(High frequency-) uniqueness criteria for p-growth functionals in in- and compressible elasticity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

(High frequency-) uniqueness criteria for p-growth functionals in in- and compressible elasticity

Marcel Dengler

Résumé

In this work our main objective is to establish various (high frequency-) uniqueness criteria. Initially, we consider $p-$Dirichlet type functionals on a suitable class of measure preserving maps $u: B\subset \mathbb{R}^2 \mapsto \mathbb{R}^2,$ $B$ being the unit disk, and subject to suitable boundary conditions. In the second part we focus on a very similar situations only exchanging the previous functionals by a suitable class of $p-$growing polyconvex functionals and allowing the maps to be arbitrary. In both cases a particular emphasis is laid on high pressure situations, where only uniqueness for a subclass, containing solely of variations with high enough Fourier-modes, can be obtained.
Fichier principal
Vignette du fichier
Article3.pdf (345.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03860937 , version 1 (18-11-2022)

Licence

Identifiants

  • HAL Id : hal-03860937 , version 1

Citer

Marcel Dengler. (High frequency-) uniqueness criteria for p-growth functionals in in- and compressible elasticity. 2022. ⟨hal-03860937⟩

Collections

TDS-MACS
8 Consultations
26 Téléchargements

Partager

More