 3.3.5.6).

We keep the notation at the beginning of §§3, 3.1, and set Λ def= FJI1/Z1K. We
recall that the graded ring gr(Λ) is isomorphic to ⊗f−1

i=0 F[yi, zi, hi] with hi lying in the
center (see (116)). We set

R
def= gr(Λ)/(h0, . . . , hf−1),

which is commutative and isomorphic to F[yi, zi, 0 ≤ i ≤ f − 1], and recall that
R = R/(yizi, 0 ≤ i ≤ f − 1) = gr(Λ)/J (see (121)). Moreover the finite torus H
naturally acts on Λ by the conjugation on I1 (via its Teichmüller lift) and we see (using
(100)) that the induced action on gr(Λ) is trivial on hi and is the multiplication by the
character αi (resp. α−1

i ) on yi (resp. zi), where αi
((

λ 0
0 µ

))
def= σi(λµ−1) for

(
λ 0
0 µ

)
∈ H .

Notice that gr(Λ) is an Auslander regular ring (see [LvO96, Def.III.2.1.7], [LvO96,
Def.III.2.1.3]) by the first statement in [BHH+, Thm.5.3.4] and so is Λ itself by
[LvO96, Thm.III.2.2.5]. This allows us to apply (many) results of [LvO96, §III.2].

For any ring S and any S-module M , we set Ei
S(M) def= ExtiS(M,S) for i ≥ 0.

3.3.1 Combinatorial results

We define some explicit ideals a(λ) of R and study some of their properties.
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We fix a continuous representation ρ : Gal(Qp/K) → GL2(F) which is generic in
the sense of [BP12, §11] and let D0(ρ) be the representation of GL2(Fq) over F defined
in [BP12, §13] (see also §3.2.1 when ρ is semisimple). Recall from [BP12, Cor.13.6]
that D0(ρ)I1 is multiplicity-free as a representation of H ∼= I/I1. By [Bre14, §4],
there is a bijection between the characters of H appearing in D0(ρ)I1 and a certain
set of f -tuples, denoted by

PI D(x0, . . . , xf−1), resp. PRD(x0, . . . , xf−1), resp. PD(x0, . . . , xf−1),

if ρ is irreducible, resp. reducible split, resp. reducible nonsplit. We refer to [Bre14,
§4] for the precise definition of these sets and we simply write P for the set associated
to ρ. We write χλ for the character of H associated to λ ∈ P (more precisely, in
loc.cit. one rather associates a Serre weight σλ to λ, and χλ is the action of H = I/I1

on the 1-dimensional subspace σI1
λ , different σλ giving different χλ).

On the other hand, the set W (ρ) is in bijection with another set of f -tuples,
denoted by (see [BP12, §11])

I D(x0, . . . , xf−1), resp. RD(x0, . . . , xf−1), resp. D(x0, . . . , xf−1),

depending on ρ as above. We simply write D for the set associated to ρ. Since the
socle of D0(ρ) is ⊕σ∈W (ρ)σ, we may view D as a subset of P. For example, if ρ is
reducible split, then D is the subset of P consisting of λ such that

λj(xj) ∈ {xj , xj + 1, p− 2− xj , p− 3− xj},

while if ρ is nonsplit, then we require moreover that λj(xj) ∈ {xj + 1, p − 3 − xj}
implies j ∈ Jρ, where Jρ is a certain subset of {0, . . . , f − 1} uniquely determined by
the Fontaine–Laffaille module of ρ (cf. [Bre14, (17)]).

Definition 3.3.1.1. We associate to λ ∈P an ideal a(λ) of R as follows.

• If ρ is irreducible, then a(λ) = (t0, . . . , tf−1), where

t0
def=





z0 if λ0(x0) ∈ {x0 − 1, p− 2− x0}
y0 if λ0(x0) ∈ {x0 + 1, p− x0}
y0z0 if λ0(x0) ∈ {x0, p− 1− x0},

and if j 6= 0

tj
def=





zj if λj(xj) ∈ {xj, p− 3− xj}
yj if λj(xj) ∈ {xj + 2, p− 1− xj}
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.

• If ρ is reducible nonsplit, then a(λ) = (t0, . . . , tf−1), where

tj
def=





zj if λj(xj) ∈ {xj , p− 3− xj} and j ∈ Jρ
yj if λj(xj) ∈ {xj + 2, p− 1− xj} and j ∈ Jρ
yjzj if λj(xj) ∈ {xj , p− 1− xj} and j /∈ Jρ
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.
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• If ρ is reducible split, then a(λ) = (t0, . . . , tf−1) is defined as in the nonsplit
case by letting Jρ = {0, . . . , f − 1}, namely

tj
def=





zj if λj(xj) ∈ {xj, p− 3− xj}
yj if λj(xj) ∈ {xj + 2, p− 1− xj}
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.

In particular, if ρ is reducible nonsplit and Jρ = ∅, then a(λ)=(y0z0, . . . , yf−1zf−1)
for any λ ∈P. Note that R/a(λ) is always a quotient of R.

Remark 3.3.1.2. An equivalent form of Definition 3.3.1.1 is as follows (compare
the proof of Theorem 3.3.2.1). Given λ ∈ P, tj = yj (resp. tj = zj) if and only if
the character χλα−1

j (resp. χλαj) occurs in D0(ρ)I1 (i.e. has the form χλ′ for some
λ′ ∈P), and tj = yjzj if and only if neither of χλα±1

j occurs in D0(ρ)I1.

Lemma 3.3.1.3. Let λ ∈P.

(i) Assume ρ is semisimple. Then λ ∈ D if and only if yj /∈ a(λ) for any j ∈
{0, . . . , f − 1}.

(ii) Assume ρ is reducible nonsplit and let ρss be the semisimplification of ρ. Then
there is a bijection between D(ρss) (defined as the set D associated to ρss) and
the set of λ ∈P such that yj /∈ a(λ) for any j ∈ {0, . . . , f − 1}.

Proof. (i) It is clear by definition.
(ii) Let λ ∈P such that yj /∈ a(λ) for any j ∈ {0, . . . , f − 1}. By definition, we have
(for ρ reducible nonsplit)

λj(xj) ∈ {xj , xj + 1, p− 1− xj , p− 2− xj , p− 3− xj}

and from the definition of a(λ) if λj(xj) = p − 1 − xj then j /∈ Jρ (note that if
λj(xj) = p− 3− xj then it is automatic that j ∈ Jρ). We define an f -tuple µ by

µj(xj)
def=

{
p− 3− xj if λj(xj) = p− 1− xj
λj(xj) otherwise.

It is then easy to see that µ is an element of D(ρss) and that any element of D(ρss)
arises (uniquely) in this way.

Corollary 3.3.1.4. The set {λ ∈P, yj /∈ a(λ) ∀ j ∈ {0, . . . , f − 1}} has cardinality
2f .

Proof. This is a direct consequence of Lemma 3.3.1.3 and of |W (ρss)| = 2f .
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Given λ ∈P, write a(λ) = (t0, . . . , tf−1) as in Definition 3.3.1.1 and define

A(λ) def= {j ∈ {0, . . . , f − 1}, tj = yjzj} ⊆ {0, . . . , f − 1}. (158)

The following proposition will only be used in Corollary 3.3.2.5 below.

Proposition 3.3.1.5. We have
∑
λ∈P 2|A(λ)| = 4f .

Proof. We will only give the proof in the case ρ is reducible (split or not), the irre-
ducible case can be treated similarly.

First assume that ρ is split. Given λ ∈P, we define an element λ ∈ D as follows:

λj(xj)
def=





xj if λj(xj) ∈ {xj , xj + 2}
p− 3− xj if λj(xj) ∈ {p− 1− xj, p− 3− xj}
λj(xj) otherwise.

It is easy to see that λ ∈ D . By definition of P (see [Bre14, §4] and recall P =
PRD(x0, . . . , xf−1)), for each λ ∈ D , there are exactly 2|{0,...,f−1}\A(λ)| elements λ in
P giving rise to λ under the above rule. Moreover, it is direct from the definitions
that A(λ) = A(λ). Hence

∑

λ∈P

2|A(λ)| =
∑

λ∈D

(2f−|A(λ)|2|A(λ)|) = 2f |D | = 2f2f = 4f .

Now assume that ρ is nonsplit. Let P be the subset of P considered in the proof
of Lemma 3.3.1.3(ii), namely λ ∈P if and only if

λj(xj) ∈ {xj , xj + 1, p− 1− xj , p− 2− xj , p− 3− xj}

and λj(xj) = p − 1 − xj implies j /∈ Jρ. By the proof of loc.cit., we have |P| =
|D(ρss)| = 2f . Given λ ∈P, we define an element λ ∈P as follows:

λj(xj)
def=





xj if λj(xj) ∈ {xj, xj + 2}
p− 3− xj if λj(xj) = p− 3− xj or (λj(xj) = p− 1− xj and j ∈ Jρ)
λj(xj) otherwise.

As in the split case it is easy to see that A(λ) = A(λ) and that given λ ∈ P, there
exist exactly 2|{0,...,f−1}\A(λ)| elements λ in P giving rise to λ. The result follows as
in the split case.

Definition 3.3.1.6. Given λ ∈P, we define another f -tuple λ∗ as follows:

λ∗
j(xj)

def=





p− 3− λj(xj) if tj = zj
p + 1− λj(xj) if tj = yj
p− 1− λj(xj) if tj = yjzj .
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If λ ∈ D , we define its “length” ℓ(λ) to be (see [BP12, §4]):

ℓ(λ) def= |{j ∈ {0, . . . , f − 1}, λj(xj) ∈ {p− 2− xj ± 1, xj ± 1}}|. (159)

Lemma 3.3.1.7. Let λ ∈P.

(i) We have λ∗ ∈P and a(λ) = a(λ∗).

(ii) Assume that ρ is semisimple. Then λ ∈ D if and only if λ∗ ∈ D, and in this
case ℓ(λ∗) = f − ℓ(λ).

Proof. (i) The first statement can be checked directly using the definition of P and
the second one is obvious from the definitions.

(ii) The first statement follows from (i) and Lemma 3.3.1.3(i). By definition of D

(see [BP12, §11]), ℓ(λ) can be computed as the cardinality of the following set:
{
j ∈ {0, . . . , f − 1}, λj(xj) ∈ {p− 1− xj , p− 2− xj , p− 3− xj}

}
.

For example, when ρ is reducible split, we have (cf. the beginning of [BP12, §11])

λj(xj) ∈ {p− 2− xj , p− 3− xj} ⇐⇒ λj+1(xj+1) ∈ {p− 3− xj+1, xj+1 + 1}.

The second statement of (ii) follows from this and Definition 3.3.1.6.

Lemma 3.3.1.8. Let λ ∈ P, χλ the character of H associated to λ, (t0, . . . , tf−1)
the ideal a(λ) in Definition 3.3.1.1 and ηλ be the character of H acting on

∏f−1
j=0 tj.

Then we have
χλχλ∗ = ηλ(η ◦ det),

where λ∗ is as in Definition 3.3.1.6 and η(a) def= χλ
((

a 0
0 a

))
for a ∈ F×

q (η does not

depend on λ ∈P).

Proof. This is an easy computation, but we give some details. Note that λj(xj) +
λ∗
j(xj) = (p−1)+2εj, where εj equals 1, 0 or −1 if tj equals yj, yjzj or zj respectively.

Moreover, in the notation of [Bre14, §4], we have

e(λ) + e(λ∗) =
1
2

(
pf − 1 +

f−1∑

j=0

pj(xj − λj(xj) + xj − λ
∗
j (xj))

)

=
f−1∑

j=0

pj(xj − εj).

The conclusion follows now from a simple computation, noting that for
(
a 0
0 b

)
∈ H

χλ
((

a 0
0 b

))
= σ0(a)

(∑f−1

j=0
pjλj(rj)

)
+e(λ)(r0,...,rf−1)

σ0(b)e(λ)(r0,...,rf−1)

(see [Bre14, §4]) and that H acts on yi (resp. zi) via αi (resp. α−1
i ).

153



Note that H acts on I1/Z1 by conjugation and hence on Λ and gr(Λ). This induces
H-actions also on R, R, and R/a(λ) for any λ ∈P. We say that M is a gr(Λ)-module
with compatible H-action if H acts on M such that h(rm) = h(r)h(m) for h ∈ H ,
r ∈ R, and m ∈ M . In this case Ei

gr(Λ)(M) is again a gr(Λ)-module with compatible
H-action for any i ≥ 0.

Lemma 3.3.1.9. If M is a gr(Λ)-module with compatible H-action that is annihilated
by (h0, . . . , hf−1), then we have isomorphisms of gr(Λ)-modules with compatible H-
action for i ≥ 0:

Ei+f
gr(Λ)(M) ∼= Ei

R(M). (160)

If moreover M is annihilated by J , then we have isomorphisms of gr(Λ)-modules with
compatible H-action for i ≥ 0:

Ei+2f
gr(Λ)(M) ∼= Ei+f

R (M) ∼= Ei
R

(M). (161)

Proof. Since (h0, . . . , hf−1) is a regular sequence of central elements in gr(Λ) and
(y0z0, . . . , yf−1zf−1) is a regular sequence in R (which is commutative), the isomor-
phisms (160) and (161) as gr(Λ)-modules are proved as in the proof of [BHH+, Lemma
5.1.3]. Moreover, H acts trivially on hj and yjzj (for 0 ≤ j ≤ f−1), the isomorphisms
are also H-equivariant, from which the results follow.

We don’t use the following proposition in the sequel, but it is consistent with
Remark 3.3.2.6(i) and the essential self-duality assumption (iii) in §3.3.5 below (see
Proposition 3.3.4.6).

Proposition 3.3.1.10. For λ ∈ P there is an isomorphism of gr(Λ)-modules with
compatible H-action:

E2f
gr(Λ)

(
χ−1
λ ⊗ R/a(λ)

)
∼=
(
χ−1
λ∗ ⊗R/a(λ)

)
⊗ η ◦ det .

Proof. Applying (161) with i = 0 and M = χ−1
λ ⊗ R/a(λ), we are left to prove

HomR(χ−1
λ ⊗R/a(λ), R) ∼=

(
χ−1
λ∗ ⊗R/a(λ)

)
⊗ η ◦ det .

Using Lemma 3.3.1.8, it suffices to construct an isomorphism of gr(Λ)-modules with
compatible H-action

HomR(R/a(λ), R) ∼= η−1
λ ⊗ R/a(λ), (162)

where ηλ is the character of H acting on
∏f−1
j=0 tj if we write a(λ) = (t0, . . . , tf−1) with

tj ∈ {yj, zj , yjzj}. Put t′ def=
∏f−1
j=0 (yjzj/tj). One easily checks that t′R = R[a(λ)] and

there is an isomorphism of R-modules

θ : η−1
λ ⊗R/a(λ) ∼

−→ t′R,

where the first map sends 1 to t′. As H acts on t′ via η−1
λ , θ is also H-equivariant.

The isomorphism (162) is then obtained by sending r ∈ η−1
λ ⊗ R/a(λ) to φ ∈

HomR(R/a(λ), R) such that φ(1) def= θ(r).
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3.3.2 On the structure of gr(π∨)

We give a partial result on the structure of gr(π∨) for certain admissible smooth
representations π of GL2(K) over F associated to ρ when gr(π∨) comes from the
mI1/Z1

-adic filtration on π∨.

We let ρ be as in §3.3.1 (in particular ρ is not necessarily semisimple) and keep
the notation of loc.cit. As in §3.2.1 when ρ is semisimple, we consider D0(ρ) as a
representation of GL2(OK)K×, where GL2(OK) acts via its quotient GL2(Fq) and
the center K× acts by the character det(ρ)ω−1. We now write m for mI1/Z1 .

We consider an admissible smooth representation π of GL2(K) over F satisfying
the following two conditions:

(i) there is r ≥ 1 such that πK1 ∼= D0(ρ)⊕r as a representation of GL2(OK)K× (in
particular π has a central character);

(ii) for any λ ∈P, we have an equality of multiplicities

[π[m3] : χλ] = [π[m] : χλ].

Note that (ii) implies that the gr(Λ)-module gr(π∨) (defined with the m-adic filtration
on π∨) is annihilated by the ideal J in (117) by the proof of [BHH+, Cor.5.3.5], and
in particular is an R-module.

Theorem 3.3.2.1. For π as above, there is a surjection of gr(Λ)-modules with com-
patible H-action ( ⊕

λ∈P

χ−1
λ ⊗ R/a(λ)

)⊕r
։ gr(π∨), (163)

where a(λ) is as in Definition 3.3.1.1.

Proof. Consider the gr(Λ)-module with compatible H-action:

M
def=
( ⊕

λ∈P

χ−1
λ ⊗R/a(λ)

)⊕r
.

Since there is a bijection λ 7→ χλ between P and the characters of H on D0(ρ)I1 (see
§3.3.1), we can choose a basis of πI1 over F, say {vλ,k, λ ∈P, 1 ≤ k ≤ r}, such that
each vλ,k is an eigenvector for I of character χλ. We denote by {eλ,k, λ ∈P, 1 ≤ k ≤
r} the basis of gr0(π∨) over F which is the dual basis of {vλ,k}, and note that {eλ,k}
generates the gr(Λ)-module gr(π∨). To prove that there exists a surjective morphism
M ։ gr(π∨) it suffices to prove that, for any λ ∈ P and any k ∈ {1, . . . , r}, the
vector eλ,k is annihilated by the ideal a(λ) of R = gr(Λ)/(h0, . . . , hf−1). Writing
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a(λ) = (t0, . . . , tf−1) as in Definition 3.3.1.1, we already see that if tj = yjzj , then tj
kills all the eλ,k since gr(π∨) is annihilated by J .

Let j ∈ {0, . . . , f − 1} such that tj ∈ {yj, zj} and define χ′ def= χλα
−1
j if tj = yj,

χ′ def= χλαj if tj = zj . By Definition 3.3.1.1 one checks that χ′ = χλ′ , where λ′ ∈ P

is defined by λ′
i(xi)

def= λi(xi) if i 6= j, and λ′
j(xj)

def= λj(xj) + εj, where εj equals
either −2 or 2 when tj equals either yj or zj respectively. Note that χ′−1 is equal
to the character of I acting on tjeλ,k ∈ gr1(π∨). Thus, if tjeλ,k 6= 0, then dually the
χ′-isotypic subspace of π[m2]/π[m] would be nonzero. But this contradicts condition
(ii) above. Hence eλ,k is annihilated by the whole ideal a(λ) and we are done.

Corollary 3.3.2.2. Let π′ be a subrepresentation of π and P ′ ⊆ P be the subset
corresponding to the characters (without multiplicities) of H appearing in π′I1. Then

gr(π′∨) (with the m-adic filtration on π′∨) is a quotient of
(⊕

λ∈P′ χ
−1
λ ⊗ R/a(λ)

)⊕r
.

Proof. We have a natural quotient map π∨
։ π′∨ which induces a quotient map

gr(π∨) ։ gr(π′∨). It is enough to prove that the composition

( ⊕

λ∈P′

χ−1
λ ⊗R/a(λ)

)⊕r
→֒
( ⊕

λ∈P

χ−1
λ ⊗ R/a(λ)

)⊕r
։ gr(π∨) ։ gr(π′∨)

is surjective (where the second map is the surjection of Theorem 3.3.2.1). The as-
sumption implies that it is surjective on gr0(−), and we conclude using that gr(π′∨)
is generated by gr0(π′∨) as a gr(Λ)-module.

If N is a finitely generated R-module and q a minimal prime ideal of R, recall
that mq(N) ∈ Z≥0 denotes the multiplicity of N at q, see (122).

Theorem 3.3.2.3. We have dimF VGL2(π) = dimF((X)) D
∨
ξ (π) ≤ mp0(gr(π∨)) ≤ 2fr,

where the minimal ideal p0 is as in §3.1.4.

Proof. This is a direct consequence of (16), of Corollary 3.1.4.5, of Theorem 3.3.2.1
and of Corollary 3.3.1.4, noting that, if yj ∈ a(λ) for some j ∈ {0, . . . , f − 1},
then mp0(R/a(λ)) = 0 (as yj /∈ p0), and if yj /∈ a(λ) ∀ j ∈ {0, . . . , f − 1}, then
mp0(R/a(λ)) = 1 (as (R/a(λ))[(y0 · · · yf−1)−1] ∼= F[y0, . . . , yf−1][(y0 · · · yf−1)−1] ∼=
gr(A)).

Combined with the results of §3.2, we can deduce the following important corol-
lary.

Corollary 3.3.2.4. Assume moreover that ρ is semisimple, satisfies the genericity
condition (125) and that condition (i) above can be enhanced into an isomorphism
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of diagrams (πI1 →֒ πK1) ∼= D(ρ)⊕r, where D(ρ) is as in (126). Then we have an
isomorphism of representations of IQp:

VGL2(π)|IQp

∼=
(

ind⊗Qp

K (ρ)
)
|⊕rIQp

.

In particular we have dimF VGL2(π) = dimF((X)) D
∨
ξ (π) = mp0(π∨) = 2fr. If moreover

the constants νi associated to D(ρ ⊗ χ) (χ as in §3.2.1) at the beginning of [Bre11,
§6] are as in [Bre11, Thm.6.4], then we have an isomorphism of representations of
Gal(Qp/Qp):

VGL2(π) ∼=
(

ind⊗Qp

K (ρ)
)⊕r

.

Proof. It follows from Theorem 3.2.1.1 and Theorem 3.3.2.3 as dimF

(
ind⊗Qp

K (ρ)
)⊕r

=
2fr.

It is also worth mentioning the following corollary of Theorem 3.3.2.1.

Corollary 3.3.2.5. We have
∑

qmq(gr(π∨)) ≤ 4fr, where the sum is taken over all
minimal prime ideals q of R.

Proof. By an easy computation, we have
∑

qmq(R/a(λ)) = 2|A(λ)| (see (158) forA(λ)).
Thus the result follows from Proposition 3.3.1.5 and Theorem 3.3.2.1.

Remark 3.3.2.6. (i) It seems possible to us that the surjection in Theorem 3.3.2.1
could actually be an isomorphism, as least for π coming from the global theory as in
§3.4.1 below. Note that such an isomorphism implies in particular Ei

gr(Λ)(gr(π∨)) 6= 0
if and only if i = 2f (i.e. the gr(Λ)-module gr(π∨) is Cohen–Macaulay of grade 2f),
which in turns implies Ei

Λ(π∨) 6= 0 if and only if i = 2f (use [Ven02, Cor.6.3] and the
similar result with gr(Λ) instead of Λ, the first statement in [Ven02, Thm.3.21(ii)]
and [LvO96, Thm.I.7.2.11(1)]).
(ii) It is worth recalling here the following implications that we have seen. Consider
the following conditions on an admissible smooth representation π of GL2(K) over F
with a central character:

(a) [π[m3] : χ] = [π[m] : χ] for every character χ : I → F× appearing in π[m];

(b) gr(π∨) is killed by J , where gr(π∨) is computed with the m-adic filtration on
π∨;

(c) gr(π∨) is killed by some power of J , where gr(π∨) is computed with any good
filtration on the Λ-module π∨;

(d) π is in the category C of §3.1.2.

Then we have (a) ⇒ (b) ⇒ (c) ⇒ (d). We suspect that every implication is strict.
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3.3.3 Examples

We completely compute the gr(FJI/Z1K)-module gr(V ∨) for certain irreducible admis-
sible smooth representations V of GL2(K) over F (with V ∨ endowed with the m-adic
filtration). We assume p ≥ 5 in this section.

We keep the previous notation. If V is a smooth representation of I1/Z1 over F,
we write gr(V ∨) for the graded module associated to the m-adic filtration on V ∨.

Lemma 3.3.3.1. Let V be a smooth representation of I1/Z1 over F such that V |N0

is admissible as a representation of N0 and such that the natural map grmN0
(V ∨) →

gr(V ∨) (induced by the inclusions mn
N0
V ∨ ⊆ mnV ∨ for n ≥ 0) is surjective. Then this

map is an isomorphism.

Proof. Since V |∨N0
is a finite type FJN0K-module by assumption, it is a complete

filtered FJN0K-module for the mN0-adic filtration. As all the maps mn
N0
V ∨/mn+1

N0
V ∨ →

mnV ∨/mn+1V ∨ are surjective, any element in v ∈ mnV ∨ can be written v = v0 + w,
where v0 ∈

∑
m≥nm

m
N0
V ∨ = mn

N0
V ∨ (as V |∨N0

is complete) and w ∈ ∩m≥nm
mV ∨ = 0

(as the m-adic filtration is separated since V is smooth). Thus the inclusion mn
N0
V ∨ ⊆

mnV ∨ is an equality for n ≥ 0, and we are done.

The following two lemmas are motivated by [Paš10, Prop.7.1, Prop.7.2]. We
consider the finite group H as subgroup of I via the Teichmüller lift.

Lemma 3.3.3.2. Let V be an admissible smooth representation of I/Z1 over F. As-
sume that dimF V

N0 = 1 and that V |HN0 is isomorphic to an injective envelope of
some character χ in the category of smooth representations of HN0 over F. Then
Ext1

I/Z1
(χα−1

j , V ) = 0 for any 0 ≤ j ≤ f − 1.

Proof. Consider an extension class in Ext1
I/Z1

(χα−1
j , V ) represented by 0 → V →

V ′ → χα−1
j → 0. By assumption on V , this extension splits when restricted to HN0,

hence we may find v′ ∈ V ′\V on which HN0 acts via χα−1
j (in particular v′ ∈ V ′N0).

Notice that (g − 1)v′ ∈ V for any g ∈ I1. Let v ∈ V N0 be a nonzero vector so that
V N0 = Fv by assumption.

First take g ∈
(

1+pOK 0
0 1+pOK

)
. It is easy to see that (g− 1)v′ is again fixed by N0

and H acts on it via χα−1
j . But, by assumption V N0 is 1-dimensional on which H acts

via χ, thus we must have (g − 1)v′ = 0. We deduce that v′ is fixed by I1 ∩B(OK).

We claim that v′ is fixed by N−
1

def=
(

1 0
pOK 1

)
. This will imply that v′ is fixed by

I1 by the Iwahori decomposition, and consequently V ′ splits as I-representation. Let
k ≥ 1 be the smallest integer such that v′ is fixed by N−

k
def=
(

1 0
pkOK 1

)
; such an integer
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always exists, as V is a smooth representation of I. Suppose k ≥ 2 and take g ∈ N−
k−1.

Using the matrix identity (see [Paš10, Eq.(14)])
(

1 b
0 1

)(
1 0
c 1

)
=
(

1 0
c(1+bc)−1 1

)(
1+bc b

0 (1+bc)−1

)

and the fact that v′ is fixed by
(

1+pOK OK

pkOK 1+pOK

)
, one checks that (g−1)v′ ∈ V N0 . Con-

sequently, Fv⊕ Fv′ gives rise to an extension in Ext1
HN−

k−1
(χα−1

j , χ) which is nonsplit

by the choice of k. But, as in [Paš10, Lemma 5.6], one shows that Ext1
HN−

k−1
(χ′, χ) 6= 0

if and only if χ′ = χαi for some 0 ≤ i ≤ f − 1. Indeed, after conjugating by
(
pk−2 0

0 1

)
,

we are reduced to the case k = 2, in which case the result is proved by determining the
H-action on Hom(N−

1 ,F) as in [Paš10, Lemma 5.3] (see the proof of [BP12, Prop.5.1]
for the computation). This finishes the proof as χα−1

j 6= χαi for any 0 ≤ i, j ≤ f − 1
(as p ≥ 5).

Lemma 3.3.3.3. Let V be an admissible smooth representation of I/Z1 over F. As-
sume that dimF V

N0 = 1 and that V |HN0 is isomorphic to an injective envelope of
some character χ in the category of smooth representations of HN0 over F. Then we
have an isomorphism of gr(FJI/Z1K)-modules:

gr(V ∨) ∼= χ−1 ⊗ R/(z0, . . . , zf−1).

Proof. By assumption, V [m] = V [mN0 ] is one-dimensional and isomorphic to χ, hence
we may view gr(V ∨) as a cyclic module over gr(Λ) generated by eχ ∈ gr0(V ∨) =
V [m]∨, where H acts on eχ by χ−1. Let a ⊆ gr(Λ) be the annihilator of eχ.

We first prove that zj ∈ a for 0 ≤ j ≤ f − 1. Since H acts on zj via α−1
j (see just

above §3.3.1), to prove zjeχ = 0 in gr1(V ∨) it is equivalent to prove that

HomH(χαj , V [m2]/V [m]) = 0 ∀ j ∈ {0, . . . , f − 1}.

If not, then V would admit a subrepresentation isomorphic to Eχ,χαj
(for some j),

where Eχ,χαj
denotes the unique I/Z1-representation which is a nonsplit extension of

χαj by χ. But by [BHH+, Lemma 6.1.1(ii)] (after conjugating by the element
(

0 1
p 0

)
),

N0 acts trivially on Eχ,χαj
, which implies dimF V [mN0 ] ≥ 2, a contradiction to the

assumption on V . Using [BHH+, Lemma 6.1.1], we then deduce an embedding

V [m2]/V [m] →֒ ⊕f−1
j=0χα

−1
j . (164)

On the other hand, since HomI(χα−1
j , V ) = 0, we deduce from Lemma 3.3.3.2 that

HomI(χα−1
j , V [m2]/V [m]) = HomI(χα−1

j , V/V [m]) ∼
−→ Ext1

I/Z1
(χα−1

j , χ)

which have dimension 1 over F by [BHH+, Lemma 6.1.1] again. Combining this with
(164), we obtain

0→ χ→ V [m2]→ ⊕f−1
j=0χα

−1
j → 0. (165)
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and that V [m2] = V [m2
N0

].

Next, we prove that Ext1
I/Z1

(χ,Eχ,χα−1
j

) has dimension 1 over F for any 0 ≤ j ≤ f−

1. A straightforward dévissage using Ext1
I/Z1

(χ, χ) = 0 and dimF Ext1
I/Z1

(χ, χα−1
j ) = 1

(see [BHH+, Lemma 6.1.1]) yields dimF Ext1
I/Z1

(χ,Eχ,χα−1
j

) ≤ 1. So it suffices to

explicitly construct a nonzero element in this space, as follows. Let Ej
def= Fv0⊕Fv1⊕

Fv2 equipped with the action of I/Z1 determined by:

• H acts on v0, v1, v2 by χ, χα−1
j , χ respectively;

• if g =
(

1+pa b
pc 1+pd

)
∈ I1, then

gv0 = v0, gv1 = v1 + σj(b)v0,

gv2 = v2 + σj(c)v1 +
1
2

(
σj(a)− σj(d) + σj(bc)

)
v0.

One easily checks that Ej is well defined and yields the desired nonsplit extension of
Ext1

I/Z1
(χ,Eχ,χα−1

j
). Moreover one also checks that EN0

j = Fv0 ⊕ Fv2.

We prove that hj ∈ a for 0 ≤ j ≤ f − 1. Since Ext1
I/Z1

(χ, χ) = 0, the sequence
(165) induces an embedding

Ext1
I/Z1

(χ, V [m2]) →֒ Ext1
I/Z1

(χ,⊕f−1
j=0χα

−1
j ).

Note that the right-hand side has dimension f over F. Since Ej/χ is nonzero in
Ext1

I/Z1
(χ, χα−1

j ) for 0 ≤ j ≤ f − 1, we easily see that the above embedding is
actually an isomorphism and that Ext1

I/Z1
(χ, V [m2]) is spanned by the Ej’s. By the

last statement of the previous paragraph, if an extension E ∈ Ext1
I/Z1

(χ, V [m2]) is
nonzero then dimF E

N0 ≥ 2. Since dimF V
N0 = 1 by assumption, we see that there

exists no embedding E →֒ V . From (165) we then easily deduce

HomH(χ, V [m3]/V [m2]) = 0.

Since H acts trivially on hj and hjeχ ∈ gr2(V ∨) ∼= (V [m3]/V [m2])∨, we thus must
have hjeχ = 0, i.e. hj ∈ a for 0 ≤ j ≤ f − 1. This proves the claim.

We deduce a surjection gr(Λ)/(zj, hj , 0 ≤ j ≤ f − 1) ։ gr(V ∨). As the left-hand
side is F[y0, . . . , yf−1] ∼= gr(FJN0K) and (V |N0)∨ ∼= FJN0K from the assumption, we
obtain a surjection grmN0

(V ∨) ։ gr(V ∨). By Lemma 3.3.3.1 this surjection is an
isomorphism (and hence a = (zj , hj, 0 ≤ j ≤ f − 1)). This finishes the proof.

If χ = χ1 ⊗ χ2 is a character of H or of T (K), recall χs = χ2 ⊗ χ1.
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Proposition 3.3.3.4. Let V be an irreducible smooth F-representation of GL2(K)
with a central character.

(i) If V ∼= ψ ◦ det for some smooth character ψ : K× → F×, then gr(V ∨) ∼=
(ψ ⊗ ψ)−1 ⊗ F, where ψ ⊗ ψ is viewed as a character of H.

(ii) If V ∼= IndGL2(K)
B(K) χ for some smooth character χ : T (K)→ F×, then

gr(V ∨) ∼=
(
(χs|H)−1 ⊗ R/(z0, . . . , zf−1)

)
⊕
(
(χ|H)−1 ⊗ R/(y0, . . . , yf−1)

)
.

(iii) If V ∼= (IndGL2(K)
B(K) 1)/1 is the special series, then gr(V ∨)∼=R/(yizj, 0 ≤ i, j ≤

f − 1).

(iv) Assume K = Qp. If V is supersingular, i.e. isomorphic to (c-IndGL2(Qp)

GL2(Zp)Q×p
σ)/T

for some Serre weight σ (recall that c-Ind here means compact induction and

that EndGL2(Qp)(c-IndGL2(Qp)

GL2(Zp)Q×p
σ) ∼= F[T ]), then

gr(V ∨) ∼=
(
χ−1
σ ⊗ R/(y0z0)

)
⊕
(
(χsσ)−1 ⊗ R/(y0z0)

)
,

where χσ is the action of H on σI1.

Proof. (i) It is trivial.
(ii) The restriction of V to I admits a decomposition

V |I ∼= IndII∩B(K) χ⊕ IndII∩B−(K) χ
s, (166)

(cf. the proof of [Paš10, Prop.11.1]). By loc.cit., when restricted toHN0, IndII∩B−(K)χ
s

is an injective envelope of χs in the category of smooth representations of HN0 over
F, hence

gr((IndII∩B−(K) χ
s)∨) ∼= (χs|H)−1 ⊗ R/(z0, . . . , zf−1)

by Lemma 3.3.3.3. One handles the other direct summand by taking conjugation by
the element

(
0 1
p 0

)
.

(iii) By assumption we have a short exact sequence 0 → 1 → IndGL2(K)
B(K) 1 → V → 0.

Write W = (IndGL2(K)
B(K) 1)|I and decompose W = W1 ⊕W2 as in (166). The image

of 1 →֒ W is equal to the subspace of constant functions, hence the composition
1 →֒ W ։Wi is nonzero for i ∈ {1, 2}. Consequently, the dual morphism gr(W∨

i )→
gr(1∨) is also nonzero, and using (ii) (applied to W ) we obtain an exact sequence of
gr(FJI/Z1K)-modules

0→ R/(yizj , 0 ≤ i, j ≤ f − 1)→ gr(W∨
1 )⊕ gr(W∨

2 )→ gr(1∨)→ 0. (167)
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Denote by F the induced filtration on V ∨ from the m-adic filtration on W∨. By (167)
we have an isomorphism grF (V ∨) ∼= R/(yizj , 0 ≤ i, j ≤ f − 1). To finish the proof, it
suffices to prove that F coincides with the m-adic filtration on V ∨, or equivalently the
inclusion mnV ∨ ⊆ mnW∨ ∩ V ∨ (for n ≥ 0) is an equality. As in the proof of Lemma
3.3.3.1 it suffices to prove that the induced graded morphism grm(V ∨) → grF (V ∨)
is surjective. But, grF (V ∨) is generated by gr0

F (V ∨), so it suffices to show that
gr0

m(V ∨)→ gr0
F (V ∨) is surjective, which follows from (167) and the exact sequence

gr0
m(V ∨)→ gr0

m(W∨)→ gr0
m(1∨)→ 0

induced by 0→ 1I1 →W I1 → V I1 (this sequence is actually right exact but we don’t
need this fact).
(iv) The proof is analogous to (iii), using [Paš10, Thm.1.2] together with [Paš10,
Prop.4.7].

By the classification of irreducible admissible smooth representations of GL2(Qp)
over F, we deduce from Proposition 3.3.3.4 and the results of §3.1.2:

Corollary 3.3.3.5. Let V be an admissible smooth representation of GL2(Qp) over
F which has a central character and is of finite length. Then there is an integer n ≥ 0
such that gr(V ∨) is annihilated by Jn. In particular V is in the category C of §3.1.2.

3.3.4 Characteristic cycles

We define the characteristic cycle of a finitely generated filtered Λ-module M such
that gr(M) is annihilated by a power of J and prove an important property (Theorem
3.3.4.5).

Recall from §3.1.4 that the minimal prime ideals of R = R/(yjzj, 0 ≤ j ≤ f − 1)
are the (yi, zj , i ∈ J , j /∈ J ) with J a subset of {0, . . . , f − 1}.

Definition 3.3.4.1. Let N be a finitely generated module over gr(Λ) which is an-
nihilated by some power of J . We define the characteristic cycle of N , denoted by
Z(N)3 as follows:

Z(N) def=
∑

q

mq(N)q ∈ ⊕qZ≥0q,

where q runs over all minimal prime ideals of R.

Lemma 3.3.4.2. Let n ≥ 0. If 0→ N1 → N → N2 → 0 is a short exact sequence of
finitely generated gr(Λ)/Jn-modules, then Z(N) = Z(N1) + Z(N2) in ⊕qZ≥0q.

Proof. It is a direct consequence of Lemma 3.1.4.3.

3A more standard notation is Zf (N), where f indicates the dimension of the cycles.
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Let M be a finitely generated Λ-module which is equipped with a good filtration
F

def= {FnM,n ∈ Z} (in the sense of [LvO96, §I.5]) such that grF (M) is annihilated by
some power of J . Recall that this condition doesn’t depend on the choice of the good
filtration F (see just before Proposition 3.1.2.11) and that grF (M) is also finitely
generated over gr(Λ) ([LvO96, Lemma I.5.4]).

Lemma 3.3.4.3. If F, F ′ are two such good filtrations on M , then

Z(grF (M)) = Z(grF ′(M)).

Proof. The proof is (almost) the same as in [Bjö89, §4]. We recall it for the conve-
nience of the reader. Since F and F ′ are equivalent by [LvO96, Lemma I.5.3], we
may find c ∈ Z≥0 such that

Fn−cM ⊆ F ′
nM ⊆ Fn+cM, ∀ n ∈ Z.

For i ∈ {−c,−c + 1, . . . , c} define a sequence of filtrations F (i) = {F (i)
n M,n ∈ Z} on

M by
F (i)
n M

def= Fn+iM ∩ F
′
nM.

It is clear that F (−c) = F [−c] and F (c) = F ′, where F [−c] denotes the shifted filtration
F [−c]n

def= Fn−c, n ∈ Z. Hence it suffices to show that each F (i) is a good filtration on
M such that

Z(grF (i)(M)) = Z(grF (i+1)(M)). (168)

Put for −c ≤ i ≤ c:

Ti
def=
⊕

n∈Z

(Fn+iM ∩ F
′
nM)/(Fn+iM ∩ F

′
n−1M),

Si
def=
⊕

n∈Z

(Fn+i+1M ∩ F
′
nM)/(Fn+iM ∩ F

′
nM).

Since Ti is a gr(Λ)-submodule of grF ′(M) and Si is a gr(Λ)-submodule of grF (M)[i+1],
both Ti and Si are finitely generated gr(Λ)-modules and are annihilated by some power
of J . Moreover, one checks that there are short exact sequences of gr(Λ)-modules
(annihilated by some power of J):

0→ Ti → grF (i+1)(M)→ Si → 0,

0→ Si[−1]→ grF (i)(M)→ Ti → 0.

Hence, grF (i)(M) is also finitely generated over gr(Λ) and annihilated by a power of J .
Consequently, F (i) is a good filtration on M by [LvO96, Thm.I.5.7] and (168) follows
from Lemma 3.3.4.2.

Thanks to Lemma 3.3.4.3, we can define mq(M) to be mq(grF (M)) and Z(M) to
be Z(grF (M)) for any minimal prime ideal q of R and any good filtration F on M .
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Lemma 3.3.4.4. Let M be as above and let 0 → M1 → M → M2 → 0 be an exact
sequence of Λ-modules. Then we have in ⊕qZ≥0q:

Z(M) = Z(M1) + Z(M2).

Proof. We may equip M1 (resp. M2) with the induced filtration (resp. quotient filtra-
tion) from the one of M , which are automatically good by [LvO96, Cor.I.5.5(1)] and
[LvO96, Rem.I.5.2(2)]. Moreover the sequence 0 → gr(M1) → gr(M) → gr(M2) →
0 is again exact. In particular, both gr(M1) and gr(M2) are finitely generated
gr(Λ)-modules annihilated by some power of J , and the result follows from Lemma
3.3.4.2.

If M is a finitely generated Λ-module, recall from [LvO96, Def.III.2.1.1] that the
grade of M is by definition the smallest integer jΛ(M) ≥ 0 such that EjΛ(M)

Λ (M) 6= 0
(with jΛ(M) def= +∞ if Ej

Λ(M) = 0 for all j ≥ 0). For a good filtration F on M , we
define similarly the grade jgr(Λ)(grF (M)) of the gr(Λ)-module grF (M). By [LvO96,
Thm.III.2.5.2] we have jgr(Λ)(grF (M)) = jΛ(M) (note that Λ is a left and right Zariski
ring by [LvO96, Prop.II.2.2.1]), in particular jgr(Λ)(grF (M)) doesn’t depend on the
good filtration F .

Recall that the Krull dimension dimR(N) of a finitely generated module N over
R (which is commutative) is the Krull dimension of R/AnnR(N). For such a module
N , by the argument in the proof of [BHH+, Lemma 5.1.3] applied to A = gr(Λ),
I = (h0, . . . , hf−1) and with N instead of grmM there, we have

jgr(Λ)(N) = dim(I1/Z1)− dimR(N). (169)

Now, for M as above, assume that grF (M) is annihilated by a power of J . Then
applying (169) to the R-modules N = J i grF (M)/J i+1 grF (M) for i ≥ 0 and by an
obvious dévissage using [LvO96, Lemma III.2.1.2(1)], we deduce

jΛ(M) ≥ dim(I1/Z1)− dim(R) = 3f − f = 2f. (170)

Moreover, by the same dévissage using [LvO96, Cor.III.2.1.6] (note that all assump-
tions are satisfied since gr(Λ) is Auslander regular) and (169), we deduce that if
jΛ(M) = jgr(Λ)(grF (M)) > 2f , then we have dimR(J i grF (M)/J i+1 grF (M)) < f for
all i, hence Z(J i grF (M)/J i+1 grF (M)) = 0 for all i ≥ 0 and Z(M) = 0 (see (122)).

Theorem 3.3.4.5. Let M be a finitely generated Λ-module such that gr(M) is an-
nihilated by a power of J for one (equivalently every) good filtration on M . Then
Z(E2f

Λ (M)) is well-defined and we have

Z(M) = Z(E2f
Λ (M)).
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Proof. If jΛ(M) > 2f , then the result is trivial since both terms are 0 by the sentence
just before the proposition. So from (170) we may assume jΛ(M) = 2f in the rest of
the proof.

Choose a good filtration F of M so that Z(M) = Z(grF (M)). We first show that
the gr(Λ)-module E2f

gr(Λ)(grF (M)) is also annihilated by some power of J . Indeed,
grF (M) has a finite filtration whose graded pieces are annihilated by J , hence by
dévissage it suffices to show that E2f

gr(Λ)(N) is annihilated by J if N is a finitely
generated R-module. As in the proof of Proposition 3.3.1.10 it is equivalent to prove
the same property for Ef

R(N), which is obvious as R is commutative.

As a consequence, by the first statement in Proposition 3.3.4.6 below the graded
module associated to the filtration on E2f

Λ (M) in loc.cit. is again finitely generated
over gr(Λ) and annihilated by some power of J . Hence Z(E2f

Λ (M)) can be defined.
By Proposition 3.3.4.6 the cokernel of the injection gr(E2f

Λ (M)) →֒ E2f
gr(Λ)(grF (M))

has grade > 2f , hence its associated characteristic cycle is 0, as explained above.
From Lemma 3.3.4.2 we deduce an equality of cycles

Z
(

gr(E2f
Λ (M))

)
= Z

(
E2f

gr(Λ)(grF (M))
)
.

Hence, we are left to show that

Z(grF (M)) = Z
(
E2f

gr(Λ)(grF (M))
)
.

As gr(Λ) is an Auslander regular ring, any subquotient N of grF (M) has grade ≥ 2f
(by [LvO96, Prop.III.2.1.6]) and is such that Ej

gr(Λ)(N) has grade ≥ j for any j ≥ 0,

so that Ej
gr(Λ)(N) and all its subquotients have zero cycle if j < 2f or if j > 2f (by

Lemma 3.3.4.2 and the discussion before the proposition for the latter). Hence, for n
large enough so that Jn annihilates grF (M), we deduce using again Lemma 3.3.4.2:

Z
(
E2f

gr(Λ)(grF (M))
)

=
n−1∑

i=0

Z
(
E2f

gr(Λ)(J
i grF (M)/J i+1 grF (M))

)
.

By the definition of Z and of mq(N), see (122), it thus suffices to show

Z(N) = Z(E2f
gr(Λ)(N))

for any finitely generated R-module N . Using Lemma 3.3.1.9 it suffices to show

Z(N) = Z(HomR(N,R)),

which is equivalent to show that for any minimal prime ideal q of R,

lgRq
(Nq) = lgRq

(HomR(N,R)q).

Using the isomorphism HomR(N,R)q ∼= HomRq
(Nq, Rq) and noting that Rq is a field

(being artinian, and reduced as R is), the result is clear.
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The first part of the following general result was used in the proof of Theorem
3.3.4.5. Recall that a finitely generated gr(Λ)-module of grade j is Cohen–Macaulay
if all its Ei

gr(Λ) are 0 when i 6= j.

Proposition 3.3.4.6. Let M be a finitely generated Λ-module of grade j0 with a good
filtration. Then there exists a good filtration on Ej0

Λ (M) such that gr(Ej0

Λ (M)) is a
submodule of Ej0

gr(Λ)(gr(M)) and the corresponding cokernel has grade (over gr(Λ))
≥ j0 + 1. If gr(M) is moreover Cohen–Macaulay, then

gr(Ej0

Λ (M)) ∼
→ Ej0

gr(Λ)(gr(M)).

Proof. See [Bjö89, Prop.3.1] and the remark following it. We explain the proof fol-
lowing the presentation of [LvO96, §III.2.2].

As in [LvO96, §III.2.2], we may construct a filtered free resolution of M

· · · → Lj → Lj−1 → · · · → L0 →M → 0

and taking E0
Λ(−) = HomΛ(−,Λ) obtain a filtered complex of finitely generated Λ-

modules
0→ E0

Λ(L0)→ E0
Λ(L1)→ · · · , (171)

where each E0
Λ(Lj) is endowed with a good filtration as in loc.cit.. Taking the associ-

ated graded complex of (171), we obtain a complex of gr(Λ)-modules (denoted G(∗)
in loc.cit.):

0→ gr(E0
Λ(L0))→ gr(E0

Λ(L1))→ · · ·

and by [LvO96, Lemma III.2.2.2(2)] we have isomorphisms E0
gr(Λ)(gr(Lj)) ∼=

gr(E0
Λ(Lj)) for j ≥ 0. Next, as in [LvO96, §III.1] we may associate a spectral sequence

{Er
j , r ≥ 0, j ≥ 0} to the filtered complex (171) and define a good filtration on

Ej
Λ(M) for j ≥ 0 with the following properties (for convenience we have shifted the

numbering):

(a) E0
j = gr(E0

Λ(Lj)) and E1
j = Ej

gr(Λ)(gr(M)) for any j;

(b) for any fixed r ≥ 1, there is a complex

0→ Er
0 → · · · → Er

j → Er
j+1 → · · ·

whose homology gives Er+1
j ;

(c) for r large enough (depending on j), E∞
j = Er

j
∼= gr(Ej

Λ(M)).

Since jΛ(M) = j0 by assumption, we also have jgr(Λ)(gr(M)) = j0 by [LvO96,
Thm.III.2.5.2] and so E1

j = 0 for j < j0. By (b), this implies short exact sequences

0→ Er+1
j0
→ Er

j0
→ Er

j0+1, ∀ r ≥ 1.
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In particular, by taking r large enough, gr(Ej0

Λ (M)) = E∞
j0

is a submodule of E1
j0

.
Moreover, since Er

j0+1 has grade ≥ j0 + 1 for all r and so do its subquotients, the
cokernel of E∞

j0
→֒ E1

j0
also has grade ≥ j0 + 1.

If moreover gr(M) is Cohen–Macaulay, then E1
j = 0 except for j = j0, hence

E∞
j0

= E1
j0

which implies the last claim.

3.3.5 On the length of π in the semisimple case

For ρ as in §3.3.1 assumed moreover semisimple and strongly generic, and π as in
§3.3.2 with moreover r = 1 and satisfying one more hypothesis, we prove that π is
generated over GL2(K) by its GL2(OK)-socle, is irreducible if ρ is, and is semisimple
of length 3 if ρ is reducible split and f = 2.

We keep the notation in §3.3.2 and we assume moreover that ρ is semisimple and
satisfies the strong genericity condition (125) (we will use the results of §3.2). We
fix an admissible smooth representation π of GL2(K) over F satisfying the conditions
(i), (ii) in loc.cit. with r = 1 in (i), i.e. πK1 ∼= D0(ρ). Recall this implies that gr(π∨)
is annihilated by J , where gr(π∨) is computed with the m-adic filtration. We assume
moreover:

(iii) π∨ is essentially self-dual of grade 2f , i.e. there is a GL2(K)-equivariant iso-
morphism of Λ-modules

E2f
Λ (π∨) ∼= π∨ ⊗ (det(ρ)ω−1) (172)

(recall det(ρ)ω−1 is the central character of π). Here Ej
Λ(π∨) is endowed with the

action of GL2(K) (compatible with the Λ-module structure) defined in [Koh17,
Prop.3.2].

Remark 3.3.5.1. Conditions (i) to (iii), with r = 1 in (i), will be satisfied for π
coming from the global theory in the so-called minimal case (see §3.4.4). The reason
to impose the extra assumption r = 1 in (i) is that although for general r we have an
equality of diagrams

(πI1 →֒ πK1) = (D0(ρ)I1 →֒ D0(ρ))⊕r

for the representations π coming from cohomology (see Theorem 3.4.1.1 below), we
do not know if this implies that π has the form π′⊕r for some representation π′ of
GL2(K).

Given σ ∈ W (ρ), we define the length of σ as follows: if λ ∈ D corresponds to σ
(see §3.3.1), then ℓ(σ) def= ℓ(λ), see (159). For 0 ≤ ℓ ≤ f , let

Wℓ(ρ)
def= {σ ∈W (ρ), ℓ(σ) = ℓ}
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and define τℓ(ρ) def= ⊕σ∈Wℓ(ρ)σ. We call Wℓ(ρ), or by abuse of notation τℓ(ρ), an orbit
in W (ρ). Note that this is different from an orbit of δ in W (ρ) as defined in §3.2.4
(see §3.2.3 for δ), i.e. in general τℓ(ρ) contains several orbits of δ.

Lemma 3.3.5.2. If π′ is a nonzero subrepresentation of π, then socGL2(OK)(π′) is a
direct sum of orbits in W (ρ).

Proof. It is clear that (π′I1 →֒ π′K1) is a subdiagram of (πI1 →֒ πK1). The result fol-
lows from this using [BP12, Thm.15.4] together with the proof of [BP12, Thm.19.10].
Actually, when ρ is irreducible, we even have socGL2(OK)(π′) = socGL2(OK)(π) by (the
proof of) [BP12, Thm.19.10].

We use without comment the notation and definitions in §3.1.4 and denote by
lg(τ) the length of a finite-dimensional representation τ of GL2(OK) over F.

Proposition 3.3.5.3. Let π′ be a subquotient of π.

(i) We have dimF((X)) D
∨
ξ (π′) = mp0(π′∨).

(ii) Assume that π′ is a subrepresentation of π. Then

dimF((X)) D
∨
ξ (π′) = mp0(π′∨) = lg(socGL2(OK)(π′)).

In particular, if π′ 6= 0, then D∨
ξ (π′) 6= 0.

(iii) Assume that π′ is a nonzero quotient of π. Then D∨
ξ (π′) 6= 0.

Proof. (i) First, for any subquotient π′ of π, we equip the Λ-module π′∨ with a good
filtration F by choosing two submodules π∨

1 ⊆ π∨
2 of π∨ (with filtrations induced

from the m-adic one on π∨) such that π′∨ ∼= π∨
2 /π

∨
1 and taking the induced filtration.4

Then grF (π′∨) is again an R-module, and dimF((X)) D
∨
ξ (π′) ≤ mp0(π′∨) by Corollary

3.1.4.5. Since dimF((X)) D
∨
ξ (π) = mp0(π∨) by Corollary 3.3.2.4, since D∨

ξ (−) is an exact
functor by Theorem 3.1.3.3 and since Z(−), and in particular mp0(−), are additive
by Lemma 3.3.4.4, the result follows.

(ii) By assumption π′ is a subrepresentation of π. Using that socGL2(OK)(π′) is a
union of orbits of δ, or equivalently of S as in (146), by Lemma 3.3.5.2, it follows
from Proposition 3.2.4.2 that

dimF((X)) D
∨
ξ (π′) ≥ lg(socGL2(OK)(π′)).

4The filtrations on π∨

2 and π∨

1 might not be the m-adic ones, and the resulting filtration on π′∨

might depend on the choice of π∨

1 and π∨

2 .
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On the other hand, by Lemma 3.3.1.3(i) and Corollary 3.3.2.2, we have mp0(π′∨) ≤
lg(socGL2(OK)(π′)) (see the proof of Theorem 3.3.2.3). Hence all the three quantities
are equal by (i).

(iii) Let π′′ be the kernel of the quotient map π ։ π′ so that we have an exact
sequence of Λ-modules:

0→ π′∨ → π∨ → π′′∨ → 0.

Since π∨ is essentially self-dual of grade 2f by assumption, π′∨ also has grade 2f by
[LvO96, Prop.III.4.2.8(1)] and [LvO96, Prop.III.4.2.9]. Taking Ei

Λ(−), we obtain a
long exact sequence of Λ-modules

0→ E2f
Λ (π′′∨)→ E2f

Λ (π∨)→ E2f
Λ (π′∨)→ E2f+1

Λ (π′′∨) (173)

which gives rise by Pontryagin duality to an exact sequence of admissible smooth
representations of GL2(K) with central character (see [Koh17, Cor.1.8]). Define π̃ to
be the admissible smooth representation of GL2(K) such that

π̃∨ ⊗ (det(ρ)ω−1) ∼= Im
(
E2f

Λ (π∨)→ E2f
Λ (π′∨)

)
. (174)

Since π∨ is essentially self-dual by assumption (see (172)), π̃∨ is a quotient of π∨ and
dually π̃ is a subrepresentation of π. Since E2f+1

Λ (π′′∨) has grade ≥ 2f + 1 as Λ is
Auslander regular, we have by (173) and the discussion before Theorem 3.3.4.5:

Z(E2f
Λ (π′∨)) = Z(π̃∨ ⊗ (det(ρ)ω−1)),

hence Z(π′∨) = Z(π̃∨) by Theorem 3.3.4.5 which implies in particular by (i):

dimF((X)) D
∨
ξ (π′) = dimF((X)) D

∨
ξ (π̃). (175)

Since jΛ(π′∨) = 2f , Z(π′∨) is nonzero (using e.g. (169)), hence π̃ is nonzero, thus
D∨
ξ (π̃) 6= 0 by (ii), and finally D∨

ξ (π′) 6= 0 by (175).

Remark 3.3.5.4. (i) The construction of π̃ in the proof of Proposition 3.3.5.3(iii)
does not use the assumption that ρ is semisimple.
(ii) It follows from Proposition 3.3.5.3(ii), from Corollary 3.1.4.5, from Lemma 3.1.4.4,
from Lemma 3.1.4.1 and from (108) that for π′ ⊆ π as in Proposition 3.3.5.3(ii) we
have

rkA(DA(π′)ét) = dimF((X)) D
∨
ξ (π′) = mp0(gr(π′∨)) = rkA(DA(π′)). (176)

By Corollary 3.1.2.9, both DA(π′) and DA(π′)ét are finite projective A-modules and
it follows from (176) that the surjection of A-modules DA(π′) ։ DA(π′)ét is here an
isomorphism.

Theorem 3.3.5.5. As a GL2(K)-representation, π is generated by its GL2(OK)-socle.
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Proof. Let τ def= socGL2(OK)(π), let π′ def= 〈GL2(K).τ〉 be the subrepresentation of π
generated by τ and let π′′ def= π/π′. Since D∨

ξ (−) is exact by Theorem 3.1.3.7, we have

dimF((X)) D
∨
ξ (π) = dimF((X)) D

∨
ξ (π′) + dimF((X)) D

∨
ξ (π′′).

However, since π and π′ have the same GL2(OK)-socle, we have

dimF((X)) D
∨
ξ (π) = dimF((X)) D

∨
ξ (π′)

by Proposition 3.3.5.3(ii), thus D∨
ξ (π′′) = 0. If π′′ is nonzero this contradicts Propo-

sition 3.3.5.3(iii).

Corollary 3.3.5.6. Assume that ρ is irreducible. Then π is irreducible and is a
supersingular representation.

Proof. This follows from Theorem 3.3.5.5 and [BP12, Thm.19.10(i)].

Remark 3.3.5.7. (i) A result analogous to Theorem 3.3.5.5 when ρ is not semisimple
is proved in [HW, Thm.1.6].
(ii) While we believe that Proposition 3.3.5.3 and Theorem 3.3.5.5 should be true
without assuming r = 1, we don’t know how to prove a generalization of Corollary
3.3.5.6 (i.e. π is semisimple and has length r in general), as mentioned in Remark
3.3.5.1.

Corollary 3.3.5.8. Assume that ρ is reducible split. Then π has the form

π = π0 ⊕ πf ⊕ π
′, (177)

where

• π0 and πf are irreducible principal series such that E2f
Λ (π∨

i ) ∼= π∨
f−i⊗(det(ρ)ω−1),

i ∈ {0, f};

• π′ is generated by its GL2(OK)-socle and π′∨ is essentially self-dual (as in (172)).
Moreover, π′ is irreducible and supersingular when f = 2.

Proof. By the definition of W (ρ) (see [BP12, §11]), there exists a unique Serre weight
σ0 ∈W (ρ) such that ℓ(σ0) = 0. Let χσ0 be the character of I acting on σI1

0 . It is easy
to check that

JH
(

IndGL2(OK)
I χσ0

)
∩W (ρ) = {σ0}.

Let π0
def= 〈GL2(K).σ0〉, a subrepresentation of π. We claim that π0 is an irreducible

principal series. Indeed, by [HW, Lemma 5.14] and its proof, the morphism (induced
from σ0 →֒ π by Frobenius reciprocity)

c-IndGL2(K)
GL2(OK)K× σ0 → π
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(where c-Ind means compact induction) factors through c-IndGL2(K)
GL2(OK)K× σ0/(T − µ0)

for some µ0 ∈ F× (as socGL2(OK)(π) is multiplicity-free). Note that the genericity of
ρ implies that dimF σ0 ≥ 2, hence the representation c-IndGL2(K)

GL2(OK)K× σ0/(T − µ0) is
irreducible and isomorphic to some principal series by [BL94, Thm.30]. This proves
the claim. Moreover, the GL2(OK)-socle of π0 is exactly σ0, and if π0

∼= IndGL2(K)
B(K) χ0

for some smooth character χ0 : T (K) → F× then χs0|H = χσ0 . Similarly, there exists
a unique Serre weight σf ∈W (ρ) such that ℓ(σf ) = f . It satisfies again

JH
(

IndGL2(OK)
I χσf

)
∩W (ρ) = {σf}

and by the same argument as above the subrepresentation πf
def= 〈GL2(K).σf 〉 of

π is an irreducible principal series with GL2(OK)-socle equal to σf , and if πf ∼=
IndGL2(K)

B(K) χf then χsf |H = χσf
. The map π0 ⊕ πf → π is injective since it is injective

on the GL2(OK)-socles.

Letting π′ def= π/(π0 ⊕ πf ), we have an exact sequence of Λ-modules:

0→ π′∨ → π∨ → π∨
0 ⊕ π

∨
f → 0.

As Λ is Auslander regular and π∨ is of grade 2f , it follows from [LvO96, Cor.III.2.1.6]
that π′∨ is of grade ≥ 2f , hence E2f−1

Λ (π′∨) = 0 and there is an exact sequence of
(finitely generated) Λ-modules

0→ E2f
Λ (π∨

0 )⊕ E2f
Λ (π∨

f )→ E2f
Λ (π∨)→ E2f

Λ (π′∨).

Since π∨ is essentially self-dual by assumption (see (172)) and since E2f
Λ (π∨

0 )∨ and
E2f

Λ (π∨
f )∨ are also irreducible principal series by [Koh17, Prop.5.4], we see that π

admits a quotient isomorphic to π′
0⊕ π

′
f , where π′

i (for i ∈ {0, f}) is the (irreducible)
principal series such that

π′∨
i ⊗ (det(ρ)ω−1) = E2f

Λ (π∨
f−i). (178)

Explicitly, if π′
i
∼= IndGL2(K)

B(K) χ′
i for some smooth characters χ′

i : T (K)→ F×, and if we

let αB
def= ω⊗ω−1 : T (K)→ F× and η def= det(ρ)ω−1 (for short), then by [HW, Lemma

10.7] (which is based on [Koh17, Prop.5.4]):

χ′
f = χ−1

0 αB(η ⊗ η), χ′
0 = χ−1

f αB(η ⊗ η). (179)

Let us compute the GL2(OK)-socle of π′
f (the case of π′

0 is similar). Since η is equal
to the central character of π0, we have χ−1

0 (η ⊗ η) = χs0, so that (179) becomes
χ′
f = χs0αB. Since χs0|H = χσ0 as seen in the first paragraph, we deduce

(χ′
f)
s|H = χsσ0

α−1
B = χσf

, (180)
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where the last equality holds by an easy check using the definition of σ0 and σf (see
[BP12, §11]). In particular, our genericity assumption on ρ implies that χ′

f 6= χ′s
f

when restricted to T (OK). Using [BL94, Thm.34(2)], this implies that the GL2(OK)-
socle of π′

f is irreducible and actually isomorphic to σf by (180). Similarly, the
GL2(OK)-socle of π′

0 is isomorphic to σ0.

We claim that the composite morphism

π0 ⊕ πf →֒ π ։ π′
0 ⊕ π

′
f

is an isomorphism. Since π is generated by its GL2(OK)-socle, namely
⊕
σ∈W (ρ) σ,

the composite morphism
ι0 :

⊕

σ∈W (ρ)

σ →֒ π ։ π′
0

is nonzero. Since the image is contained in socGL2(OK)(π′
0), which is equal to σ0 as

seen in the last paragraph, ι0 is nonzero when restricted to σ0. But, by construction
we have 〈GL2(K).σ0〉 = π0 inside π, hence the composite morphism π0 →֒ π ։ π′

0

is nonzero, hence an isomorphism as both π0 and π′
0 are irreducible. In the same

way the composite morphism πf →֒ π ։ π′
f is also an isomorphism. This proves the

claim, from which the decomposition (177) immediately follows. From (178) we also
deduce the isomorphism E2f

Λ (π∨
i ) ∼= π∨

f−i ⊗ η for i ∈ {0, f}.

We now finish the proof. First, π′ is generated by its GL2(OK)-socle by Theorem
3.3.5.5. Explicitly, we have

socGL2(OK)(π′) =
⊕

σ∈W (ρ)

0<ℓ(σ)<f

σ.

In particular, if f = 2, then π′ is irreducible and is a supersingular representation by
[BP12, Thm.19.10(ii)]. Finally we prove that π′∨ is essentially self-dual (as in (172)).
In fact, using (177) and noting that

(E2f
Λ (π∨))∨ ⊗ η ∼= π0 ⊕ πf ⊕ (E2f

Λ (π′∨))∨ ⊗ η,

it suffices to prove that the composite morphism

π′ →֒ π
∼
−→ (E2f

Λ (π∨))∨ ⊗ η ։ (E2f
Λ (π′∨))∨ ⊗ η

is an isomorphism. Since both the source and the target have the same GL2(OK)-
socle, the morphism is injective because it is when restricted to the GL2(OK)-socle
of π′ and is surjective because (E2f

Λ (π′∨))∨⊗ η is generated by its GL2(OK)-socle.

3.4 Local-global compatibility results for GL2(Qpf )

We prove special cases of Conjecture 2.1.3.1 and Conjecture 2.5.1 when F+
v = Qpf

and n = 2. We assume E = W (F)[1/p] (thus OE = W (F) and ̟E = p).
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3.4.1 Global setting and results

We refine the global setting of §§2.1, 2.5 when n = 2 in order to apply the results of
[BHH+] and we state the first main global result.

We come back to the setting of §2.1 when n = 2 and we assume p > 7. We make
the following extra assumptions on the field F and the unitary group H :

(i) F/F+ is unramified at all finite places;

(ii) p is unramified in F+;

(iii) H is defined over OF+ and H ×OF +
F+ is quasi-split at all finite places of F+.

Condition (i) (together with the fact that any p-adic place of F+ splits in F ) implies
[F+ : Q] is even (see [GK14, §3.1]). By [GK14, §3.1.1] such groups H always exist.
We denote by R�

rw̃
the universal framed deformation ring of rw̃ over W (F) (w̃ is any

finite place of F ). We set K def= F+
v and f def= [K : Qp].

We let r : Gal(F/F )→ GL2(F) as in §2.1.3 and make the following extra assump-
tions on r (recall that Sp is the set of places of F+ dividing p):

(iv) r|Gal(F/F ( p√1)) is adequate ([Tho17, Def.2.20]);

(v) rw̃ is unramified if w̃|F+ is inert in F ;

(vi) R�

rw̃
is formally smooth over W (F) if rw̃ is ramified and w̃|F+ /∈ Sp;

(vii) rw̃ is generic in the sense of [BP12, Def.11.7] if w̃|F+ ∈ Sp\{v};

(viii) rṽ is, up to twist, of one of the following forms for ṽ|F+ = v:

• rṽ|IK
∼=

(
ω

(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
3 ≤ ri ≤ p− 6,

• rṽ|IK
∼=


ω

(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
pf (same)
2f


 4 ≤ r0 ≤ p− 5, 3 ≤ ri ≤ p− 6

for i > 0.

Note that conditions (iv) to (viii) only depend on w̃|F+ and ṽ|F+ using condition (i) in
§2.1.3 (the genericity conditions in (viii) are satisfied in [DL, §3.3] and don’t depend
on the choices of σ0, σ′

0). We denote by Sr the finite set of finite places of F+ such
that w̃|F+ ∈ Sr if and only if rw̃ is ramified. Thus Sp ⊆ Sr and by (ii) any place in
Sr splits in F+. We fix a finite place v1 of F+ which is not in Sr and satisfies the
assumptions in [EGS15, §6.6], and we choose ṽ1|v1 in F .
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We choose S a finite set of finite places of F+ that split in F containing Sr but
not v1, and a compact open subgroup U =

∏
w Uw ⊆ H(A∞

F+) such that

(ix) Uw ⊆ H(OF+
w

) if w splits in F ;

(x) Uw is maximal hyperspecial in H(F+
w ) if w is inert in F ;

(xi) Uw = H(OF+
w

) if w /∈ S ∪ {v1} and w splits in F or if w ∈ Sp;

(xii) ιṽ1
(Uv1) is contained in the upper-triangular unipotent matrices mod ṽ1.

We also define V def= Up∏
w∈Sp

Vw, where Up def=
∏
w/∈Sp

Uw and Vw is a pro-p normal

subgroup of Uw if w ∈ Sp (hence V is normal in U). We set Σ def= S ∪{v1} and assume
S(V,F)[mΣ] 6= 0 (see §2.1.2). Note that S(V,F)[mΣ] doesn’t depend on S as above by
the proof of [BDJ10, Lemma 4.6(a)]. For each place w ∈ Sp we choose a place w̃|w in
F . For w ∈ Sp recall from §3.2.1 that W (rw̃(1)) is the set of Serre weights associated
to rw̃(1) def= rw̃ ⊗ ω defined as in [BDJ10, §3]. Then it follows from [GLS14, Thm.A]
and [BLGG13, Def.2.9] that we have

HomU

(
⊗w∈Sp σw̃, S(V,F)[mΣ]

)
6= 0⇐⇒ σw̃ ∈W (rw̃(1)) ∀ w ∈ Sp, (181)

where we consider ⊗w∈Spσw̃ as a representation of U via U ։ U/V
∼
→
∏
w∈Sp

Uw/Vw
and the isomorphisms ιw̃. Note that the left-hand side of (181) is also isomorphic to
HomU(⊗w∈Spσw̃, S(Up,F)[mΣ]), where S(Up,F)[mΣ] is defined as in §2.1.2, replacing
Uv by Up.

We freely use the previous local notation (I1 is the pro-p Iwahori subgroup in
GL2(OK) = GL2(OFṽ) etc.) and set ρ def= rṽ(1).

Theorem 3.4.1.1. Choose Serre weights σw̃ ∈W (rw̃(1)) for w ∈ Sp\{v} and set

π
def= HomUv(⊗w∈Sp\{v}σw̃, S(V v,F)[mΣ]).

Then there exist an integer r ≥ 1 only depending on v, Uv, V v, ⊗w∈Sp\{v}σw̃ and r
and a diagram D(ρ) = (D1(ρ) →֒ D0(ρ)) as in (3.2.1) only depending on ρ = rṽ(1)
(and satisfying the assumptions in loc.cit. on the constants νi) such that there is an
isomorphism of diagrams

D(ρ)⊕r ∼= (πI1 →֒ πK1).

The case r = 1 of Theorem 3.4.1.1 is known and due to Dotto and Le ([DL,
Thm.1.3]). We generalize below their proof to the case r ≥ 1 using the results in
[BHH+, §8.2]. Moreover the diagram D(ρ) in Theorem 3.4.1.1 is in fact the same as
the diagram D(πglob(ρ)) of [DL, Thm.1.3].
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3.4.2 Review of patching functors

We recall the patching functors of [EGS15, §6.6] and some results of [BHH+, §8.2].

We keep the notation of §3.4.1. We choose Serre weights σw̃ ∈ W (rw̃(1)) for
w ∈ Sp\{v} and set

σv
def=

⊗

w∈Sp\{v}
σw̃.

For each w ∈ Sp\{v} we fix a tame inertial type τw̃ at the place w̃ such that, denoting
by σ(τw̃) the irreducible smooth representation of GL2(OFw̃) over E associated by
Henniart to τw̃ in the appendix to [BM02], JH(σ(τw̃)) contains exactly one Serre
weight in W (rw̃(1)) (where (−) means the mod p semisimplification). The existence
of such τw̃ follows from [EGS15, Prop.3.5.1], and the fact σ(τw̃) can be realized over
E = W (F)[1/p] follows from [EGS15, Lemma 3.1.1]. For each w ∈ Sp\{v} we also fix
a GL2(OFw̃)-invariant W (F)-lattice σ0(τw̃) in σ(τw̃).

We define
σ0,v def=

⊗

w∈Sp\{v}
σ0(τw̃),

and for any continuous representation σṽ of GL2(OFṽ) on a finite type W (F)-module,
we consider σ0,v ⊗W (F) σṽ as a representation of U via U ։

∏
w∈Sp

Uw and the iso-
morphisms ιw̃. We define S(Up,W (F))mΣ exactly as in §2.1.2 replacing F by W (F)
and Uv by Up. Then, as in [EGS15, §§6.2,6.6], by “patching” HomU(σ0,v ⊗W (F)

σṽ, S(Up,W (F))mΣ)∗ for various U (where (−)∗ def= HomW (F)((−), E/W (F)) as in
loc.cit.), we obtain a patching functor

M∞ : σṽ 7−→M∞(σ0,v ⊗W (F) σṽ)

which is an exact functor from the category of continuous representations σṽ of
GL2(OFṽ) on finite type W (F)-modules to the category of finite type R∞-modules
(though this patching functor depends on σ0,v, we just write M∞(σṽ) in the sequel).
The local ring R∞ is (see [GK14, §4.3] or [DL, §6.2]):

R∞
def= RlocJX1, . . . , Xq−[F+:Q]K,

where q is an integer ≥ [F+ : Q] and

Rloc def=
(
⊗̂w∈S\SpR

�

rw̃(1)

)
⊗̂W (F)

(
⊗̂w∈Sp\{v}R

�,(1,0),τw̃

rw̃(1)

)
⊗̂W (F)R

�

rv(1).

Recall R�,(1,0),τw̃

rw̃(1) is the reduced p-torsion free quotient of R�

rw̃(1) parametrizing framed
potentially Barsotti–Tate deformations with inertial type τw̃ (by local-global compat-
ibility and the inertial Langlands correspondence, for w ∈ Sp\{v} the action of R�

rw̃(1)

on M∞(σ0,v⊗W (F)σv) factors through this quotient, see [EGS15, §6.6]). As in [BHH+,
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§8.1] (see the discussion before [BHH+, Rem.8.1.3] but note that we do not need to
fix the determinant here) we have isomorphisms R�

rw̃(1)
∼= W (F)JX1, X2, X3, X4K for

w ∈ S\Sp, and, by genericity of rv, R�

rv(1)
∼= W (F)JX1, . . . , X4+4[Fṽ:Qp]K. By [EGS15,

Thm.7.2.1(2)] (and [GK14, Rk.5.2.2]) we have R�,(1,0),τw̃

rw̃(1)
∼= W (F)JX1, . . . , X4+[Fw̃:Qp]K,

so that we finally get

R∞ ∼= R�

rv(1)JX1, . . . , X4(|S|−1)+q−[F+
v :Qp]K

∼= W (F)JX1, . . . , X4|S|+q+3[F+
v :Qp]K. (182)

Moreover, if σṽ is free of finite type over W (F), then M∞(σṽ) is free of finite type
over a subring S∞ of R∞, where S∞ ∼= W (F)Jx1, . . . , x4|S|+qK. Finally, denoting by
m∞ the maximal ideal of R∞, we have

M∞(σṽ)/m∞ ∼= HomU

(
(⊗w∈Sp\vσw̃)⊗F σṽ, S(Up,F)[mΣ]

)∨ ∼= HomUv(σṽ, π)∨, (183)

where π is as in Theorem 3.4.1.1.

Since everything is now at the place ṽ, we drop the index ṽ. If τ is a tame
inertial type, we set R(1,0),τ

∞
def= R∞ ⊗R�

ρ
R

�,(1,0),τ
ρ . If σ ∈ W (ρ), we denote by Pσ

the projective F[GL2(Fq)]-envelope of σ and by P̃σ the projective W (F)[GL2(Fq)]-
module lifting Pσ. We recall that the scheme theoretic support of an R∞-module M
is R∞/AnnR∞(M). The following theorem then follows by exactly the same proof as
for [BHH+, Prop.8.2.3] and [BHH+, Prop.8.2.5].

Theorem 3.4.2.1. There exists an integer r ≥ 1 such that

(i) for any σ ∈W (ρ) the module M∞(σ) is free of rank r over its scheme-theoretic
support which is a domain;

(ii) for any σ ∈ W (ρ) the modules M∞(P̃σ) and M∞(Pσ) are free of rank r over
their respective scheme-theoretic support;

(iii) for any tame inertial type τ such that JH(σ(τ))∩W (ρ) 6= ∅ and any GL2(OK)-
invariant W (F)-lattice σ0(τ) in σ(τ) with irreducible cosocle, the module
M∞(σ0(τ)) is free of rank r over its scheme-theoretic support, which is the
domain R(1,0),τ

∞ .

Corollary 3.4.2.2. Let π as in Theorem 3.4.1.1 and r as in Theorem 3.4.2.1. We
have an isomorphism of GL2(OK)K×-representations D0(ρ)⊕r ∼= πK1.

Proof. The action of the center K× being by definition the same on both sides, we
can focus on the action of GL2(OK). It follows from Theorem 3.4.2.1(i) and (ii)
and from (183) that the surjection Pσ ։ σ induces an isomorphism of r-dimensional
F-vector spaces HomGL2(OK)(σ, πK1) ∼

→ HomGL2(OK)(Pσ, πK1). In particular the mul-
tiplicity of each σ ∈ W (ρ) in πK1 is r. It follows from M∞(D0,σ(ρ)/σ) = 0 (recall
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D0(ρ) = ⊕σ∈W (ρ)D0,σ(ρ)) and from (183) that the injection σ →֒ D0,σ(ρ) induces
an isomorphism HomGL2(OK)(D0,σ(ρ), πK1) ∼

→ HomGL2(OK)(σ, πK1). This gives an in-
clusion D0(ρ)⊕r →֒ πK1. If this inclusion is strict, then by maximality of D0(ρ)⊕r

(an obvious generalization of [BP12, Prop.13.1]) this implies there exists σ ∈ W (ρ)
which appears in πK1/D0(ρ)⊕r, and hence has multiplicity > r in πK1 , which is a
contradiction.

Remark 3.4.2.3. In the proof of Theorem 3.4.2.1, and hence also in Corollary 3.4.2.2,
one only needs the slightly weaker bounds 1 ≤ ri ≤ p − 4 (and 2 ≤ r0 ≤ p − 3 if
rṽ is irreducible) in the genericity conditions (viii) on rṽ (or equivalently ρ) in §3.4.1
(these bound are used in [LMS, §4] which is used in the proof of [BHH+, Prop.8.2.5]).

3.4.3 Direct sums of diagrams

We prove Theorem 3.4.1.1 using the method of [DL, §4].

We keep the notation in §§3.4.1, 3.4.2. Everything in this section being at the
place ṽ, we drop it from the notation. Recall we identify the set of embeddings
Fq →֒ F with {0, . . . , f − 1} via σ0 ◦ ϕ

i 7→ i. We denote by P the set of subsets of
{0, . . . , f − 1} and by Jc ∈ P the complement of a subset J ∈ P.

We start by fixing a tame inertial type τ such that JH(σ(τ)) ∩W (ρ) 6= ∅ and
a GL2(OK)-invariant W (F)-lattice θ0 in σ(τ) with irreducible cosocle. With the
notation of [EGS15, §5.1] there is I ∈ P such that this cosocle is σI(τ) and θ0 = σo

I (τ).
As in [EGS15, p.77] we can reindex the irreducible constituents of θ0/p by elements
J ′ in P as follows:

σJ ′
def= σ(J ′∪Ic)\(J ′∩Ic)(τ),

so that (by [EGS15, Thm.5.1.1]) the j-th layer of the cosocle filtration of θ0/p consists
of the σJ ′ for |J ′| = f − j, 0 ≤ j ≤ f . By the beginning of the proof of [EGS15,
Thm.10.1.1] (see loc.cit. p.77), there is J ′

min ⊆ J ′
max in P such that JH(θ0/p)∩W (ρ) =

{σJ ′ , J
′
min ⊆ J ′ ⊆ J ′

max}. By [EGS15, Thm.7.2.1] we have

R(1,0),τ
∞

∼=
(
W (F)J(X ′

j, Y
′
j )j∈J ′max\J ′min

K/(X ′
jY

′
j − p)j∈J ′max\J ′min

)
JU1, . . . , UdK

for some integer d ≥ 0. Up to renumbering the variables we can assume that the
irreducible component of R(1,0),τ

∞ /p corresponding to σJ ′ , J ′
min ⊆ J ′ ⊆ J ′

max, in [EGS15,
p.77] (which is the support of M∞(σJ ′) by Theorem 3.4.2.1(i)) is given by the ideal
((X ′

j)j∈J ′\J ′min
, (Y ′

j )j∈J ′max\J ′).

We first fix J ∈ P such that |J | = f−1, so that Jc = {j} for some j ∈ {0, . . . , f−
1}. We let θ be the unique (up to homothety) GL2(OK)-invariant W (F)-lattice in
σ(τ) with irreducible cosocle σJ ([EGS15, Lemma 4.1.1]). Up to multiplication by
an element in W (F)×, there is a unique GL2(OK)-equivariant saturated inclusion
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ι : θ →֒ θ0, i.e. such that the induced morphism ι : θ/p → θ0/p is nonzero. Recall
that by Theorem 3.4.2.1(iii) both M∞(θ) and M∞(θ0) are free of rank r over R(1,0),τ

∞ .

Lemma 3.4.3.1. The image of M∞(ι) : M∞(θ) →֒ M∞(θ0) is xM∞(θ0), where x = p
if j ∈ J ′

min, x = X ′
j if j ∈ J ′

max\J
′
min and x = 1 if j /∈ J ′

max.

Proof. It follows from [EGS15, Thm.5.2.4(4)] (up to a reindexation as above) that
p(θ0/ι(θ)) = 0 and that the irreducible constituents of θ0/ι(θ) are the σJ ′ for J ′

containing j. In particular θ0/ι(θ) is of the form σJ for a capped interval J as in
[EGS15, p.81] (namely J = {J ′, j ∈ J ′}). By the proof of [BHH+, Prop.8.2.3] the
module M∞(θ0/ι(θ)) = M∞(σJ ) is free of rank r over its schematic support, which is
the unique reduced quotient of R(1,0),τ

∞ /p with irreducible components corresponding
to the σJ ′ such that j ∈ J ′ and J ′

min ⊆ J ′ ⊆ J ′
max. If j /∈ J ′

max, there are no such J ′, so
this quotient is 0 (i.e. M∞(θ0/ι(θ)) = 0). If j ∈ J ′

max\J
′
min, then this quotient is clearly

(R(1,0),τ
∞ /p)/(X ′

j) = R(1,0),τ
∞ /(X ′

j). Finally, if j ∈ J ′
min, all irreducible components

remain, i.e. this quotient is R(1,0),τ
∞ /p. The lemma follows by exactness of M∞.

We now consider an arbitrary J ∈ P and let θ be the unique invariant W (F)-
lattice in σ(τ) with irreducible cosocle σJ . If Jc 6= ∅ we set Jc = {j1, . . . , jh} and
Ji

def= J ∐ {j1, . . . , jh−i} for i ∈ {0, . . . , h} (so J0 = {0, . . . , f − 1} and Jh = J). As
above we then denote by θi for i ∈ {0, . . . , h} the unique (up to homothety) invariant
W (F)-lattice in σ(τ) with irreducible cosocle σJi

and ιi : θi →֒ θi−1 the corresponding
saturated inclusion for i ∈ {1, . . . , h} (so θ0 is the same as before and θh = θ). The
composition

ι1 ◦ · · · ◦ ιi : θi
ιi
→֒ θi−1

ιi−1
→֒ · · · θ1

ι1
→֒ θ0

is still saturated since one can check using [EGS15, Thm.5.1.1] that the cosocle σJh

of θh/p remains in the image of θi/p→ θi−1/p for all i ∈ {h, h− 1, . . . , 1} (indeed, by
loc. cit. the Serre weights σJi

− σJi−1
in θ0/p form a nonsplit extension as Ji ⊆ Ji−1

and |Ji−1\Ji| = 1). In particular ι def= ι1 ◦ · · · ◦ ιh is the unique (up to scalar) saturated
inclusion θ →֒ θ0.

Proposition 3.4.3.2. There is x ∈ R(1,0),τ
∞ such that the image of M∞(ι) : M∞(θ) →֒

M∞(θ0) is xM∞(θ0). Moreover the principal ideal xR(1,0),τ
∞ only depends on (the

semisimplification of) θ0/ι(θ).

Proof. The statement being trivial if Jc = ∅ (equivalently if θ = θ0) we can assume
Jc 6= ∅. For i ∈ {1, . . . , h} we can apply Lemma 3.4.3.1 to ιi : θi →֒ θi−1 instead of
ι : θ →֒ θ0. Hence there is xi ∈ R(1,0),τ

∞ such that the image of M∞(ιi) is xiM∞(θi−1).
The image of M∞(ι) is thus (

∏h
i=1 xi)M∞(θ0), i.e. we can take x =

∏h
i=1 xi. It follows

that M∞(θ0/ι(θ)) ∼= (R(1,0),τ
∞ /(x))⊕r. Hence the irreducible components of R(1,0),τ

∞ /(x)
are the ones corresponding to the σJ ′ such that J ′

min ⊆ J ′ ⊆ J ′
max and σJ ′ appears

in θ0/ι(θ), and their multiplicities are the multiplicities of the σJ ′ in θ0/ι(θ). The
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second assertion then follows by the same argument as at the end of the proof of [DL,
Prop.4.17] (it also follows from an explicit computation of x via Lemma 3.4.3.1).

Till the end of this section, we now extensively use notation and results from [DL,
§4] to which we refer the reader for more details.

Recall that D0(ρ) = ⊕σ∈W (ρ)D0,σ(ρ). If χ : I → F× is a character appearing in
D0(ρ)I1 and Fvχ ⊆ D0(ρ) is the corresponding eigenspace (which is 1-dimensional), we
define as in [DL, Def.4.1] Rχ as the character of I on (socGL2(OK)〈FGL2(OK)vχ〉)I1,
which is also 1-dimensional as it is σI1 for the unique σ ∈W (ρ) such that χ appears in
D0,σ(ρ)I1. As in [BP12, p.8] we denote by χs the character of I on

(
0 1
p 0

)
vχ ∈ D0(ρ)I1

and by σ(χ) the Serre weight which is the cosocle of IndGL2(OK)
I χ.

We define as in [DL, Prop.4.14] an isomorphism

hχ : M∞(σ(Rχs))/m∞
∼
−→ M∞(σ(Rχ))/m∞

(the “one-dimensional by Theorem 4.6” in the proof of loc.cit. can just be replaced
by “of the same dimension by Theorem 3.4.2.1”; also note that hχ is an isomorphism,
as it is dual to the isomorphism gχ in loc.cit.).

Proposition 3.4.3.3. Let k ≥ 1 and χ0, . . . , χk−1 arbitrary characters of I which
occur on πI1 (equivalently on D0(ρ)I1) such that Rχsi = Rχi+1 for i ∈ {0, . . . , k − 2}
and Rχsk−1 = Rχ0. Then the isomorphism

hχ1 ◦ hχ2 ◦ · · · ◦ hχk−1
◦ hχ0 : M∞(σ(Rχs0))/m∞

∼
−→M∞(σ(Rχs0))/m∞

is the multiplication by a scalar in F× which depends neither on r nor on M∞. In
particular this scalar is the same as in [DL, (34)].

Proof. We just indicate the steps in the proofs of [DL, §§4.4, 4.5], where the assump-
tion r = 1 is used, and how one can extend the argument there to r ≥ 1. We use
without comment the notation of loc.cit.
• The definition of the isomorphism h̃χ : M∞(θRχ

s
) ∼
→ M∞(θRχ) in [DL, (28)] holds

because one only needs to know that M∞(θRχ
s
) and M∞(θRχ) are free of the same

finite rank over R∞(τ).
• By Proposition 3.4.3.2 there exists Ũp(χ) ∈ R∞(τ) such that M∞(ι)(M∞(θRχ)) =
Ũp(χ)M∞(θRχ

s
), where ι : θRχ →֒ θRχ

s
is as in the unlabelled commutative diagram

below [DL, (27)]. Since R∞(τ) is a domain by [EGS15, Thm.7.2.1(2)] and M∞(θRχ),
M∞(θRχ

s
) are free of rank r over R∞(τ) by Theorem 3.4.2.1(iii), there is a unique

R∞(τ)-linear isomorphism ι̃χ : M∞(θRχ) ∼
→M∞(θRχ

s
) such that M∞(ι) = ι̃χ ◦ Ũp(χ),

where Ũp(χ) here means multiplication by Ũp(χ) on M∞(θRχ). Then we have a com-
mutative diagram analogous to [DL, (29)] replacing the multiplication by Ũp(χ) in
the diagonal map by the map h̃χ ◦ ι̃χ ◦ Ũp(χ) = Ũp(χ)(h̃χ ◦ ι̃χ).

179



• By the commutativity of the right-hand side of (the analog of) [DL, (28)] and by
the isomorphism M∞(Q(χs)Rχ) ∼= M∞(θ(χs)Rχ)/p, we deduce that the map

hχ ◦ ιQ : M∞(Q(χs)Rχ) −→M∞(Q(χs)Rχ)

is the multiplication by the image of p−e(χ)Up(χ) in R∞(τ(χs))/p. As the image of
hχ◦ιQ is Ũp(χ)M∞(Q(χs)Rχ) by the commutativity of the left-hand side of (the analog
of) [DL, (28)] and the definition of Ũp(χ), we deduce that

Ũp(χ)(R∞(τ(χs))/p) = (p−e(χ)Up(χ))(R∞(τ(χs))/p).

In particular, multiplying Ũp(χ) by a unit in R∞(τ) we can assume that Ũp(χ) and
p−e(χ)Up(χ) have the same image in the quotient R∞(τ(χs))/p of R∞(τ). As a conse-
quence the analogue of [DL, Prop.4.17] holds.
• Since by definition p−e(χ)Up(χ) ∈ R∞(τ(χs))\pR∞(τ(χs)), we have

AnnR∞(τ(χs))/p

(
p−e(χ)Up(χ)

)
⊆ m∞(R∞(τ(χs))/p). (184)

As Ũp(χ) 7→ p−e(χ)Up(χ) ∈ R∞(τ(χs))/p (previous point), we deduce Ũp(χ)(h̃χ ◦
ι̃χ − Id) 7→ 0 in EndR∞(τ(χs))/p(M∞(Q(χs)Rχ)) by the analog of [DL, (28)]. As
M∞(Q(χs)Rχ) ∼= M∞(θ(χs)Rχ)/p is free of rank r over R∞(τ(χs))/p (by Theorem
3.4.2.1(iii)), (184) implies the image of h̃χ ◦ ι̃χ − Id in EndR∞(τ(χs))/p(M∞(Q(χs)Rχ))
lands in m∞ EndR∞(τ(χs))/p(M∞(Q(χs)Rχ)). Since Ker(R∞(τ) ։ R∞(τ(χs))/p) ⊆
m∞R∞(τ), we also have

h̃χ ◦ ι̃χ − Id ∈ m∞ EndR∞(τ)(M∞(θRχ)). (185)

• The big unlabelled diagram before [DL, (33)] still holds but the diagonal maps are
not simply multiplication by some Ũp(χi). For instance in the case k = 3 (the general
case being similar) one has to replace the left diagonal maps in loc.cit. by successively
(from top to bottom) Ũp(χ0)((ι̃χ2 ◦ ι̃χ1)−1◦(h̃χ0 ◦ ι̃χ0)◦ ι̃χ2 ◦ ι̃χ1), Ũp(χ2)(ι̃−1

χ1
◦(h̃χ2 ◦ ι̃χ2)◦

ι̃χ1), and Ũp(χ1)(h̃χ1 ◦ ι̃χ1). By (185) and the R∞(τ)-linearity of the isomorphisms
ι̃χi

, all these diagonal maps are in Ũp(χi)(Id +m∞ EndR∞(τ)(M∞(θRχ
s
0))), and their

composition is thus in

( k−1∏

i=0

Ũp(χi)
)
(Id +m∞ EndR∞(τ)(M∞(θRχ

s
0))). (186)

• For ν ≥ 1 defined as above [DL, (33)], we have from the definition of the ι̃χi
:

( k−1∏

i=0

Ũp(χi)
)
(ι̃χ0 ◦ ι̃χk−1

◦ · · · ◦ ι̃χ1) = pν Id (187)

which implies p−ν(
∏k−1
i=0 Ũp(χi)) ∈ R∞(τ)× since the ι̃χi

are isomorphisms. By the
commutativity in the (analog of) the big unlabelled diagram before [DL, (33)] (see
the previous point) together with (186) and (187) we finally obtain

h̃χ1 ◦ · · · ◦ h̃χk−1
◦ h̃χ0 ∈

(
p−ν

k−1∏

i=0

Ũp(χi)
)
(Id +m∞ EndR∞(τ)(M∞(θRχ

s
0)))
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which is our analog of [DL, (33)]. Then [DL, (34)] follows by the same argument.
The rest of the proof in [DL, §5] is unchanged.

We can now prove Theorem 3.4.1.1.

Proof of Theorem 3.4.1.1. We let D(ρ) = (D1(ρ) →֒ D0(ρ)) be the diagram denoted
by D(πglob(ρ)) in [DL], which only depends on ρ. Let D(π) = (D1(π) →֒ D0(π)) def=
(πI1 →֒ πK1) be the diagram defined by π. We will show that D(ρ)⊕r ∼= D(π) as
diagrams.

Define first R : πI1 → (socGL2(OK) π)I1 as in [DL, Def.4.1], i.e. Rv = Si(χ)v with
Si(χ) as in [DL, Rem.4.2] if v ∈ πI1 is an I-eigenvector with eigencharacter χ. Note
that the eigencharacter of Rv is Rχ.

Starting fromD(ρ) we define a groupoid G with objects xξ, where ξ is any character
of I such that (socGL2(OK) D0(ρ))I1[ξ] 6= 0, and morphisms freely generated by gχ :
xRχ

∼
−→ xRχs , where χ is any character of I such that D1(ρ)[χ] 6= 0, as in [DL,

Def.4.3].

The diagram D(π) defines an r-dimensional representation of G, sending xξ to the
vector space (socGL2(OK) D0(π))I1[ξ] and gχ to the linear map

gπχ : (socGL2(OK) D0(π))I1[Rχ] ∼
−→ (socGL2(OK) D0(π))I1[Rχs]

as in [DL, §4]. Similarly, we have an r-dimensional representation of G defined by the
diagram D(ρ)⊕r; we denote the linear maps by gρχ.

To check that the two r-dimensional representations of G are isomorphic it suffices
to check that for each object x the restrictions of the two representations to the
automorphism group Gx are isomorphic (see [DL, Prop.4.5]), which is the case by
Proposition 3.4.3.3, remembering that gπχ is the dual of hχ by (the analog of) [DL,
Prop.4.14].

Therefore there exists an isomorphism

λ : (socGL2(OK) D0(π))I1 ∼
−→ (socGL2(OK) D0(ρ)⊕r)I1

of I-representations such that λ ◦ gπχ = gρχ ◦ λ on (socGL2(OK) D0(π))I1[Rχ] for all χ.
As πK1 ∼= D0(ρ)⊕r as K-representations we can extend λ uniquely to an isomorphism
λ : D0(π) ∼

−→ D0(ρ)⊕r of K-representations (extending to the GL2(OK)-socle first).
As in the proof of [DL, Prop.4.4] we deduce that λ restricts to an isomorphism
λ : D1(π) ∼

−→ D1(ρ)⊕r commuting with
(

0 1
p 0

)
and I, which completes the proof.
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3.4.4 Local-global compatibility results

We collect our previous results to deduce (together with the results of [HW]) special
cases of Conjecture 2.1.3.1 and Conjecture 2.5.1 when n = 2 and K is unramified.

We keep all the previous notation. We also keep the assumptions (i) to (xii) of
§3.4.1 (in particular rṽ is semisimple), except that we replace the bounds on the ri
in (viii) by the stronger bounds (which are those of [BHH+, §1]):

12 ≤ rj ≤ p− 15 if j > 0 or ρ is reducible;

13 ≤ r0 ≤ p− 14 if ρ is irreducible.

Recall that we choose Serre weights σw̃ ∈ W (rw̃(1)) for w ∈ Sp\{v} and consider
π = HomUv(⊗w∈Sp\{v}σw̃, S(V v,F)[mΣ]) (see Theorem 3.4.1.1).

Theorem 3.4.4.1. We have [π[m3
I1/Z1

] : χ] = [π[mI1/Z1 ] : χ] for all smooth characters
χ : I → F× appearing in π[mI1/Z1

].

Proof. The statement of [BHH+, Thm.8.3.10] applies verbatim with the same proof to
π as above using Theorem 3.4.2.1 and (183). Combining this with Corollary 3.4.2.2,
we see that π satisfies all the assumptions of [BHH+, Thm.1.3], whence the result.

Remark 3.4.4.2. By a similar argument as in (ii) of the proof of [BHH+, Thm.8.4.1]
(which uses [GN, App.A]), we also have dimGL2(K)(π) = f , where dimGL2(K)(π) is the
Gelfand–Kirillov dimension of π as defined in [BHH+, §5.1].

The following theorem is one of the main results of this paper.

Theorem 3.4.4.3. Keep all the previous assumptions and assume that the ri in rṽ
satisfy the following stronger bounds:

max{12, 2f − 1} ≤ rj ≤ p−max{15, 2f + 2} if j > 0 or ρ is reducible;
max{13, 2f} ≤ r0 ≤ p−max{14, 2f + 1} if ρ is irreducible.

(188)
Let σv

def= ⊗w∈Sp\{v}σw̃, where the σw̃ are Serre weights in W (rw̃(1)) for w ∈ Sp\{v}.
Then Conjecture 2.1.3.1 holds for HomUv(σv, S(V v,F)[mΣ]).

Proof. This follows from Corollary 3.3.2.4 applied to π = HomUv(σv, S(V v,F)[mΣ]),
which satisfies all the assumptions there by Theorem 3.4.1.1 and Theorem 3.4.4.1,
and by Remark 2.1.1.4(ii).

We now give some evidence for Conjecture 2.5.1, still assuming (188). As we also
need r = 1, and to make things as simple as possible, we replace assumptions (v) and
(vii) in §3.4.1 by
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r is unramified at all finite places outside Sp

and we then take S def= Sp (hence Σ = Sp ∪ {v1}). We also replace assumption (xii) in
§3.4.1 by

ιṽ1
(Uv1) is equal to the upper-triangular unipotent matrices mod ṽ1.

We take V v = Up∏
w∈Sp\{v} Vw with ιw̃(Vw) = 1 + pM2(OFw̃) ⊆ GL2(OFw̃) = ιw̃(Uw).

We let Tṽ1
be the Hecke operator acting on S(V v,F) by the double coset

ι−1
ṽ1

[
ιṽ1

(Uv1)

(
̟ṽ1

1

)
ιṽ1

(Uv1)

]
,

where ̟ṽ1
is a uniformizer in OF

ṽ1

. Increasing F if necessary, we fix a choice of

eigenvalues αṽ1
∈ F of ρ(Frobṽ1

) (the image of a geometric Frobenius at ṽ1) and
consider the ideal

mS def= (mΣ, Tṽ1
− αṽ1

) ⊆ T Σ[Tṽ1
],

where αṽ1
is any element in W (F) lifting αṽ1

(see §2.1.2 for T Σ). Then, replacing mΣ

by mS everywhere in §§3.4.1, 3.4.2, 3.4.3, by a multiplicity 1 result analogous to the
one in [BD14, Prop.3.5.1] (see for instance the argument in the proof of [Enn, Lemma
3.1.4]) all the previous global results hold with r being 1.

Proposition 3.4.4.4. Choose Serre weights σw̃ ∈W (rw̃(1)) for w ∈ Sp\{v} and let

π
def= HomUv(⊗w∈Sp\{v}σw̃, S(V v,F)[mS]).

The representation π satisfies all the assumptions of §3.3.5 (with ρ = rṽ(1)).

Proof. The only missing assumption is the essential self-duality (172). But it holds
by the same proof as for the definite case of [HW, Thm.8.2] using Remark 3.4.4.2.

From the results of §3.3.5, we thus deduce the following theorems.

Theorem 3.4.4.5. The GL2(Fṽ)-representation π is generated by its GL2(OFṽ)-socle,
in particular is of finite type.

Theorem 3.4.4.6.

(i) Assume that rṽ is irreducible. Then π is irreducible and is a supersingular
representation.
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(ii) Assume that rṽ is reducible (split) and write ρ = rṽ(1) =

(
χ1 0
0 χ2

)
. Then one

has
π = IndGL2(Fṽ)

B−(Fṽ) (χ1ω
−1 ⊗ χ2)⊕ π′ ⊕ IndGL2(Fṽ)

B−(Fṽ) (χ2ω
−1 ⊗ χ1),

where π′ is generated by its GL2(OFṽ)-socle and π′∨ is essentially self-dual, i.e.
satisfies (172). Moreover, when f = 2, π′ is irreducible and supersingular (and
hence π is semisimple).

Proof. Everything is in Corollary 3.3.5.6 and Corollary 3.3.5.8, except the precise
form of the irreducible principal series π0, πf in loc.cit., but this easily follows from
(179) and Theorem 3.4.1.1 (which is [DL, §5] since r = 1).

Combining Theorem 3.4.4.6 with Theorem 3.4.4.3, we obtain:

Corollary 3.4.4.7. Keep the same assumptions as just before Proposition 3.4.4.4.
If rṽ is irreducible or if f = 2, then π is compatible with ρ (Definition 2.4.2.7). In
particular in these cases Conjecture 2.5.1 holds for HomUv(σv, S(V v,F)[mS]).

Remark 3.4.4.8. When rṽ is reducible nonsplit, a similar proof as for
[HW, Thm.1.6] (with the hypothesis of loc.cit. on rṽ) implies that π is generated over
GL2(Fṽ) by πK1. When moreover f = 2, a similar proof as for [HW, Thm.10.37]
implies that π is at least compatible with P̃ρ = Pρ = B (Definition 2.4.1.5).
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