Asymptotic Behavior of Age-Structured and Delayed Lotka-Volterra Models - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2020

Asymptotic Behavior of Age-Structured and Delayed Lotka-Volterra Models

Résumé

In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove that these results can be extended to the initial PDE problem.
Fichier principal
Vignette du fichier
Delayed_Lotka-Volterra.pdf (1.9 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03881376 , version 1 (01-12-2022)

Identifiants

Citer

Antoine Perasso, Quentin Richard. Asymptotic Behavior of Age-Structured and Delayed Lotka-Volterra Models. SIAM Journal on Mathematical Analysis, 2020, 52 (5), pp.4284-4313. ⟨10.1137/19M1261092⟩. ⟨hal-03881376⟩
15 Consultations
25 Téléchargements

Altmetric

Partager

More