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A B S T R A C T 

In this work, we demonstrate how differentiable stochastic sampling techniques developed in the context of deep reinforcement 
learning can be used to perform efficient parameter inference o v er stochastic, simulation-based, forward models. As a particular 
example, we focus on the problem of estimating parameters of halo occupation distribution (HOD) models that are used to 

connect galaxies with their dark matter haloes. Using a combination of continuous relaxation and gradient re-parametrization 

techniques, we can obtain well-defined gradients with respect to HOD parameters through discrete galaxy catalogue realizations. 
Having access to these gradients allows us to leverage efficient sampling schemes, such as Hamiltonian Monte Carlo, and 

greatly speed up parameter inference. We demonstrate our technique on a mock galaxy catalogue generated from the Bolshoi 
simulation using a standard HOD model and find near-identical posteriors as standard Markov chain Monte Carlo techniques 
with an increase of ∼8 × in convergence efficiency. Our differentiable HOD model also has broad applications in full forward 

model approaches to cosmic structure and cosmological analysis. 

Key words: methods: numerical – galaxies: fundamental parameters – galaxies: haloes – cosmology: theory. 
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 I N T RO D U C T I O N  

ver the past 20 yr, there has been significant observational and 
heoretical progress in connecting galaxies to their cosmic envi- 
onments (Peacock & Smith 2000 ; van den Bosch, Yang & Mo
003 ; Kravtsov et al. 2004 ; Wechsler et al. 2006 ; Neistein et al.
011 ). Understanding this connection is critical for understanding 
alaxy formation/evolution (Crain et al. 2009 ; Zehavi et al. 2011 )
s well as using galaxies as bias tracers of the underlying mass
ensity for cosmological analyses (Benson et al. 2000a ; Desjacques, 
eong & Schmidt 2018 ). Studying this connection is a key component
f many upcoming galaxy surveys, including the Prime Focus 
pectrograph (Takada et al. 2014 ; Tamura et al. 2016 ), the Dark
nergy Spectroscopic Instrument (DESI Collaboration 2016 ), and 

he Nancy Grace Roman Space Telescope (Spergel et al. 2015 ; Wang
t al. 2022 ). 

A key theoretical tool for these studies has been the halo occupa-
ion distribution (HOD; Lemson & Kauffmann 1999 ; Seljak 2000 ; 
coccimarro et al. 2001 ; Berlind & Weinberg 2002 ; Wechsler &
ink er 2018 ), a framew ork that specifies how collapsed dark matter
aloes (Press & Schechter 1974 ; Bond et al. 1991 ; Cooray & Sheth
002 ) are populated with galaxies. 
This is in contrast to ‘environmental’ biasing schemes, such as 

ulerian or Lagrangian biasing schemes (Mann, Peacock & Heavens 
998 ; Desjacques, Jeong & Schmidt 2018 ), common in cosmological 
 E-mail: bhorowitz@berkeley.edu 
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nalyses of galaxy surv e y data (Cuesta et al. 2016 ; Beutler et al.
017 ; Ivano v, Simono vi ́c & Zaldarriaga 2020 ; To et al. 2021 ). Unlike
nvironmental biasing schemes that only model summary statistics 
ike power spectrum of the galaxy field, a well-formulated HOD 

odel provides direct physical insight into galaxy formation physics 
hrough its parameters, which are related to critical mass scales in
alaxy–halo relation. For example, this allows direct measurement 
f HOD parameters by comparing observed galaxy populations with 
ynamical mass measurements, such as X-ray clusters (Zheng et al. 
009 ; Mehrtens et al. 2016 ). 
In standard HOD implementations (e.g. Zheng, Coil & Zehavi 

007 ), the HOD model specifies the probability distribution of the
umber of galaxies, N , hosted by a dark matter halo given its
roperties, such as halo mass: P ( N | M halo ). A semi-analytical halo
odel approach can include HOD parameters to predict two- and 

igher point function (Cooray & Sheth 2002 ), but those predictions
re often not accurate enough for analysing modern data sets. 
lternatively, a more precise Monte Carlo approach is often used 

o stochastically assign galaxies to haloes in a large simulation 
ox following the HOD prescription, and then the galaxy power 
pectrum or other quantities of interest are directly measured from 

he simulation. 
In practice, Markov chain Monte Carlo (MCMC) methods have 

rimarily been used to fit HOD parameters from mock or actual
ata (e.g. White et al. 2011 ; Rodr ́ıguez-Torres et al. 2016 ; Sinha
t al. 2018 ). Ho we ver, these methods scale poorly with the number
f parameters that need to be fit. As no v el decorated HOD models
ncreasingly add more assembly bias parameters to accurately cap- 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ure small-scale observations, this e x ercise can become challenging,
specially if there are unforeseen degeneracies in the parameter
pace. These challenges can be o v ercome more easily with parameter
nference methods that rely on the gradient information, i.e. where
e can estimate the response of the observations with respect

o the underlying parameters of the model, such as Hamiltonian
onte Carlo (HMC; Duane et al. 1987a ), variational inference

Peterson 1987 ; Beal 2003 ; Blei, Kucukelbir & McAuliffe 2016 ),
r combinations thereof (Gabri ́e, Rotskoff & Vanden-Eijnden 2022 ;
odi, Li & Blei 2023 ). Ho we ver, these methods are not applicable in

urrent HOD models as the implementation of their stochastic galaxy
ssignment schemes makes them classically non-differentiable. 

A differentiable HOD framework will enhance dynamical forward
odelling frameworks that seek to reconstruct latent cosmological
elds (e.g. Seljak et al. 2017 ), which are constrained to use gradient-
ased methods for optimization due to the high dimensionality of the
nference problem. These frameworks generally rely on perturbative
ias models that are accurate only on large scales (Modi et al. 2019 ;
chmidt et al. 2019 ) or heuristic neural network models with a

arge number of latent parameters (Modi, Feng & Seljak 2018 ). A
ifferentiable HOD approach will allow one to push to smaller scales
ith a well-understood, physically developed model that has only a
andful of parameters. 
An alternative to HOD models that maintains the requisite dif-

erentiability is to use differentiable emulators (Kwan et al. 2015 ;
ibking et al. 2020 ) or fitting functions of the observables like

he one proposed in Hearin et al. ( 2021 ) for galaxy assembly bias.
o we ver, these are ef ficient only for the particular summary statistics

nd cosmological parameters on which they are trained. Hence,
hey require a new training set once these are varied. Depending
n the parameter space of interest, this could be of prohibitive
omputational cost. In addition, separate emulators must be trained
or each summary statistic of interest as such methods do not match
he galaxy observations at the field level. 

Moti v ated by this, here we adopt a different approach and aim
o make the HOD sampling itself differentiable. Our aim is to be
ble to compute gradients of any observable with respect to HOD
arameters through a particular realization of a galaxy catalogue.
ommon wisdom states that differentiating through stochastically

ampled discrete random variables, such as the number of satellites
n a given halo, is not possible. However, modern reinforcement
earning has spurred the development of techniques to deal with these
ypes of categorical variables in the context of deep neural network
raining via back-propagation. In particular, we use the Gumbel-
oftmax or CONCRETE method (Jang, Gu & Poole 2016 ; Maddison,
nih & Whye Teh 2016 ) that utilizes continuous distributions to

pproximate the sampling process of discrete stochastic variables,
uch as galaxies, in a differentiable fashion. It relies on two insights:
1) a re-parametrization for a discrete (or categorical) distribution in
erms of the Gumbel distribution (referred to as the ‘Gumbel trick’;

addison, Tarlow & Minka 2014 ) and (2) making the corresponding
unction continuous by using a continuous approximation that
epends on a temperature parameter, which in the zero-temperature
ase degenerates to the discontinuous, original expression. 

In this paper, we will implement the Gumbel-Softmax method
n the context of HOD models and apply it to mock data sets.
n Section 2 , we will describe our HOD model and the methods
sed to allow differentiability of its categorical outputs. In Section
 , we apply this technique to a Monte Carlo analysis of a mock
alaxy catalogue constructed from the Planck–Bolshoi simulation.
n Section 4 , we compare the differentiable HOD model to that from
 standard approach and discuss its applications. 
NRAS 529, 2473–2482 (2024) 
 M E T H O D  

n this section, we provide some background on the various compo-
ents of our HOD model, and detail our strategy to make this model
ifferentiable. We implement our model using TensorFlow Proba-
ility (Tran et al. 2016 ; Morgan 2018 ), particularly the TensorFlow
istribution package (Dillon et al. 2017 ). 

.1 HOD model 

o describe the population of galaxies in our haloes, we use the
tandard Zheng et al. ( 2007 ) HOD model. In the Zheng et al. ( 2007 )
odel, the probability of a given halo hosting N galaxies is dictated

olely by its mass – P ( N | M ). The model separately populates central
nd satellite galaxies, moti v ated by theoretical studies (Kravtsov
t al. 2004 ; Zheng et al. 2005 ), and has five free parameters with
ome physical significance that can be related back to well-studied
ass–luminosity relationships. 

.1.1 Central occupation 

or central galaxies, the mean occupation function is step-like with
 soft cut-off at high mass to account for natural scatter between
alaxy luminosity the halo host mass. There are two free parameters
ontrolling this function, the characteristic minimum mass of haloes
osting central galaxies abo v e some luminosity threshold, M min , and
he width of the cut-off profile, σ log M 

: 

 N cen ( M) 〉 = 

1 

2 

[
1 + erf 

(
log M − log M min 

σlog M 

)]
, (1) 

here erf is the standard error function and M is the halo mass. Given
he mean occupation for a halo of a given mass, central galaxies are
ssigned to haloes by sampling a Bernoulli distribution: 

 cen ∼ Bernoulli 
(
p = 〈 N cen ( M) 〉 ). (2) 

. 1 . 2  SA  TELLITE  O C C U PA  T I O N  

imulations suggest that satellites follow an approximately power-
aw distribution with a slope close to unity at the high-mass end. At
ower masses, the shape of the distribution changes and the o v erall
istribution can be parametrized as 

 N sat ( M) 〉 = 〈 N cen ( M) 〉 
(

M − M 0 

M 

′ 
1 

)α

, (3) 

here α is the power-law slope at high masses, M 0 is the characteristic
ass of the change-o v er, and M 

′ 
1 is the characteristic amplitude. This

ean number of satellites for a given mass is then used to define the
ntensity λ of a Poisson distribution, from which a particular number
f satellites are drawn for each halo. 

 sat ∼ Poisson 
(
λ = 〈 N sat ( M) 〉 ). (4) 

.1.3 Spatial satellite distribution 

n the Zheng et al. ( 2007 ) HOD, central galaxies are located at
he centre of its host halo and satellite galaxies are distributed
ccording to a Navarro, Frenk & White ( 1997 ) profile (hereafter
FW ). To sample the satellite galaxy positions, we utilize the
obotham & Howlett ( 2018 ) implementation, which constructs an
fficient mapping from a random sample and the full NFW profile via
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he calculation of the quantile function, i.e. the inverse cumulative 
istribution function (CDF). This can be written analytically as 

( p; c, M vir ) = −1 

c 

[
1 + 

1 

W 0 ( −e −pM vir −1 ) 

]
, (5) 

here W 0 is the Lambert-W function, M vir is the virial mass, and c
s the concentration parameter. Using this inverse CDF, we can now 

andomly draw radial distances for satellites by sampling p from U [0,
] and mapping it to radii as r / r vir = q ( p , c ). The angular position of
he satellite is sampled uniformly in this isotropic model. 

.2 Differentiable stochastic sampling 

n this section, we re vie w the key ideas behind dif ferentiable
tochastic sampling, which will form the building blocks of DIFFHOD . 

.2.1 Stochastic backpropagation by reparametrization 

ne of the most common approaches for backpropagation through 
tochastic sampling is the so-called reparametrization trick, exten- 
ively used for instance in Variational Auto-Encoders (Kingma & 

elling 2013 ; Jimenez Rezende, Mohamed & Wierstra 2014 ). 
The key idea of this approach is to rewrite samples z from a

iven parametric distribution P θ as a deterministic and differentiable 
ransformation f applied to a fixed distribution P ε : 

 = f ( θ, ε) with ε ∼ P ε . (6) 

his reparametrization of the samples allows to side-step having 
o take deri v ati ves of the stochastic variable ε when computing
eri v ati ves of some downstream function h with respect to the
istribution parameters θ . This can be expressed in terms of the 
xpectation value with respect to random variable, E z , as 

∂ 

∂ θ
E z∼P θ [ h ( z) ] = E ε∼P ε

[
∂ 

∂ θ
h ( f ( θ, ε)) 

]
. (7) 

n the right-hand side of this expression, the deri v ati ve no w only
nvolves taking gradients of a deterministic function of θ since ε is 
reated as an input to the function. 

To provide a simple concrete example of such reparametrization, 
et us consider a Gaussian distribution of mean μ and standard 
eviation σ . This is the standard example used in the case of
ariational auto-encoders. One can express a sample z ∼ N ( μ, σ 2 )
s z = μ + σε with ε ∼ N (0 , I ), making it trivial to take deri v ati ves
f the samples with respect to the parameters of the distribution ( μ
nd σ ). We can then use this form for an optimization problem,
or example minimizing E z∼p μ [ z 2 ] with respect to parameter μ, via
alculating the deri v ati ve as follows: 

∂ 

∂ μ
E z∼p μ

[
z 2 

] = 

∂ 

∂ μ
E ε∼q ε

[
( μ + σε) 2 

] = E ε∼q ε [2( μ + σε)] . (8) 

etting this equal to zero, we find μ = 0, the expected result. 

.2.2 Gumbel-Softmax trick for categorical variables 

he reparametrization trick as presented abo v e requires the samples 
o be expressible as a deterministic and differentiable function of a 
andom variable. While this can often be achieved for continuous 
istributions, it is typically not directly possible for discrete cate- 
orical variables. To o v ercome this limitation, the Gumbel-Softmax 
rick (Jang, Gu & Poole 2016 ; Maddison, Mnih & Whye Teh 2016 )
ntroduces a relaxation of a categorical distribution to a continuous 
istribution, which can then be handled with the reparametrization 
rick. 

Let z be a categorical variable with class probabilities π1 , π2 , ...
j that we wish to sample. We assume that categorical samples are

ncoded as N -dimensional one-hot v ectors, i.e. the y are 1 × N v ectors
ith all elements 0 except the element corresponding to the sampled

lass which is 1. The simplest way to sample z is by 

 = onehot ( max i| π1 + ... + πi−1 ≤ U ) , U ∼ Uniform (0 , 1) , (9) 

here we use the onehot function to express a onehot vector
mbedding. A first step towards making these samples differentiable 
s to use the Gumbel-Max trick (Gumbel 1954 ; Maddison, Tarlow &

inka 2014 ), which reparametrizes categorical sampling as 

 = onehot 
(
argmax i [ g i + log ( πi ) ] 

)
, (10) 

here g i are i.i.d. random variables drawn from the Gumbel dis-
ribution between 0 and 1, Gumbel(0, 1). 1 This reparametrization 
rick refactors the sampling of z into a deterministic function 
f the parameters ( π ) and some independent noise with a fixed
istribution. 
Ho we ver, the reparametrized function is still non-differentiable 

ue to the argmax function. A continuous, differentiable approxima- 
ion to this is given by a softmax function, 

oftmax ( z , τ ) i = 

e z i /τ∑ k 

j= 1 e 
z j /τ

, z = ( z 1 , z 2 , ..., z k ) (11) 

here τ is a free parameter sometimes referred to as the ‘tempera-
ure.’ This is also known as a relaxation of the distribution, since it
an be viewed as a smoothed version of the original distribution. 

Using this approximation relaxes the discreteness of the Gumbel- 
ax trick and generates a k -dimensional vector z 

ˆ  i = 

exp (( log ( πi ) + g i ) /τ ) ∑ 

j exp (( log ( πj ) + g j ) /τ ) 
. (12) 

e reco v er the true discrete function in the limit of τ → 0. As
his function is analytical in class probabilities π for τ > 0, we can
stimate the gradients of the observed samples z with respect to the
arameters parametrizing π . Note that as τ → ∞ , the function goes
o a constant value. 

In the remaining of this work, we will make use of the special
ase when the number of classes is 2, i.e. when the categorical
istribution reduces to a Bernoulli distribution. In this special binary 
ase, equation ( 12 ) can be simplified. Maddison, Mnih & Whye Teh
 2016 ) refer to the resulting distribution as BinConcrete; we will
efer to it in this work as a Relaxed Bernoulli distribution. Using the
act that the difference of two Gumbel variables follows a Logistic
istribution, 2 Maddison, Mnih & Whye Teh ( 2016 ) show the Relaxed
ernoulli can be reparametrized as 

 = 

1 

1 + exp ( −( log π + ε) /τ ) 
with ε ∼ Logistic (0 , 1) , (13) 

here in this expression π is the odds ratio π = p /(1 − p ) if p is the
robability of corresponding Bernoulli distribution. 
MNRAS 529, 2473–2482 (2024) 

[1 −exp ( −x)] 
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M

Figure 1. HOD for central (top) and satellite galaxies (bottom) as a 
function of halo virial mass of our differentiable HOD model ( DIFFHOD ; 
solid). Lines indicate decreasing temperature values used in the Gumbel- 
Softmax approximation (see equation 12 ). We include the occupation 
distribution from the standard Zheng et al. ( 2007 ) HOD model for ref- 
erence (star). In this work, we use DIFFHOD with τ = 0.1, which is 
in good agreement with the standard HOD model throughout the full 
halo mass range ( https:// github.com/ Dif ferentiableUni verseInitiati ve/DHOD/ 
blob/ master/ nb/ Plots for Paper.ipynb ). 
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.3 DIFFHOD implementation 

e now have all the elements needed to build a differentiable
OD (hereafter DIFFHOD ) model. We describe in this section our

trategy for sampling central and satellites occupation, and satellites
ositions. 

.3.1 Differentiable central occupation sampling 

s described in Section 2.1 , the central occupation is defined by a
ernoulli distribution, with a parameter p = 〈 N cen ( M | M min , σ log M 

) 〉
efined as a deterministic function. 
Here, we can directly apply the Gumbel-Softmax trick introduced

bo v e in the special case of a binary variable. We therefore sample
he central occupation of each halo using the Relaxed Bernoulli
istribution: 

 cen = 

1 

1 + exp 
(
−

(
log 

(
p 

1 −p 

)
+ ε

)
/τ

) with ε ∼ Logistic (0 , 1) ,

(14) 

t given temperature τ . Fig. 1 illustrates the high agreement between
he halo occupation obtained by sampling centrals with this relaxed
istribution compared to the analytical expectation at our fiducial
hoice of τ = 0.1. 
NRAS 529, 2473–2482 (2024) 
.3.2 Differentiable satellite occupation sampling 

or satellites, we aim to define a differentiable approach to sampling
rom a Poisson distribution with intensity λ = 

〈
N sat ( M | M 0 , M 

′ 
1 , α) 

〉
,

lso a deterministic and differentiable function. To build on the
umbel-Softmax trick, we propose to replace conventional Poisson

ampling of the total number of satellites by sampling each satellite
ndividually from a Bernoulli distribution. 

Let us consider a halo with a Poisson rate λ for its satellite occu-
ation. We assume the halo can have a maximum of N satellites, then
or each potential satellite we sample from a Bernoulli distribution
ith probability p = λ/ N whether this satellite will be included in

he halo. The resulting statistics of the number of satellites with this
rocedure will be Binomial (as N draws from i.i.d. Bernoulli). 
More formally, we propose to approximate the Poisson distribution

ith intensity λ of a standard HOD by a Binomial distribution with
 trials and probability p = λ/ N : 

 sat ∼ Binomial 

(
N, p = 

〈 N sat 〉 
N 

)
. (15) 

y construction, this Binomial distribution will yield the same mean
umber of satellites as the Poisson distribution, ho we ver the v ariance
f both distributions is different: 

ar ( N 

Pois . 
sat ) = 〈 N sat 〉 , (16) 

ar ( N 

Bin . 
sat ) = 〈 N sat 〉 ∗

(
1 − 〈 N sat 〉 

N 

)
. (17) 

rom this expression, one can foresee that the Binomial distribution
ill be a close approximation to a Poisson distribution when the ratio

〈 N sat 〉 
N 

is small, i.e. when the number of trials is large compared to the
xpected number of satellites. This is actually known as the law of
 are e vents , and at fix ed N ∗p the Binomial distribution Binomial( N ,
 ) converges to a Poisson distribution when the number of trials N
 ∞ . 
In practice, we will need to limit the number of trials N to some

nite value and Fig. 2 compares the shapes of satellites distributions
ith a Poisson model versus a Binomial model for two different

hoices of N , and for different halo masses. A higher value of N can
mpro v e accurac y but will also increases memory costs, which scales
inearly with the maximum number of satellite galaxies encoded
n our one-hot embedding. Meanwhile, too low of a N can bias
esults by artificially reducing the variance of the satellite occupation
istribution, or worse, truncating the satellite galaxies of the most
assive haloes. 
Our fiducial choice in this work is N = 48. In Fig. 1 (bottom),

e can see that the satellite population reaches a maximum of ∼40
alaxies for the most massive ∼10 15 M 
 haloes. For the mass range
onsidered here, we find N > 40 does not significantly impro v e the
tatistical match in summary statistics (correlation function, power
pectra, etc.) of the resulting galaxy fields and larger N further will
ncrease memory requirements and computational time. If the end
tatistic of interest is particularly sensitive to galaxy populations in
he most massive clusters, a higher N might be needed. If one is
imited by memory or implementing HOD for haloes with a broader

ass range, then it may be more efficient to have multiple halo mass
ins with different maximum number of allowed satellites N . 
This Binomial assumption for the sampling of satellites brings two

oncrete advantages: 

(i) Having restated satellite sampling as draws from Bernoulli
istributions, we can make the procedure differentiable by using the
elaxed Bernoulli, similarly to centrals. 

https://github.com/DifferentiableUniverseInitiative/DHOD/blob/master/nb/Plots_for_Paper.ipynb
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Figure 2. Comparison of satellite occupation distributions for different 
halo masses, under various assumed distributions: Poisson (solid line), 
Binomial with 100 trials (dashed line), Binomial with 30 trials (dotted 
line). By construction, the Binomial approximation reco v ers the mean 
number of satellites, but for massive haloes limiting the number of sam- 
ples N will lead to departure in the spread of the distribution compared 
to a Poisson distribution. Note that for the m halo = 10 14.8 halo the 
mean number of satellites is abo v e 30, so the Binomial distribution is 
not well defined ( https:// github.com/ Dif ferentiableUni verseInitiati ve/DHOD/ 
blob/ master/ nb/ PoissonVSBinomial.ipynb ). 
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(ii) Using a fixed number N of potential satellites gives us a 
ractical way to handle varying number of satellites per haloes. 

Concretely, for each candidate satellite i ∈ [ [1 , N ] ] of a halo, we
ample whether the satellite will be included in the halo using 

 i = 

1 

1 + exp 
(
−

(
log 

(
p 

1 −p 

)
+ εi 

)
/τ

) with ε ∼ Logistic (0 , 1) , 

(18) 

here p = 

〈 N sat 〉 
N 

and τ is the temperature. As a result, for each halo
e obtain a vector z of size N which encodes active satellites for the
alo. 
In all downstream computations, this vector z can be interpreted 

s a weight between 0 and 1 to apply to each of the N satellites of
ach halo, for instance in the computation of two-point correlation 
unctions. 

.3.3 Differentiable sampling from NFW distribution 

he last step to complete our HOD implementation is to sample 
he position of satellites based on an NFW profile centred at the
alo position. There are two difficulties here: 1. sampling positions 
or a varying number of satellites, 2. making the sampled positions
ifferentiable with respect to the NFW parameters. 
The first question of dealing with varying number of satellites is

olved by our Binomial model with fixed number of trials N . For each
alo, we will sample the same number of N sets of coordinates, one
or each potential satellite. Whether these coordinates will actually 
ontribute in downstream computations will depend on the per halo 
atellite occupation vector z introduced above. 

The second question, of the differentiability of stochastic coor- 
inates, is again solved by applying the re-parametrization trick to 
he NFW profile. From equation ( 5 ), we know the CDF of the NFW
rofile, meaning that for each satellite i ∈ [ [1 , N ] ] of a given halo we
an sample the halo-centric satellite radial distance as 

 i = r vir q( ε, c) with ε ∼ Uniform (0 , 1) , (19) 

here q is a differentiable function of parameters c . 
In our adaptation of the Zheng et al. ( 2007 ) model, we assume an

sotropic NFW distribution for satellite, so to retrieve halo-centric 
artesian coordinates x i , y i , z i of a given satellite, we first sample
 i , y i , z i on the unit sphere and then multiply these coordinates by
he r i value sampled abo v e. This is nothing more than an another
eparametrization step and the resulting Cartesian coordinates remain 
ully differentiable with respect to the NFW parameters. 

We note that contrary to the sampling of central of satellites which
re differentiable approximation to a standard HOD (due to the 
iscrete variables involved), this differentiable implementation of 
FW sampling is exact. 

.3.4 Impact of temperature parameter τ

n the DIFFHOD model, we introduce temperature, τ , as a free
arameter (equation 14 ). Depending on the context/implementation, 
t may be beneficial to anneal (i.e. reduce) τ o v er the course of the
ptimization such that τ → 0. For instance, in the original papers 
Jang, Gu & Poole 2016 ; Maddison, Mnih & Whye Teh 2016 ), the
umbel-Softmax trick was used in the context of training a neural
etwork where only the optimal network weights were of interest and
ence τ was reduced to nearly zero o v er the course of the training.
o we ver in our case, we are interested in stochastic sampling, and
ot optimization, so we will pick a single temperature that well
pproximates the target distribution (i.e. unbiased) while maintaining 
easonable deri v ati ve properties (i.e. less noisy). 

In Fig. 1 , we present the central (top) and satellite (bottom)
ccupation distributions of our DIFFHOD model for different tem- 
eratures: τ = 0.02 (red) 0.1 (green), 0.5 (orange), and 1 (blue). We
nclude the occupation distributions for the standard HOD model 
or comparison (star). For this w ork, we tak e an experimental
pproach for determining τ , as advocated in Maddison, Mnih & 

hye Teh ( 2016 ): the temperature should set as high as possible
hile maintaining the desired accuracy of the target distribution. We 
nd that a fixed τ = 0.1 provides high accuracy while maintaining
table gradients for both sampling the number of galaxies in each
alo as well as the positions of the satellites from the NFW profile
see later Fig. 3 ). 

In general, an end user should confirm that the temperature 
arameter chosen is appropriate for their application both in terms 
f suitably smooth deri v ati ves and in distribution accuracy. While
here are some ‘principled’ approaches to setting the temperature 
arameter discussed in machine learning literature (Abid, Balin & 

ou 2019 ), they are in the context of training deep neural networks
nd are not necessarily useful for the differentiable model context. 
he quantitative requirements for accuracy and differentiability 
epend entirely on the o v erall workflow (i.e. optimization/sampling 
lgorithm, observable of interest, etc.) and are difficult to set ab initio .

 EXPERI MENTATI ON  

o test our implementation, we construct a fiducial mock galaxy cat-
logue from the Planck Bolshoi simulation halo catalogue (Klypin, 
rujillo-Gomez & Primack 2011 ) at z = 0. We treat this catalogue
s our mock observation. This simulation has a side length of 250
 

−1 Mpc, and contains 1367 493 unique haloes ranging in mass from
.1 × 10 15 M 
 down to 2.7 × 10 8 M 
. We use halotools (Hearin
MNRAS 529, 2473–2482 (2024) 

https://github.com/DifferentiableUniverseInitiative/DHOD/blob/master/nb/PoissonVSBinomial.ipynb
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M

Figure 3. Top : Deri v ati ves of the central and satellite occupation functions with respect to the HOD parameters for various temperatures: τ = 0.02 (left) 0.1 
(centre), and 1 (right). The deri v ati ves are calculated at the fiducial HOD parameter v alues. We include deri v ati ves analytically deri ved from equations ( 1 ) and ( 3 ) 
for comparison (star). Bottom : Deri v ati ves of the galaxy power spectrum with respect to the HOD parameters, e v aluated at the fiducial HOD parameter values. 
We include deri v ati ves calculated using the standard HOD with finite difference for comparison (star). Our DIFFHOD model with τ = 0.1 provides sufficiently 
smooth deri v ati ves that are in good agreement with analytical deri v ati ves for the occupation function and with standard HOD deri v ati ves for the po wer spectrum 

( https:// github.com/ Dif ferentiableUni verseInitiati ve/ DHOD/ blob/ master/ nb/ Plots for Paper.ipynb ). 
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t al. 2016 ) to generate our fiducial catalogue with HOD parameter
alues: 

log M min = 12 . 02 , σlog M 

= 0 . 26 , log M 0 = 11 . 38 , 

log M 1 = 13 . 31 , α = 1 . 06 . 

hese parameters correspond to the best-fitting values from Zheng
t al. ( 2007 ) using an SDSS-based galaxy catalogue (Zehavi et al.
005 ) with r -band absolute magnitude threshold of M r < −20. 

.1 Summary statistics and deri v ati v es with DIFFHOD 

ext, we compare the mock observations to parallel galaxy cata-
ogues constructed using DIFFHOD (Section 2 ). The galaxy catalogues
re then painted on to a grid using a differentiable cloud-in-cell
CIC) painting method (Modi, Lanusse & Seljak 2021 ) and its real-
pace power spectra calculated via a differentiable TensorFlow power
pectrum implementation (Horowitz et al. 2021 ). For DIFFHOD , all
teps are differentiable so the o v erall mapping from original halo
atalogue to end power spectrum is also differentiable via the chain
ule. In Fig. 3 , we present the DIFFHOD deri v ati ves of the central
nd satellite occupation distribution functions (top) and resulting
NRAS 529, 2473–2482 (2024) 
ower spectra (bottom) with respect to the HOD parameters for
ifferent temperatures: τ = 0.02 (left), 0.1 (middle), and 1 (right). The
eri v ati ves are e v aluated at the fiducial HOD parameter values. In the
entre panels, for comparison, we include deri v ati ves of the central
nd satellite occupation distribution functions derived analytically
nd deri v ati ves of the po wer spectrum deri ved using the standard
OD with finite differences (star). 
With τ = 0.02, the power spectrum derivativ es hav e significant

umerical noise. The τ = 1.0 deri v ati ves are smoother but we
nd inaccurate occupation distributions (Fig. 1 ) and a significantly
iased power spectrum. Meanwhile, with τ = 0.1 there is still
ome noticeable numerical noise in the deri v ati ves, ho we ver, this
s sufficiently smooth for our application and for our optimization to
e well behaved. We also find that the τ = 0.1 DIFFHOD deri v ati ves
re in good agreement with analytical deri v ati ves for the occupation
unction and with standard HOD deri v ati ves estimated using finite
ifferences for the power spectrum. 
We compare the differentiable power spectrum from DIFFHOD to

he DIFFHOD power spectrum from the standard HOD model in Fig. 4 .
e use the fiducial HOD parameter values and estimate the error

ars from 500 realizations of the DIFFHOD model. We find good

https://github.com/DifferentiableUniverseInitiative/DHOD/blob/master/nb/Plots_for_Paper.ipynb
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Figure 4. Comparison of power spectrum derived using a standard HOD 

model ( P HT ) versus our DIFFHOD model. We plot the ratios for central and 
satellite galaxies, as well as for all galaxies. Error bars represent the standard 
deviation of the DIFFHOD model estimated from 500 realizations of the galaxy 
sampling. Grey band represents the standard deviation of P HT for all galaxies. 
We find good agreement between the dif ferentiable po wer spectrum and 
P HT across all scales ( k < 3 h Mpc −1 ), as well as similar distributional 
properties ( https:// github.com/ Dif ferentiableUni verseInitiati ve/ DHOD/ blob/ 
master/ nb/ power spectra comparison.ipynb ). 
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Figure 5. Posterior distributions of the Zheng et al. ( 2007 ) HOD pa- 
rameters derived using DIFFHOD with HMC (red) and the standard 
HOD with MCMC (blue). We use a single mock galaxy catalogue 
realization at the fiducial HOD parameter values (green) as our ob- 
servations ( https:// github.com/ DifferentiableUniv erseInitiativ e/ DHOD/ blob/ 
master/ nb/ chain scripts/ chain analysis 5d.ipynb ). 

Table 1. Posterior values from the HOD analyses using the DIFFHOD and 
standard HOD model. Uncertainties are estimate from the 16 and 84 per cent 
quantiles. 

DIFFHOD Standard HOD 

log( M min ) 12 . 03 + 0 . 15 
−0 . 03 12 . 01 + 0 . 14 

−0 . 02 

σ log M 

0 . 28 + 0 . 19 
−0 . 16 0 . 27 + 0 . 18 

−0 . 16 

log M 0 11 . 25 + 0 . 38 
−0 . 43 11 . 27 + 0 . 49 

−0 . 50 

log M 1 13 . 32 + 0 . 23 
−0 . 23 13 . 34 + 0 . 29 

−0 . 22 

α 0 . 96 + 0 . 19 
−0 . 19 0 . 96 + 0 . 18 

−0 . 19 
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greement (better than 1 per cent) across all scales, with particularly 
ood agreement for central galaxies, which are not sampled from the 
FW profile. Low k modes are most sensitive to the most massive
aloes whose satellite galaxy populations are truncated by our one- 
ot distribution ( N = 48; Section 2.3 ); those who are interested in this
egime can further increase N . Ho we ver, e ven at k < 0.15 h Mpc −1 ,
e find good agreement between the power spectra. 

.2 Monte Carlo analysis with DIFFHOD 

astly, we demonstrate that we can derive unbiased inference using 
IFFHOD , by comparing the posteriors on HOD parameters derived 
sing DIFFHOD to posteriors derived using standard methods with 
he same mock observations and likelihood. We use the power 
pectrum measured from the fiducial galaxy catalogue as our mock 
bservations, and construct a covariance matrix using 100 galaxy 
atalogue realizations at the fiducial HOD catalogues. To this 
ovariance, we added a small constant diagonal term (8.0 × 10 −5 )
o impro v e numerical stability. We limit our comparison to k < 1.0.
n both DIFFHOD and standard cases, we use the same halo catalogue
sed to construct the mock observations, so that the only source of
rror is variation caused by the HOD model. For this analysis we
mpose wide Gaussian priors, N ( μ, σ 2 ), where μ is the mean, and

2 is the variance, on our parameter values as follows: 

log M min ∼ N (12 . 0 , 0 . 5) , σlog M 

∼ N (0 . 25 , 0 . 2) , 

og M 0 ∼ N (11 . 25 , 0 . 5) , log M 1 ∼ N (13 . 20 , 0 . 5) , 

α ∼ N (1 . 0 , 0 . 2) . 

o derive the posteriors using DIFFHOD , we sample o v er the HOD
arameter using HMC (Duane et al. ; Neal et al. 2011 ). We use the
oUTurn HMC implementation (Hoffman, Gelman et al. 2014 ) in 
ensorFlow Probability. We use three chains initialized around our 
ducial HOD parameters with o v er 1000 steps (300 steps of burn-in).
For the standard approach, we run the same analysis using 

he standard HOD. Ho we ver, since this implementation does not 
llow easy differentiation, we cannot use HMC instead use an 
CMC analysis. We use the emcee (F oreman-Macke y et al. 2013 )
mplementation with 10 w alk ers and 6000 steps. We present the
osteriors on the HOD parameters for the DIFFHOD (black) and 
tandard (blue) analyses in Fig. 5 and list the median posterior values
n Table 1 with associated errors calculated from percentiles. We 

ark the fiducial (‘true’) HOD values in green. As we are using a
ingle galaxy realization for our mock observations, we expect some 
ariation between the best-fitting parameters and the true values. The 
osteriors derived using DIFFHOD and HMC is in excellent agreement 
ith the posteriors derived using the standard HOD and MCMC. 
Our HMC analysis takes approximately 10 h on a single Tesla

100-PCIE-32Gb GPU. Meanwhile, the standard approach takes 
ubstantially more time to get comparable results: ∼200 h on 1 CPU –
20 × slower than our DIFFHOD analysis. Some of this impro v ement

s due to the fact that our DIFFHOD implementation is faster per
teration than the standard HOD implementation ( ∼1 and ∼4 s per
teration, respectively). Most of the improvement, ho we ver, comes 
rom the fact that DIFFHOD allows us to exploit a more efficient
radient-based method to derive the posterior. 
We compare the DIFFHOD and standard approaches in more detail 

y comparing the ef fecti ve sample size of each chain per function
MNRAS 529, 2473–2482 (2024) 

https://github.com/DifferentiableUniverseInitiative/DHOD/blob/master/nb/power_spectra_comparison.ipynb
https://github.com/DifferentiableUniverseInitiative/DHOD/blob/master/nb/chain_scripts/chain_analysis_5d.ipynb
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 v aluation (Gelman et al. 2013 ). This is roughly equi v alent to the
umber of independent samples per e v aluation and this measure
as the advantage of being independent of particular implementation
peed and platform (i.e. GPU versus CPU). The ef fecti ve sample size
ncorporates information about the autocorrelations within a chain;
.e. it accounts for the dependent relationships between the samples.

e calculate it from the output of the Markov chain: 

 eff = 

N 

1 + 

∑ ∞ 

t= 1 ρt 

, (20) 

here N is the number of samples in the chain and ρ t is the
utocorrelation of length t . Av eraging o v er all HOD parameters,
e find a mean ef fecti ve sample size of 524.2 for our DIFFHOD

MC e v aluation and 403.9 for the standard MCMC e v aluation. This
orresponds to an ef fecti ve sample of 0.05 per e v aluation for the
MC and 0.006 per e v aluation for the MCMC. 

 C O N C L U S I O N S  

n this work, we have constructed a differentiable stochastic HOD
odel going from a halo catalogue to an observed galaxy power spec-

rum. This allows us to use derivative-based optimization methods
o quickly optimize for the underlying model parameters. This is the
rst time that differentiable stochastic models have been used in the
strophysics literature. We find that the DIFFHOD model provides a
 × increase of speed versus the same analysis performed via MCMC
ith the standard HOD implementation. DIFFHOD is an alternative to
 number of recent works focusing on emulating galaxy clustering
tatistics (Kwan et al. 2015 ; Wibking et al. 2019 ; Kobayashi et al.
020 ; Wibking et al. 2020 ; Hearin et al. 2022 ). Unlike emulator-
ased methods, DIFFHOD works at the level of the halo catalogue and
llo ws fast, dif ferentiable, generation of any summary statistic with
espect to the HOD parameters. 

In this work, we have focused on the Zheng et al. ( 2007 )
OD model, but our methods can be easily extended to a broad

lass of models. While standard HODs are based only on halo
ass, in general various properties of the haloes’ environment and

ormation history could affect the galaxy properties (Zhu et al.
006 ; Croton, Gao & White 2007 ). Galaxy assembly bias has been
rgued (Feldmann & Mayer 2015 ; Hadzhiyska et al. 2020 ) to cause
ignificant deviations between predictions of standard HOD models
nd those from hydrodynamical simulations. Decorated HOD models
ave been introduced to account for assembly bias (Hearin et al.
016 ) and have been extended to include other possible effects
Yuan, Eisenstein & Garrison 2018 ). These models still rely on
tochastic discrete sampling for assigning centrals and satellites, so
hey can be modelled in a differentiable way using the techniques
escribed in this work. In practice, since our code separates out the
tochastic element of the occupation via the Gumbel-Softmax trick,
ny analytical formula for the underlying occupation distribution that
epends on a calculable (sub)halo property can be trivially included.
t the level of our implementation in TensorFlow, extended HOD
odels are as easy to implement as changing the defined N s at and
 c en statistics to the chosen formula. 
As the dimensionality of our problem increases, either with

xtended HOD models or with joint analysis with cosmological
arameters, we expect the relative performance of deri v ati ve-based
ethods, like HMC, o v er pure sampling-based methods to further

mpro v e (Neal et al. 2011 ). 
Differentiable HOD models hav e ev en more apparent applications

n the case of dynamical forward model large-scale reconstructions
Seljak et al. 2017 ) when paired with ef ficient dif ferentiable halo
NRAS 529, 2473–2482 (2024) 
nding methods (Modi et al. 2018 , 2021 ; Kodi Ramanah, Charnock &
avaux 2019 ). While it is possible to perform these reconstructions
y interpreting the galaxy field as a biased version of the dark matter
eld (i.e. in Horowitz et al. 2021 ), inaccuracies in this prescription
ill result in biases that would be difficult to account for in cosmo-

ogical constraints. Through joint inference of the HOD parameters
ith the initial density field, these astrophysical uncertainties can
e rigorously marginalized out. Differentiable models are critical
or this application as the optimization is highly multidimensional
approximately number of particles in the simulation) and would be
omputationally infeasible without gradient-based methods. 

While in this work we have highlighted using our DIFFHOD

odel inside an HMC framework, one can exploit its automatic
ifferentiation for a variety of first-order optimization and parameter
nference methods. For example, standard variational inference relies
n having well-defined deri v ati ves for the optimization of latent space
arameters describing the lik elihood surf ace (Peterson 1987 ; Beal
003 ; Blei et al. 2016 ). Variational inference could further accelerate
arameter inference when compared to HMC or nested sampling
ethods (Gunapati et al. 2018 ). 
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PPENDI X  A :  DI STRI BU TI ONA L  PROPERTIES  

F  D I F F H O D M O D E L  

n the main body of the work, we sampled from a Bernoulli
istribution rather than a pure Poisson Distribution due to the existing 

nalytical tools to relax the Bernoulli Distribution via the Gumbel- 
oftmax trick. This was demonstrated to be a valid approximation at

he level of various summary statistics, such as HOD functions and
esulting galaxy power spectrum. In this section, we show the HOD
s a function of halo mass. 

We sample our satellite DIFFHOD , at τ = 0.1, and the standard
atellite HOD using the parameters in the main text 100 times in order
o attain reasonable number statistics at the high mass bins. We show
ur results in Fig. A1 , finding quantitative good agreement between
he models as calculated by their modal and variance properties. We
alculate for each mass bin the 32, 50, and 68 per cent percentiles.
ince DIFFHOD uses a relaxed distribution instead of sampling, it is
ossible to get non-integer number of satellites while for the standard
OD model all sampling is discretized. Qualitatively, we see a 

light broadening of the distributions at the extreme high-mass end; 
o we ver, this does not noticeably impact any of our resulting analysis
ue to the very small population of these extreme high mass haloes.
dditional optimizations in terms of maximum satellite population 

nd choice of temperature could be performed if this populations is
f high interest. 
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Figure A1. Histogram showing the HOD from 100 independent samples from the complete halo catalogue. We compare haloes populated by our DIFFHOD 

model as well as a standard HOD implementation. We show the median satellite occupation number, and quote error bars representing the 32 and 68 per cent 
quartiles. We find excellent quantitative and qualitative agreement between the two distributions. fa fa- file- code- o . 
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