Differentiable Stochastic Halo Occupation Distribution - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2024

Differentiable Stochastic Halo Occupation Distribution

Benjamin Horowitz
  • Fonction : Auteur
Changhoon Hahn
  • Fonction : Auteur
Chirag Modi
  • Fonction : Auteur
Simone Ferraro
  • Fonction : Auteur

Résumé

In this work, we demonstrate how differentiable stochastic sampling techniques developed in the context of deep Reinforcement Learning can be used to perform efficient parameter inference over stochastic, simulation-based, forward models. As a particular example, we focus on the problem of estimating parameters of Halo Occupancy Distribution (HOD) models which are used to connect galaxies with their dark matter halos. Using a combination of continuous relaxation and gradient parameterization techniques, we can obtain well-defined gradients with respect to HOD parameters through discrete galaxy catalogs realizations. Having access to these gradients allows us to leverage efficient sampling schemes, such as Hamiltonian Monte-Carlo, and greatly speed up parameter inference. We demonstrate our technique on a mock galaxy catalog generated from the Bolshoi simulation using the Zheng et al. 2007 HOD model and find near identical posteriors as standard Markov Chain Monte Carlo techniques with an increase of ~8x in convergence efficiency. Our differentiable HOD model also has broad applications in full forward model approaches to cosmic structure and cosmological analysis.
Fichier principal
Vignette du fichier
stae350.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03866311 , version 1 (19-04-2024)

Licence

Identifiants

Citer

Benjamin Horowitz, Changhoon Hahn, Francois Lanusse, Chirag Modi, Simone Ferraro. Differentiable Stochastic Halo Occupation Distribution. Monthly Notices of the Royal Astronomical Society, 2024, 529 (3), pp.2473-2482. ⟨10.1093/mnras/stae350⟩. ⟨hal-03866311⟩
124 Consultations
13 Téléchargements

Altmetric

Partager

More