Parametric information geometry with the package Geomstats - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

Parametric information geometry with the package Geomstats

Résumé

We introduce the information geometry module of the Python package Geomstats. The module first implements Fisher-Rao Riemannian manifolds of widely used parametric families of probability distributions, such as normal, gamma, beta, Dirichlet distributions, and more. The module further gives the Fisher-Rao Riemannian geometry of any parametric family of distributions of interest, given a parameterized probability density function as input. The implemented Riemannian geometry tools allow users to compare, average, interpolate between distributions inside a given family. Importantly, such capabilities open the door to statistics and machine learning on probability distributions. We present the object-oriented implementation of the module along with illustrative examples and show how it can be used to perform learning on manifolds of parametric probability distributions.
Fichier principal
Vignette du fichier
parametric-ig-geomstats.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03862556 , version 1 (21-11-2022)

Identifiants

  • HAL Id : hal-03862556 , version 1

Citer

Alice Le Brigant, Jules Deschamps, Antoine Collas, Nina Miolane. Parametric information geometry with the package Geomstats. 2022. ⟨hal-03862556⟩
143 Consultations
352 Téléchargements

Partager

More