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PARAMETRIC INFORMATION GEOMETRY WITH THE

PACKAGE GEOMSTATS

ALICE LE BRIGANT, JULES DESCHAMPS, ANTOINE COLLAS AND NINA MIOLANE

Abstract. We introduce the information geometry module of the Python

package Geomstats. The module first implements Fisher-Rao Riemannian
manifolds of widely used parametric families of probability distributions, such

as normal, gamma, beta, Dirichlet distributions, and more. The module fur-
ther gives the Fisher-Rao Riemannian geometry of any parametric family of

distributions of interest, given a parameterized probability density function as

input. The implemented Riemannian geometry tools allow users to compare,
average, interpolate between distributions inside a given family. Importantly,

such capabilities open the door to statistics and machine learning on prob-

ability distributions. We present the object-oriented implementation of the
module along with illustrative examples and show how it can be used to per-

form learning on manifolds of parametric probability distributions.

1. Introduction

Geomstats [29] is an open-source Python package for statistics and learning on
manifolds. Geomstats allows users to analyze complex data that belong to mani-
folds equipped with various geometric structures, such as Riemannian metrics. This
type of data arise in many applications: in computer vision, the manifold of 3D rota-
tions models movements of articulated objects like the human spine or robotics arms
[5]; and in biomedical imaging, biological shapes are studied as elements of shape
manifolds [15, 41]. The manifolds implemented in Geomstats come equipped with
Riemannian metrics that allow users to compute distances and geodesics, among
others. Geomstats also provides statistical learning algorithms that are compatible
with the Riemannian structures, i.e., that can be used in combination with any of
the implemented Riemannian manifolds. These algorithms are geometric general-
izations of common estimation, clustering, dimension reduction, classification and
regression methods to nonlinear manifolds.

Probability distributions are a type of complex data often encountered in ap-
plications: in text classification, multinomial distributions are used to represent
documents by indicating words frequencies [25]; in medical imaging, multivariate
normal distributions are used to model diffusion tensor images [27]. Many more
examples of applications can be found in the rest of this paper. Spaces of proba-
bility distributions possess a nonlinear structure that can be captured by two main
geometric representations: one provided by optimal transport and one arising from
information geometry [2]. In optimal transport, probability distributions are seen
as elements of an infinite-dimensional manifold equipped with the Otto-Wasserstein
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metric [30, 3]. By contrast, information geometry gives a finite-dimensional mani-
fold representation of parametric families of distributions. 1

Specifically, information geometry represents the probability distributions of a
given parametric family by their parameter space, on which the Fisher informa-
tion is used to define a Riemannian metric —the so-called Fisher-Rao metric or
Fisher information metric [33]. This metric is a powerful tool to compare and
analyze probability distributions inside a given parametric family. It is invariant
to diffeomorphic changes of parametrization, and it is the only metric invariant
with respect to sufficient statistics, as proved by Cencov [11]. Most importantly,
the Fisher-Rao metric comes with Riemannian geometric tools such as geodesics,
geodesic distance and intrinsic means, that give an intrinsic way to interpolate,
compare, average probability distributions inside a given parametric family. By
construction, geodesics and means for the Fisher-Rao metric never leave the para-
metric family of distributions, contrary to their Wasserstein-metric counterparts.
These intrinsic computations can then serve as building blocks to apply learning
algorithms to parametric probability distributions.

The geometries of several parametric families have been studied in the literature,
and some relate to well-known Riemannian structures: the Fisher-Rao geometry of
univariate normal distributions is hyperbolic [8]; the Fisher-Rao geometry of multi-
nomial distributions is spherical [21]; and the Fisher-Rao geometry of multivariante
distributions of fixed mean coincides with the affine-invariant metric on the space
of symmetric positive definite matrices [31].

Contributions. Computational tools for optimal transport have been proposed, in
Python in particular [16]. However, to the best of our knowledge, there exists
no wide-ranging open source Python implementation of parametric information
geometry, despite a recent implementation in Julia [6]. To fill this gap, this pa-
per presents a module of Geomstats that implements the Fisher-Rao geometries of
standard parametric families of probability distributions. Each parametric family
of distributions is implemented through its Fisher-Rao manifold with associated
exponential and logarithm maps, geodesic distance and geodesics. These manifolds
are compatible with the statistical learning algorithms of Geomstats’ learning mod-
ule, which can therefore be applied to probability distributions data. As in the rest
of Geomstats, the implementation is object-oriented and extensively unit-tested.
All operations are vectorized for batch computation and support is provided for
different execution backends — namely NumPy, Autograd, PyTorch, and Tensor-
Flow.

Outline. The rest of the paper is organized as follows. Section 2 provides the
necessary background of Riemannian geometry and introduces the structure of Ge-
omstats’ information geometry module, i.e., the Python classes used to define a
Fisher-Rao geometry. Section 3 details the geometries of the parametric families
implemented in the module, along with code illustrations and examples of real-
world usecases in the literature. Section 4 presents an application of the informa-
tion geometry tools of Geomstats to geometric learning on probability distributions.
Altogether, the proposed information geometry module represents the first compre-
hensive implementation of parametric information geometry in Python.

1There also exists a non parametric-version that can be defined on the infinite-dimensional
space of probability distributions [17], that we do not consider here.
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Figure 1. Architecture of the information geometry module of
Geomstats. The InformationManifold Python mixin and the
FisherRaoMetric Python class implement the building blocks
of parametric information geometry. The most common para-
metric families of distributions are Python classes represented
in colors, and inherit from the InformationManifold mixin.
They are equipped with their respective Riemannian metrics,
which themselves inherit from the FisherRaoMetric class. The
abstract (ABC) Python classes Manifold, OpenSet, LevelSet,
Connection, RiemannianMetric provides tools of Riemannian ge-
ometry to compute on the information manifolds.

2. Information geometry module of geomstats

This section describes the design of the information geometry module and its
integration into Geomstats. The proposed module implements a Riemannian man-
ifold structure for common parametric families of probability distributions, such
as normal distributions, using the object-oriented architecture shown in Fig. 1.
The Riemannian manifold structure is encoded by two Python classes: one for
the parameter manifold of the family of distributions and one for the Fisher-Rao
metric on this manifold. For example, in the case of normal distributions, these
Python classes are called NormalDistributions and NormalMetric. They inherit
from more general Python classes, in particular the Manifold, Connection and
RiemannianMetric classes. These are abstract classes that define structure, but
cannot be instantiated, contrary to their child classes NormalDistributions and
NormalMetric. They also inherit from the InformationManifold mixin and the
FisherRaoMetric: these are Python structures specific to the information geom-
etry module. This section details this architecture along with some theoretical
background. For more details on Riemannian geometry, we refer the interested
reader to a standard textbook such as [14].

2.1. Manifold. The Manifold abstract class implements the structure of a mani-
fold, i.e., a space that locally resembles a vector space, without necessarily having
its global flat structure. Manifolds of dimension d can be defined in an abstract
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way, i.e., without considering their embedding in an ambient space, by “gluing”
together small pieces of Euclidean space Rd using charts. We will only consider
smooth manifolds, for which the transition from one chart to another is smooth.
In addition, submanifolds of a larger Euclidean space RN can be defined locally in
various ways: e.g., using a parametrization, an implicit function or as the graph of
a function [18]. The simplest examples of manifolds are Euclidean spaces Rd, or
more generally vector spaces in finite dimensions, open sets of vector spaces (there
is only one chart which is the identity) and level sets of functions (defined globally
by one implicit function). These important cases are implemented in the abstract
classes VectorSpace, OpenSet and LevelSet, which are child classes of Manifold
as shown in Figure 1.

A d-dimensional manifold M admits a tangent space TxM at each point x ∈M
that is a d-dimensional vector space. For open sets of Rd, it can be identified with
Rd itself. The classes that inherit from Manifold contain methods that allow users
to verify that an input is a point belonging to the manifold via the belongs()

method or that an input is a tangent vector to the manifold at a given base point
via the method is tangent() (see Figure 1).

2.2. Connection. The Connection class implements the structure of an affine
connection, which is a geometric tool that defines the generalization of straight lines,
addition and subtraction to nonlinear manifolds. To this end, a connection allows
us to take derivatives of vector fields, i.e., mappings V : M → TM that associate
to each point p a tangent vector V (p) ∈ TpM . Precisely, an affine connection is
a functional ∇ that acts on pairs of vector fields (U, V ) 7→ ∇UV according to the
following rules: for any vector fields U, V,W and differentiable function f ,

∇fU+VW = f∇UV +∇UW,

∇U (fV +W ) = U(f)V + f∇UV +∇UW,

where U(f) denotes the action of the vector field U on the differentiable function
f . The action induced by the connection ∇ is referred to as covariant derivative.

Geodesics. If γ(t) is a curve on M , its velocity γ̇(t) is a vector field along γ, i.e.
γ̇(t) ∈ Tγ(t)M for all t. The acceleration of a curve is therefore the covariant
derivative of this velocity field with respect to the affine connection ∇. A curve γ
of zero acceleration

(1) ∇γ̇ γ̇ = 0,

is called a ∇-geodesic. Geodesics are the manifolds counterparts of vector spaces’
straight lines. Equation (1) translates into a system of ordinary differential equa-
tions (ODEs) for the coordinates of the geodesic γ = (γ1, . . . , γd)

(2) γ̈k +

d∑
i,j=1

Γkij(γ)γ̇iγ̇j = 0, k = 1, . . . , d,

where the coefficients Γkij are the Christoffel symbols that define the affine connec-
tion in local coordinates. In the Connection class, Equation (2) is implemented in
the geodesic equation() method and the Christoffel symbols are implemented in
the christoffels() method (see Figure 1).
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Exp and Log maps. Existence results for solutions of ODEs allow us to define
geodesics starting at a point x with velocity v ∈ TxM for times t in a neighborhood
of zero, or equivalently for all time t ∈ [0, 1] but for tangent vectors v of small
norm. The exponential map at x ∈ M associates to any v ∈ TxM of sufficiently
small norm the end point γ(1) of a geodesic γ starting from θ with velocity v:

expx(v) = γ(1), where

{
γ is a geodesic,

γ(0) = x, γ̇(0) = v.

If B is a small ball of the tangent space TxM centered at 0 on which expx is defined,
then expx is a diffeomorphism from B onto its image and its inverse logx ≡ exp−1

x

defines the logarithm map, which associates to any point y the velocity v ∈ TxM
necessary to get to y when departing from x:

logx(y) = v where expx(v) = y.

The exponential and logarithm maps can be seen as generalizations of the Euclidean
addition and subtraction to nonlinear manifolds. Both maps are implemented in
the exp() and log() methods of the Connection class, which further allow us to
get other tools such as parallel transport() (see Figure 1). We refer to [18] for
additional details on the Connection class.

2.3. Riemannian metric. Just like there is an abstract Python class that encodes
the structure of manifolds, the abstract class RiemannianMetric encodes the struc-
ture of Riemannian metrics. A Riemannian metric is a collection of inner products
(⟨·, ·⟩p)p∈M defined on the tangent spaces of a manifoldM , that depend on the base
point p ∈M and varies smoothly with respect to it.

Levi-Civita Connection. A Riemannian metric is associated with a unique affine
connection, called the Levi-Civita connection, which is the only affine connection
that is symmetric and compatible with the metric, i.e., that verifies

UV − V U = ∇UV −∇V U

U⟨V,W ⟩ = ⟨∇UV,W ⟩+ ⟨V,∇UW ⟩

for all vector fields U, V,W . The geodesics of a Riemannian manifold are those
of its Levi-Civita connection. The class RiemannianMetric is therefore a child
class of Connection and inherits all its methods, including geodesic(), exp()
and log(). The class RiemannianMetric overwrites the Connection class’ method
christoffels() and computes the Christoffel symbols using derivatives of the
metric. The geodesics, by the compatibility property, have velocity of constant
norm, i.e., are parametrized by arc length.

Geodesic Distance. The dist() method implements the geodesic distance induced
by the Riemannian metric, defined between two points x, y ∈ M to be the length
of the shortest curve linking them, where the length of a (piecewise) smooth curve
γ : (0, 1) →M is computed by integrating the norm of its velocity

d(x, y) = inf
γ;γ(0)=x,γ(1)=y

L(γ), where L(γ) =

∫ 1

0

||γ̇(t)||γ(t)dt,

using the norm induced by the Riemannian metric. In a Riemannian manifold,
geodesics extend another property of straight lines: they are locally length-minimizing.
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In a geodesically complete manifold, any pair of points can be linked by a minimiz-
ing geodesic, not necessarily unique, and the dist() can be computed using the
log map:

∀x, y ∈M, d(x, y) = || logx(y)||x.

Curvatures. Finally, different notions of curvature are implemented, including the
riemann curvature() tensor and sectional curvature(), among others (see Fig-
ure 1). The Riemann curvature tensor is defined from the connection, namely for
any vector fields U, V,W as R(U, V )W = ∇[U,V ]W + ∇V∇UW − ∇U∇VW . Sec-
tional curvature at x ∈ M is a generalization of the Gauss curvature of a surface
in R3. It is defined for any two-dimensional subspace σ(u, v) ⊂ TxM spanned by
tangent vectors u, v, as

Kσ(u,v)(x) =
⟨R(u, v)v, u⟩

⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2
.

It yields important information on the behavior of geodesics, since a geodesically
complete and simply connected manifold with everywhere negative sectional curva-
ture (a Hadamard manifold) is globally diffeomorphic to Rd through the exponential
map. Consequently, negatively curved spaces share some of the nice properties of
Euclidean spaces: any two points can be joined by a unique minimizing geodesic,
the length of which gives the geodesic distance.

2.4. Information manifold. The proposed information geometry module is in-
tegrated into the differential geometry structures implemented in Geomstats. The
module contains child classes of Manifold that represent parametric families of
probability distributions, and child classes of RiemannianMetric that define the
Fisher information metric on these manifolds. The combination of two such classes
define what we call an information manifold, which is specified by an inheritance
from the mixin: InformationManifoldMixin shown in Figure 1.

Parameter Manifolds. Specifically, consider a family of probability distributions on
a space X , typically X = Rn for some integer n. Assume that the distributions in
the family are absolutely continuous with respect to a reference measure λ (such
as the Lebesgue measure on Rn) with densities

f(x|θ), x ∈ X , θ ∈ Θ,

with respect to λ, where θ is a parameter belonging to Θ an open subset of Rd.
Then, this parametric family is represented by the parameter manifold Θ. The
information geometry module implements this manifold as a child class of one
of the abstract classes OpenSet and LevelSet, which are themselves children of
Manifold. Most of the parameter manifolds are implemented as child classes of
OpenSet as shown in Figure 1. Other parameter manifolds are implemented more
easily with another class. This is the case of CategoricalDistributions, which
inherits from LevelSet as its parameter space is the interior of the simplex.

Information Manifolds. Parameter manifolds also inherit from the mixin class,
called InformationManifoldMixin, which turns them into information manifolds.
First, this mixin endows them with specific methods such as sample(), which
returns a sample of the distribution associated to a given parameter θ ∈ Θ, or
point to pdf(), which returns the probability density function (or probability
mass function) associated to a given parameter θ ∈ Θ (see Figure 1).
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For example, to generate at random a categorical distribution on a space of
5 outcomes, we instantiate an object of the class CategoricalDistributions

with dimension 4 using manifold = CategoricalDistributions(4) and define
parameter = manifold.random point(). Then, in order to sample from this dis-
tribution, one uses samples = manifold.sample(parameter, n samples=10).

Second, the InformationManifoldMixin endows the parameter manifolds with
a Riemannian metric defined using the Fisher information, called the Fisher-Rao
metric and implemented in the FisherRaoMetric class shown in Figure 1. The
Fisher information is a notion from statistical inference that measures the quantity
of information on the parameter θ contained in an observation with density f(·, θ).
It is defined, under certain regularity conditions [26], as

(3) I(θ) = −Eθ [Hessθ (log f(X|θ))] ,

where Hessθ denotes the hessian with respect to θ and Eθ is the expectation taken
with respect to the random variable X with density f(·, θ). If this d-by-d matrix
is everywhere definite, it provides a Riemannian metric on Θ, called the Fisher-
Rao metric, where the inner product between two tangent vectors u, v at θ ∈ Θ is
defined by

(4) ⟨u, v⟩θ = u⊤I(θ)v.

Here the tangent vectors u, v are simply vectors of Rd since Θ is an open subset of
Rd. In the sequel, we will describe the Fisher-Rao metric for different parametric
statistical families by providing the expression of the infinitesimal length element

ds2 = ⟨dθ, dθ⟩θ = dθ⊤I(θ)dθ

The metric matrix I is implemented using automatic differentiation in the FisherRaoMetric
class. This allows users to get the Fisher-Rao Metric of any parametric family of
probability distributions, for which the probability density function is known. For
example, a user can compute the Fisher-Rao metric of the normal distributions with
the syntax given below, which uses automatic differentiation behind the scenes.

class MyInformationManifold(InformationManifoldMixin):

def __init__(self):

self.dim = 2

def point_to_pdf(self, point):

means = point[..., 0]

stds = point[..., 1]

def pdf(x):

constant = (1. / gs.sqrt(2 * gs.pi * stds**2))

return constant * gs.exp(-((x - means) ** 2) / (2 * stds**2))

return pdf

metric = FisherRaoMetric(

information_manifold=MyInformationManifold(), support=(-10, 10))

The user can then access the Fisher-Rao metric matrix I(θ) at θ = (1., 1.) with the
code below.

print(metric.metric_matrix(gs.array([1., 1.])))

>>> array([[1.00000000e+00, 1.11022302e-16],

[1.11022302e-16, 2.00000000e+00]])
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We recognize here the metric matrix of the Fisher-Rao metric on the univariate
normal distributions. For convenience, the Fisher-Rao metrics for well-known
parameter manifolds are already implemented in classes such as NormalMetric,
GammaMetric, CategoricalMetric, etc, as shown in Figure 1. These classes imple-
ment the closed-forms of the Fisher-Rao metric when these are known. The corre-
sponding parameter manifolds in the classes NormalDistributions, GammaDistributions,
CategoricalDistributions, etc, are equipped with their Fisher-Rao metric, which
is found as an attribute called metric.

For example, the Fisher-Rao metric on the categorical distributions on a sup-
port of cardinal 5 is found in the metric attribute of the class of categorical dis-
tributions, i.e. metric = CategoricalDistributions(4).metric. Its methods
allow to compute exponential, logarithm maps and geodesics using metric.exp(),
metric.log(), metric.geodesic(), together with the various notions of curva-
tures.

3. Information manifolds implemented in Geomstats

This section details the tools of information geometry that we implement in
each of the information manifold classes. As such, this section also provides a
comprehensive review of the field of computational information geometry and its
main applications. Each subsection further showcases code snippets using each
information manifold to demonstrate the diversity of use cases of the proposed
information manifold module.

3.1. One-dimensional parametric families.

3.1.1. Main results. The information geometry of one-dimensional information man-
ifolds is simple: there is no curvature, the parameter manifold Θ is always diffeo-
morphic to R, and there is only one path to go from one point to another in Θ.
However, the parametrization of this path can vary and leads to different interpo-
lations between the probability distribution functions, as seen in Figure 2.

Figure 2. Comparison between affine (left) and geodesic (right)
interpolations between pdfs of exponential distributions of param-
eter λ0 = 0.1 (black) and λ1 = 2 (blue).

The Fisher-Rao geodesic distances are given in closed forms for the Poisson,
exponential, binomial (and Bernoulli) distributions in [8]. We compute it for geo-
metric distributions too (see the appendix). Results are summarized in Table 1 and
implemented in the dist() methods of the corresponding metric classes.
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Distribution P.d.f. (or P.m.f.) Geodesic distance

Poisson (mean λ) ∀k ∈ N, P (k|λ) = λk

k! e
−λ, λ > 0 d(λ1, λ2) = 2|

√
λ1 −

√
λ2|

Exponential (mean 1
λ ) ∀x ≥ 0, f(x|λ) = λe−λx, λ > 0 d(λ1, λ2) = | log λ1

λ2
|

Binomial (known index n) ∀k ∈ {0, ..., n}, P (k|p) =
(
n
k

)
pk(1− p)n−k, 0 < p < 1 d(p1, p2) = 2

√
n| sin−1(

√
p1)− sin−1(

√
p2)|

Bernoulli (1-binomial) ∀k ∈ {0, 1}, P (k|p) = pk(1− p)1−k, 0 < p < 1 d(p1, p2) = 2| sin−1(
√
p1)− sin−1(

√
p2)|

Geometric ∀k ∈ N∗, P (k|p) = (1− p)k−1p, 0 < p < 1 d(p1, p2) = 2| tanh−1(
√
1− p1)− tanh−1(

√
1− p2)|

Table 1. Fisher-Rao distance for one-dimensional parametric
families of probability distributions implemented in the informa-
tion geometry module. P.d.f. means probability density function
and P.m.f. means probability mass function. These formulas are
implemented in the dist() methods in the metric Python classes
of Figure 1.

3.1.2. Geomstats example. The following code snippet shows how to compute the
middle of the geodesic between points p1 = .4 and p2 = .7 on the one-dimensional
5-binomial manifold.

import geomstats.backend as gs

from geomstats.information_geometry.binomial import BinomialDistributions

manifold = BinomialDistributions(5)

point_a = .4

point_b = .7

times = gs.linspace(0, 1, 100)

geodesic = manifold.metric.geodesic(initial_point=point_a, end_point=point_b)(times)

middle = geodesic(.5)

print(middle)

>>> 0.5550055679356352

The geodesic middle point of p1 = .4 and p2 = .7 on the 5-binomial manifold is
roughly p = .555, a little higher than the Euclidean middle point (=.55)!

3.2. Multinomial and categorical distributions.

3.2.1. Main results. Multinomial distributions model the results of an experiment
with a finite number k of outcomes, repeated n times. When there is no repetition
(n = 1), it is called a categorical distribution. Here the number of repetitions n is
always fixed. The parameter θ of the parameter manifold encodes the probabilities
of the different outcomes. The parameter manifold Θ is therefore the interior of
the k − 1 dimensional simplex Θ = ∆k−1 = {θ ∈ Rk : ∀i, θi > 0, θ1 + . . .+ θk = 1}.

Definition 3.2.1.1 (Probability mass function of the multinomial distribution).
Given k, n ∈ N∗ and θ = (θ1, ..., θk) ∈ ∆k−1, the p.m.f. of the n-multinomial
distribution of parameter θ is

p(x = (x1, . . . , xk)|θ) =
n!

x1! . . . xk!
θx1
1 . . . θxk

k ,

where xi ∈ {0, . . . , n} for all i = 1, . . . , k and x1 + . . .+ xk = n.
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Figure 3. Information geometry of the 3-Categorical manifold
implemented in the Python class CategoricalDistributions.
The orange geodesic ball is of radius 0.7 and centered on the red
point (0.1, 0.58, 0.32), the blue geodesic ball is of radius 0.3 and
centered on the green point (0.74, 0.21, 0.05).

The Fisher-Rao geometry on the parameter manifold ∆k−1 is well-known, see
for example [21]. We summarize the geometry with the following propositions.

Proposition 3.2.1.1 (Fisher-Rao metric on the multinomial manifold). The Fisher-
Rao metric on the parameter manifold Θ = ∆k−1 of n-multinomial distributions is
given by

ds2 = n

(
dθ21
θ1

+ ...+
dθ2k
θk

)
.

Thus, one can see that the Fisher-Rao metric on the parameter manifold Θ =
∆k−1 of multinomial distributions can be obtained as the pullback of the Euclidean
metric on the positive (k − 1)-sphere of radius 2

√
n, S+

k−1 = {θ ∈ Rk : ∀i, θi >
0,
∑k
i=1 θ

2
i = 2

√
n} by the diffeomorphism

R : θ 7→ R(θ) = (2
√
nθ1, ..., 2

√
nθk).

Therefore the distance between two given parameters is the spherical distance of
their images by transormation R, and the curvature of the parameter manifold is
that of the (k − 1)-sphere of radius 2

√
n.

Proposition 3.2.1.2 (Geodesic distance on the multinomial manifold). The ge-
odesic distance between two parameters θ1, θ2 ∈ ∆k−1 has the following analytic
expression:

d(θ1, θ2) = 2
√
n arccos

(
k∑
i=1

√
θ1i θ

2
i

)
.

Proposition 3.2.1.3 (Curvature of the multinomial manifold). The Fisher-Rao
manifold of multinomial distributions has constant sectional curvature K = 2

√
n.

We implement the p.m.f, Fisher-Rao metric, geodesic distance, and curvatures
in the Python classes MultinomialDistributions and MultinomialMetric of the
information geometry module.
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3.2.2. Applications. The Fisher-Rao geometry of multinomial distributions has been
used in the literature, e.g., to formulate concepts in evolutionary game theory [19]
and to classify documents after term-frequency representation in the simplex [25].

3.2.3. Geomstats example. This example shows how we use the information geometry

module to compute on the 6-categorical manifold, i.e., the 5-dimensional manifold
of categorical distributions with k = 6 outcomes. The following code snippet com-
putes the geodesic distances between a given point on the 6-categorical manifold
and the vertices of the simplex ∆5.

import geomstats.backend as gs

from geomstats.information_geometry.categorical import CategoricalDistributions

manifold = CategoricalDistributions(dim=5)

point_a = gs.array([.1, .2, .1, .3, .15, .15])

point_b = gs.array([.25, .25, .1, .05, .05, .3])

vertices = list(gs.eye(6))

distances_a = [manifold.metric.dist(point_a, extremity) for vertex in vertices]

distances_b = [manifold.metric.dist(point_b, extremity) for vertex in vertices]

print(f"distances_a = { [float(str(distance)[:5]) for distance in distances_a]} ")

print(f"distances_b = { [float(str(distance)[:5]) for distance in distances_b]} ")

>>> distances_a = [2.498, 2.214, 2.498, 1.982, 2.346, 2.346]

>>> distances_b = [2.094, 2.094, 2.498, 2.69, 2.69, 1.982]

closest_a = vertices[gs.argmin(distances_a)]

closest_b = vertices[gs.argmin(distances_b)]

print(f"closest extremity to { point_a} is { closest_a} ")

print(f"closest extremity to { point_b} is { closest_b} ")

>>> closest extremity to [0.1 0.2 0.1 0.3 0.15 0.15] is [0. 0. 0. 1. 0. 0.]

>>> closest extremity to [0.25 0.25 0.1 0.05 0.05 0.3 ] is [0. 0. 0. 0. 0. 1.]

This result confirms the intuition that the vertex of the simplex that is closest,
in terms of the Fisher-Rao geodesic distance, to a given categorical distribution
is the one corresponding to its mode. Indeed, noting ei = (δij)j , i = 1, . . . , 6
the extremities of the simplex, we see that for all i ∈ {1, . . . , 6} and θ ∈ ∆5,
d(θ, ei) = arccos(

√
θi) is minimal when i matches the mode of the distribution.

3.3. Normal distributions. Normal distributions are ubiquitous in probability
theory and statistics, especially via the Central limit theorem. They are a very
widely used modelling tool in practice, and provide one of the first non trivial
Fisher-Rao geometries to be studied in the literature.

3.3.1. Main results. Let us start by reviewing the univariate normal model.

Definition 3.3.1.1 (Probability density function of the univariate normal distribu-
tion). The p.d.f. of the normal distribution of mean m ∈ R and variance σ2 ∈ R∗

+
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is

f(x|θ) = 1√
2πσ2

exp

(
− (x−m)2

2σ2

)
.

It is well known since the 1980s [8] that the corresponding Fisher-Rao metric
with respect to θ = (m,σ) defines hyperbolic geometry on the parameter manifold
Θ = R× R∗

+.

Proposition 3.3.1.1 (Fisher-Rao metric for the univariate normal manifold). The
Fisher-Rao metric on the parameter manifold Θ = R×R∗

+ of normal distributions
is

ds2 =
dm2 + 2dσ2

σ2
.

Indeed, using the change of variables m 7→ m/
√
2, we retrieve a multiple of the

Poincaré metric ds2 = 2(dx2 + dy2)/y2 on the upper half-plane {(x, y) : x ∈ R, y >
0}, a model of two-dimensional hyperbolic geometry. Thus, closed-form expressions
are known for the geodesics, which are either vertical segments or portions of half-
circles orthogonal to the m-axis. The same is true for the distance.

Proposition 3.3.1.2 (Geodesic distance on the univariate normal manifold [38]).
The geodesic distance between normal distributions of parameters (m1, σ1) and
(m2, σ2) in R× R∗

+ is given by

d((m1, σ1), (m2, σ2)) =
√
2 cosh−1

(
(m1 −m2)

2/2 + (σ1 + σ2)
2

2σ1σ2

)
.

The curvature is the same as that of the 2-Poincaré metric, and rescaling the
Poincaré metric by a factor 2 implies dividing the sectional curvature by the same
factor. The manifold of univariate normal distributions has therefore constant
negative curvature, and since it is simply connected and geodesically complete we
get the following result.

Proposition 3.3.1.3 (Curvature of the univariate normal manifold [38].). The
Fisher-Rao manifold of normal distributions has constant sectional curvature K =
−1/2. In particular, any two normal distributions can be linked by a unique geo-
desic, the length of which gives the Fisher-Rao distance.

We implement the p.d.f, Fisher-Rao metric, geodesics, geodesic distance, and
curvatures in the Python classes NormalDistributions and NormalMetric of the
information geometry module. Figure 4 shows 2 geodesics, 2 geodesic spheres,
and 1 geodesic grid on the information manifold of univariate normal distributions.

We now turn to the multivariate case.

Definition 3.3.1.2 (Probability density function of multivariate normal distribu-
tions). In higher dimensions p ≥ 2, the p.d.f. of the normal distribution of mean
m ∈ Rp and covariance matrix Σ ∈ Sp(R)+ is

f(x|θ) = 1√
(2π)p|Σ|

exp

(
−1

2
(x−m)⊤Σ−1(x−m)

)
.

The Fisher-Rao geometry of multivariate normal distributions was first studied
in the early 1980’s [35], [8][38]. In general, no closed form expressions are known
for the distance nor the geodesics associated to the Fisher information metric in
the multivariate case. However, analytic expressions for these quantities are known
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Figure 4. Information geometry of the manifold of normal distri-
butions implemented in the Python class NormalDistributions.
Up-left: two geodesics of length 1 departing from two random
points A and B; Bottom-left: geodesic grid between A and B.
Right: two geodesic spheres of radius 1 centered on A and B

for some particular submanifolds, and can be found e.g. in the review paper [32].
The first of these particular cases corresponds to multivariate distributions with
diagonal covariances.

Proposition 3.3.1.4 (Multivariate normal distributions with diagonal covariance
matrices [38]). The submanifold of Gaussian distributions with meanm = (m1, . . . ,mp)
and diagonal covariance matrix Σ = diag(σ2

1 , ..., σ
2
p) can be identified with the prod-

uct manifold (R × R∗
+)
p = {(m1, σ1, . . . ,mp, σp) : mi ∈ R, σi > 0}, on which the

Fisher-Rao metric is the product metric

ds2 =

p∑
i=1

dm2
i + 2dσ2

i

σ2
i

.

The induced geodesic distance bertween distributions of means mj = (mji)1≤i≤p
and covariance matrices Σj = diag(σ2

j1, . . . , σ
2
jp), j = 1, 2, is given by

dp((m1,Σ1), (m2,Σ2)) =

√√√√ p∑
i=1

d2((m1i, σ1i), (m2i, σ2i)),

where d is the geodesic distance on the space of univariate normal distributions.

The second particular case when the geometry is explicit corresponds to multi-
variate normal distributions with fixed mean. In this case, the parameter space is
the space of symmetric positive definite matrices and the Fisher-Rao metric coin-
cides with the affine-invariant metric [31]. Note that even though the parameter
with respect to which the Fisher information is computed differs between the differ-
ent submanifolds of the multivariate normal distributions, this does not affect the
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distance, which is invariant with respect to diffeomorphic change of parametriza-
tion.

Proposition 3.3.1.5 (Multivariate normal distributions with fixed mean [8]). Let
m ∈ Rp. The geodesic distance between Gaussian distributions with fixed mean m
and covariance matrices Σ1, Σ2 is

d(Σ1,Σ2) =

√√√√1

2

p∑
i=1

log(λi)2,

where the λj are the eigenvalues of (Σ1)
−1

Σ2.

The sectional curvature in the fixed mean case is negative, although non constant
[27]. We implement the information geometry of the normal distributions reviewed
here within the Python classes NormalDistributions and NormalMetric shown in
Figure 1.

3.3.2. Applications. The Fisher-Rao geometry of normal distributions has proved
very useful in the field of diffusion tensor imaging [27] and more generally in image
analysis, e.g., for detection [28], mathematical morphology [4] and segmentation
[40, 39]. We refer the interested reader to the review paper [32] and the references
therein.

3.3.3. Geomstats example. This example shows how users can leverage the pro-
posed information geometry module to get intuition on the Fisher-Rao geometry
of normal distributions. Specifically, we compute the geodesics and geodesic dis-
tance between two normal distributions with same variance and different means
m1 = 1,m2 = 4, for two different values σ2 = 1, σ′2 = 4 of the common variance.

import matplotlib.pyplot as plt

import geomstats.backend as gs

from geomstats.information_geometry.beta import BetaDistributions

from geomstats.information_geometry.normal import NormalDistributions

manifold = NormalDistributions()

point_a = gs.array([1., 1.])

point_b = gs.array([4., 1.])

point_c = gs.array([1., 2.])

point_d = gs.array([4., 2.])

print(manifold.metric.dist(point_a, point_b))

print(manifold.metric.dist(point_c, point_d))

>>> 2.38952643457422

>>> 1.3862943611198915

times = gs.linspace(0, 1, 100)

geod_ab = manifold.metric.geodesic(initial_point=point_a, end_point=point_b)(times)

geod_cd = manifold.metric.geodesic(initial_point=point_c, end_point=point_d)(times)

max_variance_ab = geodesic_ab[gs.argmax(geod_ab[:, 1])]

max_variance_cd = geodesic_cd[gs.argmax(geod_cd[:, 1])]

plt.plot(*gs.transpose(geod_ab))

plt.scatter(*point_a, color='g')
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Figure 5. Geodesics in the manifold of normal distributions.
When the variance of the normal distributions at the extremities
(green points) increases, the geodesic becomes shorter. Variance
increases along the geodesic and reaches a maximum in the middle
(red points).

plt.scatter(*point_b, color='g')
plt.scatter(*max_variance_ab, color='r')
plt.plot(*gs.transpose(geod_cd))

plt.scatter(*point_c, color='g')
plt.scatter(*point_d, color='g')
plt.scatter(*max_variance_cd, color='r')
plt.ylim([0., 3.])

plt.show()

The two geodesics generated by this code snippet yield the two curves in Figure 5.
We see that the higher the variance, the smaller the distance. As pointed out in [13],
this result reflects the fact that the p.d.f.s overlap more when the variance increases.
On each geodesic, we observe that the point of maximum variance corresponds to
the geodesic’ middle point.

3.4. Gamma distributions. Gamma distributions form a 2-parameter family of
distributions defined on the positive half-line, and are used to model the time
between independent events that occur at a constant average rate. They have been
widely used to model right-skewed data, such as cancer rates [37], insurance claims
[36], and rainfall [20].

3.4.1. Main results. Standard Gamma distributions take support over R∗
+ and con-

sist of one of the prime examples of information geometry, namely for for the variety
of parametrizations they have been endowed with [22], [10], [7].

Definition 3.4.1.1 (Probability density function for Gamma distributions in nat-

ural coordinates). In natural coordinates, given (ν, κ) ∈
(
R∗

+

)2
, the p.d.f. of the

two-parameter Gamma distribution of rate ν and shape κ is:

∀x > 0, f(x|ν, κ) = νκ

Γ(κ)
xκ−1e−νx, where Γ is the Gamma function.
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Proposition 3.4.1.1 (Fisher-Rao metric for the Gamma manifold in natural co-

ordinates [7]). The Fisher-Rao metric on the Gamma manifold Θ =
(
R∗

+

)2
is

ds2 =
κ

ν2
dν2 − 2

dνdκ

ν
+ ψ′(κ)dκ2,

where ψ is the digamma function, i.e. ψ = Γ′

Γ .

However, the fact that this metric is not diagonal for the natural parametrization
encourages one to consider the manifold under a different set of coordinates. Getting
rid of the middle term in dνdκ highly simplifies the geometry.

Proposition 3.4.1.2 (Fisher-Rao metric for the Gamma manifold in (γ, κ) coor-
dinates [7]). The change of variable (γ, κ) = (κν , κ) gives the following expression
of the Fisher-Rao metric:

ds2 =
κ

γ2
dγ2 +

(
ψ′(κ)− 1

κ

)
dκ2.

Both parametrizations (γ, κ) and (κ, γ) can be found in the literature. The use of
of (κ, γ) is standard in information geometry and it is the one we use to implement
the Gamma manifold. This yields the following expression of the p.d.f.

Definition 3.4.1.2 (Probability density function for Gamma distributions in (κ, γ)
coordinates). The p.d.f. of the two-parameter Gamma distribution of parameters
γ, κ is:

∀x > 0, f(x|γ, κ) = κκ

γκΓ(κ)
xκ−1e−

κx
γ .

Proposition 3.4.1.3 (Geodesic equations on the Gamma manifold [7]). The as-
sociated geodesic equations are:{

γ̈ = γ̇2

γ − γ̇κ̇
κ

κ̈ = κγ̇2

2γ2(κψ′(κ)−1) −
(ψ”(κ)κ2+1)κ̇2

2κ(κψ′(κ)−1) .

No closed form expressions are known for the distance nor the geodesics associ-
ated to the Fisher information geometry with respect to (γ, κ). Yet, our information
module is able to compute both numerically by leveraging the automatic differenti-
ation computations available in the parent Python class of the FisherRaoMetric.
Figure 6 shows 3 geodesics, 2 geodesic spheres, and a geodesic grid for the Gamma
manifold. Running code from the information geometry module shows that some
geodesics are horizontal (with γ constant), which is notable. This can also be di-

rectly seen from the geodesic equation γ̈ = γ̇
(
γ̇
γ − κ̇

κ

)
: a geodesic with a horizontal

initial direction (γ̇ = 0) will stay horizontal.
There is a closed-form expression of the geodesic distance in the manifold of

Gamma distributions with fixed κ, which is therefore a one-dimensional manifold.

Proposition 3.4.1.4 (Geodesic distance on the Gamma manifold with fixed κ.).
The geodesic distance d on the Gamma manifold, for a fixed κ is given in (κ, γ)
parameterization by:

∀γ1, γ2 > 0, d(γ1, γ2) =
√
κ

∣∣∣∣log γ1γ2
∣∣∣∣ ,
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Figure 6. Information geometry of the manifold of Gamma dis-
tributions implemented in the Python class GammaDistributions.
Up-left: three geodesics of length 1 departing from two random
points A (red) and B (green) and C (magenta, with γ constant).
Bottom-left: geodesic grid between A and B. Right: two geodesic
spheres of radius 1 centered on A and B;

or, in (κ, ν) parameterization by:

∀γ1, γ2 > 0, d(ν1, ν2) =
√
κ

∣∣∣∣log ν1ν2
∣∣∣∣ .

This result, proved in the appendix, was expected, at least for integer values of κ.
Consider one Gamma process as the sum of κ i.i.d exponential processes. Because
the processes are independent, the Fisher information for the Gamma distribution
is κ times as big as that of the exponential distribution. Consequently, the length
of a geodesic on the Gamma manifold observes a

√
κ coefficient.

The sectional curvature of the Gamma manifold, which is plotted in Figure 7,
is everywhere negative, bounded and depends only on the κ parameter. Since it is
also simply connected and geodesically complete, the following result holds.

Proposition 3.4.1.5 (Curvature of the Gamma manifold [10]). The sectional cur-

vature of the Gamma manifold at each point (γ, κ) ∈
(
R∗

+

)2
verifies

−1

2
< K(γ, κ) = K(κ) =

ψ′(κ) + κψ′′(κ)

4(−1 + κψ′(κ))2
< −1

4
.

In particular, any two gamma distributions can be linked by a unique geodesic in
the parameter space, the length of which gives the Fisher-Rao distance.

We implement the information geometry of the Gamma distributions reviewed
here within the Python classes GammaDistributions and GammaMetric shown in
Figure 1. Let us mention that the Fisher-Rao geometry of generalized Gamma
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Figure 7. Sectional curvature of the Fisher-Rao manifolds of
gamma (left) and beta (right) distributions.

distributions have also been studied in the literature [12, 1, 34], and will be the
object of future implementation in the proposed information geometry module.

3.4.2. Applications. Information geometry of both the standard Gamma and the
generalized Gamma manifolds have been used in the literature. Most often, the
goal is to implement a “natural” (geodesic) distance between distributions. In
that aspect, a geometric reasoning of Gamma distributions finds purposes in many
fields, ranging from performance improvement in classification methods in medical
imaging [34] to texture retrieval [1].

3.4.3. Geomstats example. In the following example, we compute the sectional
curvature of the Gamma manifold at a given point. The sectional curvature is
computed for the subspace spanned by two tangent vectors, but since the gamma
manifold is two dimensional, the result does not depend on the chosen vectors.

import geomstats.backend as gs

from geomstats.information_geometry import GammaDistributions

dim = 2

manifold = GammaDistributions()

point = gs.array([1., 2.])

vec_a = manifold.to_tangent(gs.random.rand(dim)))

vec_b = manifold.to_tangent(gs.random.rand(dim)))

vec_c = manifold.to_tangent(gs.random.rand(dim)))

print(manifold.metric.curvature(vec_a, vec_b, point))

print(manifold.metric.curvature(vec_a, vec_c, point))

>>> -0.45630369144018423

>>> -0.4563036914401915

A comprehensive example using information geometry of the Gamma manifold
in the context of traffic optimization in São Paulo can be found in this notebook.

3.5. Beta and Dirichlet distributions.

https://notebooks.gesis.org/binder/jupyter/user/geomstats-geomstats-yo5d6iiw/notebooks/notebooks/18_real_world_applications__sao_paulo_traffic_optimization.ipynb
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Figure 8. P.d.f.s of the beta distributions plotted in Geomstats
example 3.5.3. The Fisher-Rao geodesic distance between the pa-
rameters of the blue and green distributions is larger than the one
between the blue and orange, while the converse is true for the
Euclidean distance.

3.5.1. Main results. Beta distributions form a 2-parameter family of probability
measures defined on the unit interval and often used to define a probability dis-
tribution on probabilities. In Bayesian statistics, it is the conjugate prior to the
binomial distribution, meaning that if the prior on the probability of success in a
binomial experiment belongs to the family of beta distributions, then so does the
posterior distribution. This allows users to estimate the distribution of the proba-
bility of success by iteratively updating the parameters of the beta prior. Beta and
Dirichlet distributions are defined as follows:

Definition 3.5.1.1 (Probability density function of Beta distributions). The p.d.f.
of beta distributions is parameterized by two shape parameters α, β > 0 and given
by:

f(x|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, ∀x ∈ [0, 1].

Figure 8 shows examples of p.d.f. of beta distributions, which can take a wide
variety of shapes. The distribution has a unique mode in ]0, 1[ when α, β > 1, and
a mode in 0 or 1 otherwise.

Beta distributions can be seen as a sub-family of the Dirichlet distributions, de-
fined on the (n− 1)-dimensional probability simplex ∆n−1 of n-tuples composed of
non-negative components that sum up to one. Similarly to the beta distribution,
the Dirichlet distribution is used in Bayesian statistics as the conjugate prior to the-
multinomial distribution. It is a multivariate generalization of the beta distribution
in the sense that if X is a random variable following a beta distribution of parame-
ters α1, α2, then (X, 1−X) follows a Dirichlet distribution of same parameters on
∆1.

Definition 3.5.1.2 (Probability density function of Dirichlet distributions). The
p.d.f. of Dirichlet distributions is parametrized by n positive reals α1, . . . , αn > 0
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and given by:

f(x|α1, . . . , αn) =
Γ(
∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

xi
αi−1, ∀(x1, . . . , xn) ∈ ∆n−1.

Proposition 3.5.1.1 (The Fisher-Rao metric on the Dirichlet manifold [24]). The
Fisher-Rao metric on the parameter manifold Θ = (R∗

+)
n of Dirichlet distributions

is

ds2 =

n∑
i=1

ψ′(αi)dα
2
i − ψ′(ᾱ)dᾱ2,

where ᾱ =
∑n
i=1 αi.

No closed form are known for the geodesics of the beta and Dirichlet manifold.
Therefore, our information geometry module solves the geodesic equations nu-
merically. Figure 9 shows 3 geodesics, 2 geodesic sphere and 1 geodesic grid for the
beta manifold, and Figure-10 shows geodesic spheres in the 3-Dirichlet manifold. In
the beta manifold, the oval shape of the geodesic spheres suggest that the cost to go
from one point to another is less important along the lines of equation α2/α1 = cst.
This seems natural since these are the lines of constant distribution mean.

Figure 9. Information geometry of the Beta manifold imple-
mented in BetaDistributions. Up-left: three geodesics of length
1 departing from three random points A (red) and B (green) and
C (magenta, with α

β constant). Bottom-left: geodesic grid between

A and B. Right: two geodesic spheres of unit radius centered on A
and B;

The Dirichlet manifold is isometric to a hypersurface in flat (n+1)-dimensional
Minkowski space through the transformation

(x1, . . . , xn) 7→ (η(x1), . . . , η(xn), η(x1 + . . .+ xn)),
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Figure 10. Left: rays of four geodesic spheres in the beta mani-
fold, the oval shape of which suggest that the cost to go from one
beta distribution to another is less important along the lines of
equation α2/α1 = cst. This seems natural since these are the lines
of constant distribution mean. Right: geodesic spheres of unit ra-
dius in the 3-Dirichlet manifold.

where η′(x) =
√
ψ′(x). This allows to show the following result on the curvature,

which is plotted in Figure 7 for dimension 2.

Proposition 3.5.1.2 ([24]). The parameter manifold of Dirichlet distributions en-
dowed with the Fisher-Rao metric is simply connected, geodesically complete and
has everywhere negative sectional curvature. In particular, any two Dirichlet distri-
butions can be linked by a unique geodesic, the length of which gives the Fisher-Rao
distance.

The classes BetaDistributions, DirichletDistributions, and DirichletMetric
implement the geometries described here. We note that BetaDistributions in-
herits from DirichletDistributions and thus inherits the computations coming
from its Fisher-Rao metrics as shown in Figure 1.

3.5.2. Applications. The Fisher-Rao geometry of beta distributions has received
less attention in the literature than the previously described families, although it
has been used in [23] to classify histograms of medical data.

3.5.3. Geomstats example. The following example compares the Fisher-Rao dis-
tance with the Euclidean distance between the beta distributions shown in Figure 8.
The Euclidean distance between the beta distributions with p.d.f.s shown in blue
and green is much larger than the one between the blue and orange. This does not
seem satisfactory when considering the differences in mean and mass overlap. By
contrast, the blue distribution is closer to the green than to the orange distribution
according to the Fisher-Rao metric.

import matplotlib.pyplot as plt

import geomstats.backend as gs

from geomstats.information_geometry.beta import BetaDistributions

point_a = gs.array([1., 10.])
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Figure 11. Results of K-means clustering of the beta distribu-
tions of Geomstats example 3.5.3 using the Fisher-Rao metric (up-
per row) and the Euclidean distance (lower row), shown in terms
of parameters (left column) and p.d.f.s (right column). Contrary
to the Euclidean distance, the Fisher-Rao metric regroups the dis-
tributions with the same mean, i.e. with parameters aligned on a
straight line through the origin, and inside a group of same mean,
it regroups the p.d.f.s with similar shape.

point_b = gs.array([10., 1.])

point_c = gs.array([10., 100.])

# Plot pdfs

samples = gs.linspace(0., 1., 100)

points = gs.stack([point_a, point_b, point_c])

pdfs = manifold.point_to_pdf(points)(samples)

plt.plot(samples, pdfs)

plt.show()

# Euclidean distances

print(gs.linalg.norm(point_a - point_b))

print(gs.linalg.norm(point_a - point_c))

>>> 12.73

>>> 90.45
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# Fisher-Rao distances

print(manifold.metric.dist(point_a, point_b))

print(manifold.metric.dist(point_a, point_c))

>>> 4.16

>>> 1.76

More generally, beta distributions with the same mean are close for the Fisher-
Rao metric. Indeed, the oval shape of the geodesic balls shown in Figure 8 suggests
that the cost to go from one point to another is less important along the lines of
equation α2/α1 = cst, which are the lines of constant distribution mean.

The next example performs K-means clustering , using either the Euclidean
distance or the Fisher-Rao distance. We consider a set of beta distributions whose
means take only two distinct values, which translates into the alignment of the
parameters on two straight lines going through the origin, see Figure 11. The
clustering based on the Fisher-Rao metric (top row of the figure) distinguishes
these two classes, and can further separate the distributions according to the shape
of their p.d.f. The Euclidean distance on the other hand (bottom row of the figure)
does not distinguish between the two different means.

import geomstats.backend as gs

from geomstats.geometry.euclidean import Euclidean

from geomstats.information_geometry.beta import BetaDistributions

from geomstats.learning.kmeans import RiemannianKMeans

# Data

values = gs.array([1/i for i in range(1, 6)] + [i for i in range(2, 10)])

factor = 5

cluster_1 = gs.stack((values, factor * values)).T

cluster_2 = gs.stack((factor * values, values)).T

points = gs.vstack((cluster_1, cluster_2))

n_points = points.shape[0]

n_clusters = 4

# KMeans with the Euclidean distance

r2 = Euclidean(dim=2)

kmeans = RiemannianKMeans(metric=r2.metric, n_clusters=n_clusters, verbose=1)

centroids_eucl = kmeans.fit(points)

labels_eucl = kmeans.predict(points)

# KMeans with the Fisher Rao distance

beta = BetaDistributions()

kmeans = RiemannianKMeans(metric=beta.metric, n_clusters=n_clusters, verbose=1)

centroids_riem = kmeans.fit(points)

labels_riem = kmeans.predict(points)
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4. Application to text classification

This section presents a comprehensive usecase of the proposed Geomstats module
information geometry for text classification using the information manifold of
Dirichlet distributions.

We use the Latent Dirichlet Allocation (LDA) model to represent documents in
the parameter manifold of Dirichlet distributions. LDA is a generative model for
text, where each document is seen as a random mixture of topics, and each topic
as a categorical distribution over words [9]. Specifically, consider a corpus with
several documents composed of words from a dictionary of size V , and K topics
represented by aK×V matrix β where the i-th line βi• gives the discrete probability
distribution of the i-th topic over the vocabulary. Given a Dirichlet parameter α
in ∆K−1 the (K − 1)-dimensional simplex, each document of N words is generated
as follows. First, we sample mixing coefficients θ = (θ1, . . . , θK) ∼ Dirichlet(α).
Next, in order to generate each word, we sample the i-th topic from Categorical(θ).
Finally, we sample a word from Categorical(βi•). In other words, for each document
the following two steps are iterated for n = 1, . . . , N :

(1) select a topic zn according to P(zn = i|θ) = θi, 1 ≤ i ≤ K
(2) select a word wn according to P(wn = j|zn, β) = βij , 1 ≤ j ≤ V .

Here “zn = i” means that the ith topic is selected among the K possible topics,
and this is encoded as a vector of size K full of zeros except for a 1 in ith position.
Similarly, “wn = j” means that the jth word of the dictionary is selected and is
encoded by a vector of size V full of zeros except for a 1 in jth position.

The Dirichlet parameter α ∈ ∆K−1 and the word-topic distributions β ∈ Rk×V
are the parameters of the model, which need to be estimated from data. Unfortu-
nately, the likelihood of the LDA model cannot be computed and therefore cannot
be maximized directly to estimate these parameters. In the seminal paper [9], the
authors introduce variational parameters that are document-specific, as well as a
lower bound of the likelihood that involves these parameters. This bound can serve
as a substitute for the true likelihood when estimating the parameters α and β. In
binary classification experiments, the authors use the variational Dirichlet param-
eters to represent documents of the Reuters-21578 dataset and perform Euclidean
support vector machine (SVM) in this low-dimensional representation space.

Here we also use the parameter space of Dirichlet distributions to represent doc-
uments. However, we use the Fisher-Rao metric instead of the Euclidean metric
for comparison. We extract 140 documents from the 20Newsgroups dataset, a col-
lection of news articles labeled according to their main topic. We select documents
from 4 different classes: ’alt.atheism’, ’comp.graphics’, ’comp.os.ms-windows.misc’,
’soc.religion.christian’. We then perform LDA on the obtained corpus, estimate the
corresponding variational Dirichlet parameters on a space of K = 10 topics, and
use these to represent the documents in the 10-dimensional parameter manifold
of Dirichlet distributions. The pairwise distances between these parameters, re-
grouped by classes, for the Euclidean distance and the Fisher-Rao geodesic distance
are shown in Figure 12. While the 4 classes structure does not appear clearly, one
can see 2 classes appear —one corresponding to religion and the other to computers
—more distinctly with the Fisher-Rao metric than with the Euclidean metric. We
use these distance matrices to perform K-nearest neighbors classification (K = 10)
after splitting the dataset into training and testing sets, and show the evolution of
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Figure 12. Distance matrices between the variational Dirich-
let parameters of 140 documents from 4 classes of the 20News-
Group dataset, for the Euclidean distance (left) and the Fisher-
Rao geodesic distance (right). The indices are regrouped by
classes, which are ’alt.atheism’, ’comp.graphics’, ’comp.os.ms-
windows.misc’, ’soc.religion.christian’.

Figure 13. Classification error of K-nearest neighbors algorithm
applied to 140 documents from 4 classes of the 20Newsgroups
dataset, using the Euclidean distance and the Fisher-Rao geodesic
distance, plotted with respect to the percentage of the data chosen
for the training set.

the classification error with respect to the percentage of data chosen for the training
set in Figure 13. We observe that the classification error is consistently lower for
the Fisher-Rao metric compared to the Euclidean metric.

Conclusion

In this paper, we presented a Python implementation of information geometry in-
tegrated in the software Geomstats. We showed that our module information geometry

contains the essential building blocks to perform statistics and machine learning on
probability distributions data. As we have described the formulas and mathematical
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structures implemented in our module, we have also reviewed the main analytical
results of the field and the main areas of applications. We also demonstrated a
clear usecase of information geometry for text classification, where the geometry
of the probability space helps improve the data analysis. We hope that our imple-
mentation will inspire researchers to use, and contribute to, information geometry
with the Geomstats library.

Appendix

4.1. Proof of geodesic distance for geometric distributions. A geometric
distribution of parameter p ∈ [0, 1] has a p.m.f. :

∀k ≥ 1, P (k|p) = f(k|p) = (1− p)k−1p.

Then, for 0 < p < 1, as ∂2 log f
∂p2 = 1−k

(1−p)2 − 1
p2 , we have:

I(p) = −Ep
[
∂2 log f(X)

∂p2

]
=

1

p2
+
E(X)− 1

(1− p)2
=

1

p2
+

1

p(1− p)
=

1

p2(1− p)

Then, with ds the infinitesimal distance on the geometric manifold, we get:

ds2 =
1

p2(1− p)
dp2.

Therefore the distance between p1 and p2 ≥ p1 writes:

d(p1, p2) =

∫ p2

p1

1

p

1√
1− p

dp.

With the change of variable u =
√
p, we eventually draw:

d(p1, p2) = 2

∫ √
p2

√
p1

du

u
√
1− u2

= 2
[
tanh−1

(√
1− u2

)]√p2
√
p1
.

Finally:

d(p1, p2) = 2
(
tanh−1

(√
1− p2

)
− tanh−1

(√
1− p1

))
.

4.2. Proof of geodesic distance for on the Gamma manifold with fixed κ.
From the Fisher information matrix obtained in 3.4.1.2., we derive here:

ds2 =
κ

γ2
dγ2,

and then for γ1 ≤ γ2:

d(γ1, γ2) =
√
κ

∫ γ2

γ1

dγ

γ
=

√
κ log

(
γ2
γ1

)
.

References

[1] Zakariae Abbad, El Maliani, Ahmed Drissi, Said Ouatik Alaoui, and Mohammed El Hassouni.

Rao-geodesic distance on the generalized gamma manifold: Study of three sub-manifolds and
application in the texture retrieval domain. Note di Matematica, 37(supp1):1–18, 2017.

[2] Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.
[3] Luigi Ambrosio and Nicola Gigli. A user’s guide to optimal transport. In Modelling and

optimisation of flows on networks, pages 1–155. Springer, 2013.

[4] Jesus Angulo and Santiago Velasco-Forero. Morphological processing of univariate gaussian
distribution-valued images based on poincaré upper-half plane representation. In Geometric
Theory of Information, pages 331–366. Springer, 2014.



PARAMETRIC INFORMATION GEOMETRY WITH THE PACKAGE GEOMSTATS 27

[5] Vincent Arsigny. Processing Data in Lie Groups: An Algebraic Approach. Application to

Non-Linear Registration and Diffusion Tensor MRI. PhD thesis, École polytechnique, 11
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