Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder - Archive ouverte HAL
Article Dans Une Revue MethodX Année : 2023

Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder

Résumé

We present in this paper a method to compute, using generative neural networks, an estimator of the "Value at Risk" for a nancial asset. The method uses a Variational Auto Encoder with a 'energy' (a.k.a. Radon- Sobolev) kernel. The result behaves according to intuition and is in line with more classical methods.
Fichier principal
Vignette du fichier
vae_var_v1.pdf (324.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03880381 , version 1 (01-12-2022)

Identifiants

Citer

Pierre Brugière, Gabriel Turinici. Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder. MethodX, 2023, 10, pp.102192. ⟨10.1016/j.mex.2023.102192⟩. ⟨hal-03880381⟩
155 Consultations
241 Téléchargements

Altmetric

Partager

More