RATIONALITY OF PESKINE VARIETIES
Résumé
We study the rationality of the Peskine sixfolds in P^9. We prove the rationality of the Peskine sixfolds in the divisor D^{3,3,10} inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor D^{1,6,10} (notation from [BS]). We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperkähler fourfold associated to the Peskine sixfold.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|