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Abstract

We present in this paper a method to compute, using generative neural
networks, an estimator of the ”Value at Risk” for a financial asset. The
method uses a Variational Auto Encoder with a ’energy’ (a.k.a. Radon-
Sobolev) kernel. The result behaves according to intuition and is in line
with more classical methods.

1 Motivation

1.1 The law of the returns: sample size, Gaussian assump-
tion and beyond

The goal of this paper is to briefly present a method for computing the ” Value
at Risk” for a financial asset using generative neural network approaches.

The ”Value at Risk”, introduced by J.P. Morgan and Reuters [1], measures
the maximum loss incurred by a holder of a financial asset, at the end of a given
time horizon T (for instance T' = 10 days) when excluding the worst scenarios
(5% worst for the ¢ = 95% Var, 1% for the ¢ = 99% VaR and so on)!; we refer
to [1] and to the huge financial and prudential literature on it for more detailed
considerations on the VaR.

Of course, as VaR is about the future returns, there is a large uncertainty on
the statistical properties of the future returns at the time 7. Usual implemen-
tations consider the returns as normal variables (thus the prices are log-normal)
and fit the Gaussian to historical data. Several problems can appear:
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11t is thus related to the 1 — g quantile of the loss/profit on the asset at the end of the time
horizon.



- a lack of robustness because the returns parameters may change with re-
spect to the past or because the available data is too scarce to estimate them
accurately

- a fragility due to model risk when some assumptions are made on the law
of the distribution of the returns.

Thus it is relevant, to mitigate this risk, to investigate some model free
approaches.

1.2 Generative neural networks: Variational Auto En-
coders

To address these concerns, we use generative neural networks; these are methods
that can sample new objects (similar to ones already in the training set) without
parametric assumptions on the probability law on the set of objects.

There are many flavors of generative neural networks, e.g. the Generative
Adversarial Networks [2, 4], the Variational Auto Encoders (hereafter abbrevi-
ated VAE) [3], etc. We use the latter ones and refer to [5] for details concerning
the technical considerations and more precisely on the special kind of VAE
named the ’energy’ or 'Radon-Sobolev’ VAE, that is employed.

2 Deep neural network for VaR computation

A VAE (Variational Auto-Encoder) deep generative network was trained to
sample sequences of 252 + 10 = 262 consecutive trading days. The training
set is composed of all blocks of 262 consecutive trading days for the S&P500
index available from Jan 15¢ 1928 to Nov. 15t 2022, totaling 23561 (overlapping)
sequences. In order to avoid scaling issues, a multiplicative factor is applied to
ensure that any sequence starts with value 1.

The goal is to produce the distribution probability of the return over the
next 10 days, conditional to the last 252 historical data available. This
distribution is used to compute the VaR as of Nov 1st 2022.

The VAE is built within the class of ’energy’/’Radon-Sobolev’ kernels as
described in [5], which, in this case, turns out to exhibit better convergence
properties than the GAN, (cf. [4]). After convergence, one obtains a procedure
to sample an arbitrary number of scenarios, see figure 1 for an example.

Once possible scenarios are sampled at random, a similarity metric (a weight)
is computed for each of them : the closer the first 252 days of the scenario are to
the Nov. 1%t 2021 - Nov. 15t 2022 historical data (252 days), the more important
its weight is; see figure 2 for an illustration. In practice this metric is a softmax
function applied to the set of the squares of the euclidian norms of differences
between the reference scenario and the members of the set of 10’000 sampled

scenarios?.

2That is, supposing v is the reference vector and u a generated one, the weight w, of
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Figure 1: Ten random price scenarios as constructed by the deep NN VAE al-
gorithm. For the practical computation we use 10’000 of them. None of them
corresponds to a precise historical sequence but all are considered ”plausible”
by the VAE constructing them. In mathematical terms, we sample from a con-
tinuous probability law on R2%2 close to the discrete probability law consisting
of the 23561 (overlapping) sequences in the training set.
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Figure 2: Illustration of the 3 closest and 3 furthest scenarios from the 10’000
synthetic sampled scenarios. The reference is the S&P500 evolution from Nov.
15t 2021 to Nov. 1°¢ 2022 (magenta color). The weights are given in the legend
(no weight is printed for the S&P500 historical data in magenta); those appear-
ing as zero are in fact smaller than 1076,
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Figure 3: For each of the 10’000 sampled scenarios we consider the return
corresponding to the last 10 days and plot the histogram of the generated data
in blue. For comparison the histogram of a Gaussian with same mean and
variance is given in orange. The VAE histogram is much wider than the normal
equivalent which shows that in particular the distribution is heavy tailed, which
is a positive behavior as financial data is known to display such deviations from
the (log-) normal model.

The last 10 days of each scenario are now used as samples of 10-days returns
as illustrated in figure 3 (without weights); the distribution is renormalised to
match the last 252 days 10-day returns mean and variance. The result is more
heavy tailed than the Gaussian counterpart, in agreement with econometric
information on the financial data.

Finally, from this distribution of 10 days returns, a 99% VaR is now inferred;
we find a value of 12.8% which is close to the 10 day bootstrap value without
shuffling (that is 12.4%). As a comparison, the Gaussian VaR on the same data
(daily return variance calibrated on the last 252 days i.e. Nov. 15* 2021 to Nov.
15t 2022) is 12.1%3.

3 Conclusion

We present a procedure that leverages on historical data to build, through a
generative neural network (VAE), an estimation of the 10-days Value at Risk.

More analysis and fine tuning of the model will be pursued but so far we
find the results encouraging especially as we are able to simulate much more
scenarios “model free” than with the bootstrap methods while finding results
coherent with existing techniques.

. . 2 /552 . L
the scenario u is w, = ¢p - e—llv=ul®/20%  Here cn is a normalization parameter to ensure
that the weights sum up to 1 and the parameter 2 is the mean error (computed during
training) between the initial sequences in the database u and the reconstructed ones ( o2 =
Ex| Dy, o Eg, (X) — X||? with notations in [5, p 299]), see VAE literature for details.
3Recall that the Gaussian 99% 10-days VaR. is computed as /10 times the 0.01 quantile

of the empirical distribution from the historical data.



References

1]

2]

1996 RiskMetrics Technical Document. en-US. URL: https://www.msci.
com/www/research-report/1996-riskmetrics-technical/018482266.

Tan Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neu-
ral Information Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27.
Curran Associates, Inc., 2014. URL: https://proceedings.neurips.cc/
paper/2014/file/5ca3e9b122f61£8£f06494c97blafccf3-Paper.pdf.

Diederik P. Kingma and Welling Max. An Introduction to Variational Au-
toencoders. English. Now Publishers Inc, Nov. 2019. 1SBN: 978-1-68083-622-
6.

Gabriel Turinici. “Convergence Dynamics of Generative Adversarial Net-
works: The Dual Metric Flows”. en. In: Pattern Recognition. ICPR In-
ternational Workshops and Challenges. Ed. by Alberto Del Bimbo et al.
Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2021, pp. 619-634. 1SBN: 978-3-030-68763-2. DOIL: 10.1007/978-3-
030-68763-2_47.

Gabriel Turinici. “Radon—Sobolev Variational Auto-Encoders”. In: Neural
Networks 141 (Sept. 2021), pp. 294-305. 1sSN: 0893-6080. DOIL: 10.1016/j .
neunet.2021.04.018. URL: https://www.sciencedirect.com/science/
article/pii/S0893608021001556.



