Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Biology Année : 2023

Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems

Résumé

We propose a general framework for simultaneously calculating the threshold value for population growth and determining the sign of the growth bound of the evolution family generated by the problem below dv(t) dt = Av(t) + F(t)v(t) − V(t)v(t), where A : D(A) ⊂ X → X is a Hille-Yosida linear operator (possibly unbounded, non-densely defined) on a Banach space (X, ∥ • ∥), and the maps t ∈ R → V(t) ∈ L(X 0 , X), t ∈ R → F(t) ∈ L(X 0 , X) are p-periodic in time and continuous in the operator norm topology. We give applications of our approach for two general examples of an age-structured model, and a delay differential system. Other examples concern the dynamics of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector malaria model.
Fichier principal
Vignette du fichier
RDD_IG_OS_GrowthBound.pdf (548.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03883208 , version 1 (02-12-2022)
hal-03883208 , version 2 (20-07-2023)

Identifiants

Citer

Ramsès Djidjou-Demasse, Ibou Goudiaby, Ousmane Seydi. Growth bound and threshold dynamic for nonautonomous nondensely defined evolution problems. Journal of Mathematical Biology, In press, ⟨10.1007/s00285-023-01966-w⟩. ⟨hal-03883208v2⟩
76 Consultations
120 Téléchargements

Altmetric

Partager

More