A note on the one-dimensional critical points of the Ambrosio-Tortorelli functional - Archive ouverte HAL Access content directly
Journal Articles Asymptotic Analysis Year : 2023

A note on the one-dimensional critical points of the Ambrosio-Tortorelli functional

Remy Rodiac
  • Function : Author
  • PersonId : 1171939

Abstract

This note addresses the question of convergence of critical points of the Ambrosio-Tortorelli functional in the one-dimensional case under pure Dirichlet boundary conditions. An asymptotic analysis argument shows the convergence to two possible limits points: either a globally affine function or a step function with a single jump at the middle point of the space interval, which are both critical points of the one-dimensional Mumford-Shah functional under a Dirichlet boundary condition. As a byproduct, non minimizing critical points of the Ambrosio-Tortorelli functional satisfying the energy convergence assumption as in \cite{BMR} are proved to exist.
Fichier principal
Vignette du fichier
BMR_1D_Case.pdf (276.97 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03876804 , version 1 (28-11-2022)

Identifiers

Cite

Jean-François Babadjian, Vincent Millot, Remy Rodiac. A note on the one-dimensional critical points of the Ambrosio-Tortorelli functional. Asymptotic Analysis, 2023, 135, pp.349-362. ⟨10.3233/ASY-231857⟩. ⟨hal-03876804⟩
52 View
74 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More