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(HIGH FREQUENCY-) UNIQUENESS CRITERIA FOR p−GROWTH

FUNCTIONALS IN IN- AND COMPRESSIBLE ELASTICITY

M. DENGLER

Abstract. In this work our main objective is to establish various (high frequency-) unique-
ness criteria. Initially, we consider p−Dirichlet type functionals on a suitable class of measure
preserving maps u : B ⊂ R2 → R2, B being the unit disk, and subject to suitable boundary
conditions. In the second part we focus on a very similar situations only exchanging the
previous functionals by a suitable class of p−growing polyconvex functionals and allowing
the maps to be arbitrary. In both cases a particular emphasis is laid on high pressure situa-
tions, where only uniqueness for a subclass, containing solely of variations with high enough
Fourier-modes, can be obtained.

1. Incompressible setting and results

Let B ⊂ R2 be the unit ball. For u0 ∈ Lp(B,R2) with 2 ≤ p <∞ and det∇u0 = 1 a.e. in B
we define

Ap,cu0 := {u ∈W 1,p(B,R2) : det∇u = 1 a.e. in B, u− u0 ∈ C∞c (B,R2)}

and for every u ∈ Ap,cu0 we define

(1) E(u) =

ˆ

B

f(x,∇u) dx,

where f is given by

f(x, ξ) = ν(x)|ξ|p

for a.e. x ∈ B and ξ ∈ R2×2. Moreover, ν ∈ L∞(B) is supposed to satisfy ν(x) ≥ 0 a.e. in
B. Since ν is allowed to take on the value 0, the integrand could indeed disappear for some
x ∈ B. Additionally, f(x, ·) is convex in its 2nd variable for a.e. x ∈ B. All of the above, is
making E a version of the p−Dirichlet functional.

As usual, we are interested in the corresponding minimization problem

(2) inf
u∈Ap,c

u0

E(u).

Notice, that the missing uniformity might cause troubles guaranteeing the existence of a
minimizer, however, this is without any consequence for this work. Assuming for now, that
the situation is such that the minimum is indeed obtained and there are some corresponding
minimizing maps or more generally corresponding stationary points of E, which are defined
as follows:
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Definition 1.1. (Stationary point) We say that u is a stationary point of E(·) if there exists
a function λ, which we shall henceforth refer to as a pressure, belonging to W 1,1(B) and such
that

div (∇ξf(x,∇u) + pλ(x) cof ∇u) = 0 in D′(B).(3)

Now we can state the main result for the incompressible scenario. Recall, that for any vector
y = yReR + yθeθ ∈ R2 we define its maximum norm via |y|∞ := max{yR, yθ}.

Theorem 1.2 (High frequency uniqueness). Let 2 ≤ p <∞, assume u0 ∈ Lp(B,R2) to be the
boundary conditions and let u ∈ Ap,cu0 be a stationary point of E, as given in (3). Furthermore,

let σ(x) :=
√
ν(x)|∇u(x)|p−2 ∈ L

4
p−2 (B) and assume that there exists l ∈ N s.t.

(4) |σ,θ (x)| ≤ lσ(x) for a.e. x ∈ B

holds.

Then the following statements are true:
i) (purely high modes.) Suppose the corresponding pressure λ exists and satisfies

(5) |∇λ(x)R|∞ ≤
n√
2
ν(x)|∇u|p−2 for a.e. x ∈ B

for some n ∈ N.

Then u is a minimizer of E in the subclass

Fp,σ,cn∗ =

v ∈ Ap,cu0 |η = v − u ∈W 1,p
0 (B,R2) and ση =

∑
j≥n

(ση)(j)

 ,

where n∗ := n+l. Moreover, if there exists a constant σ0 > 0 s.t. σ(x) ≥ σ0 > 0 for any x ∈ B
and inequality (5) is strictly satisfied on a non-trivial set, then u is the unique minimizer in
Fp,σ,cn∗ .

ii) (0−mode and high modes.) Suppose the corresponding pressure λ exists and satisfies

(6) |∇λ(x)R|∞ ≤
√

3mν(x)|∇u|p−2

2
√

2
for a.e. x ∈ B

for some m ∈ N.
Then u is a minimizer of E in the subclass

Fp,σ,c0,m∗
=

v ∈ Ap,cu0 |η = v − u ∈W 1,p
0 (B,R2) and ση = (ση)(0) +

∑
j≥m∗

(ση)(j)

 ,

where m∗ = m + l. Moreover, if there exists a constant σ0 > 0 s.t. σ(x) ≥ σ0 > 0 for any
x ∈ B and inequality (6) is is strictly satisfied on a non-trivial set, then u is the unique
minimizer in Fp,σ,c0,m∗

.
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2. Compressible setting and results

For u0 ∈ Lp(B,R2) with 2 ≤ p ≤ ∞ we define the set of admissible maps by

Apu0 = {u ∈W 1,p(B,R2) : u− u0 ∈ C∞c (B,R2)}.

Here we consider energies given by

(7) I(u) =

ˆ

B

Φ(x,∇u) dx,

where the integrand is of the form

(8) Φ(x, ξ) =
ν(x)

p
|ξ|p + Ψ(x, ξ,det ξ),

Now we want (ξ, d) 7→ Ψ(x, ξ, d) to be convex for a.e. x ∈ B, making Ψ(x, ·) a convex
representative of a polyconvex function a.e. in B. Moreover, the function ν ∈ L∞(B),
satisfying ν(x) ≥ 0 a.e. in B, is ought to be optimal, in the sense, that there can be no term
of the form a(x)|ξ|q for any q ≥ p in Ψ. However, Ψ might be negative. Finally, we want Φ
to be of p−growth, supposing that there exits C ∈ L∞(B) with C(x) ≥ 0 a.e. in B s.t.

0 ≤ Φ(x, ξ) ≤ C(x)

p
(1 + |ξ|p) for all ξ ∈ R2×2 and a.e. x ∈ B.

All of the above combined guarantees that x 7→ Φ(x,∇u(x)) ∈ L1(B) for any u ∈W 1,p(B,R2)
and hence the corresponding energy is finite.

The corresponding minimization problem

(9) inf
u∈Ap

u0

I(u)

might lack a minimizer in general. Assuming, that such a minimizer/stationary point of I
exists, motivates the following definition:

Definition 2.1. (Stationary point) We say that u ∈ Apu0 is a stationary point of I(·) if u
satisfies the Euler-Lagrange equation given by

div (ν(x)|∇u|p−2∇u+ ∂ξΨ(x,∇u, d∇u) + ∂dΨ(x,∇u, d∇u)cof ∇u) = 0 in D′(B).(10)
Now we can give an analogous result for these types of integrands.

Theorem 2.2 (High frequency uniqueness). Let B ⊂ R2 be the unit ball. Furthermore,
let 2 ≤ p ≤ ∞, assume u0 ∈ Lp(B,R2) to be the boundary conditions and let u ∈ Apu0 be a

stationary point of I, as given in (10). Furthermore, let σ(x) :=
√
ν(x)|∇u(x)|p−2 ∈ L

4
p−2 (B)

and assume that there exists l ∈ N s.t.

(11) |σ,θ (x)| ≤ lσ(x) for a.e. x ∈ B

holds.

Then the following statements are true:
i) (purely high modes.) Assume there exists n ∈ N s.t.

(12) |∇x∂dΨ(x,∇u(x), d∇u(x))R|∞ ≤
n√
2
ν(x)|∇u|p−2 for a.e. x ∈ B.
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Then u is a minimizer of E in the subclass

Fp,σn∗ =

v ∈ Apu0 | η = v − u ∈W 1,p
0 (B,R2) and ση =

∑
j≥n∗

(ση)(j)

 ,

where n∗ := n+l. Moreover, if there exists a constant σ0 > 0 s.t. σ(x) ≥ σ0 > 0 for any x ∈ B
and inequality (12) is strictly satisfied on a non-trivial set, then u is the unique minimizer in
Fp,σn∗ .

ii) (0−mode and high modes.) Assume there exists m ∈ N s.t.

(13) |∇x∂dΨ(x,∇u(x), d∇u(x))R|∞ ≤
√

3mν(x)|∇u|p−2

2
√

2
for a.e. x ∈ B.

Then u is a minimizer of E in the subclass

Fp,σ0,m∗
=

v ∈ Apu0 | η = v − u ∈W 1,p
0 (B,R2) and ση = (ση)(0) +

∑
j≥m∗

(ση)(j)

 ,

where m∗ := m + l. Moreover, if there exists a constant σ0 > 0 s.t. σ(x) ≥ σ0 > 0 for
any x ∈ B and inequality (13) is strictly satisfied on a non-trivial set, then u is the unique
minimizer in Fp,σ0,m∗

.

Here, we contribute to John Ball’s objectives, as formulated in [1, § 2.6], which tries to get
an understanding of questions related to uniqueness in elastic situations. We recently started
this discussion in [8], where we presented a uniqueness criteria, in the incompressible case1, for
quadratic uniformly convex integrands f(x, ξ) and subject to suitable boundary conditions.
Here we go beyond the latter first by allowing the more general p−Dirichtlet integrands but
also by discussing high-pressure situations, where uniqueness can only be guaranteed for
a subclass of variations which consist of purely high-modes. We also provide the analogous
results for polyconvex-type functionals, which are of p−growth, in the compressible case. The
work, which is certainly most relevant to ours is the one by Sivaloganathan and Spector [19].
In particular, in [19, Theorem 4.2] they consider the same functionals I, as given in (7-8),
however, on a suitable class of admissible maps satisfying the constraint det∇u > 0 a.e.
and subject to suitable boundary data. Assuming then that u is a weak solution satisfying
the corresponding equilibrium equation and the condition given by

(14) |∂dΨ(x,∇u, d∇u)R| ≤ ν(x)|∇u|p−2 for a.e. x ∈ Ω.

Then u must be a global minimizer of I. Additionally, if the latter inequality is in some sense
strictly satisfied then u must be the unique one. It is crucial to realise, that the criterion given
by Sivaloganathan and Spector differs from ours. Indeed, (14) involves a 1st order derivative
of Ψ while in (13) a 2nd order derivative is used.

1Recall, that we call situations, where the energies remain finite either incompressible elastic, if the con-
sidered admissible maps must be measure-preserving, otherwise we call it compressible elastic. Moreover, we
call a model (fully) non-linear elastic, if the considered integrand f, ignoring any other dependencies, satisfies
f(ξ) = +∞ for any ξ ∈ Rn×n s.t. det ξ ≤ 0 and f(ξ)→ +∞ if det ξ → 0+ or det ξ → +∞. Notice, that in the
latter model some of the consider energies might be infinite.
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A possible incomplete list of results regarding the compressible setting might look as follows:
Initially, it is well known, that uniformly convex functionals possess unique global minimizers,
see for instance [13, § 3.3]. Knorps and Stuart showed in [14], that for a strongly quasiconvex
integrand defined on a star-shaped domain and subject to linear boundary data u0 = Ax,
any C2−stationary point needs to agree with Ax everywhere. A generalisation can be found
in [22]. These results have been transferred to the incompressible by Shahrokhi-Dehkordi
and Taheri [17] and the fully non-linear case by Bevan [4]. In [11], Cordero presented a
uniqueness result guaranteeing a unique minimizer for strongly quasiconvex C2−integrands if
the given boundary data is smooth and small enough. Zhang [25] discusses situations, in in-
and in compressible ones, where the considered energies are polyconvex and the under pure
displacement boundary conditions and subject to that the Jacobian must be strictly positive
a.e. Then the corresponding minimizer must agree with the solution of the corresponding
Euler-Lagrange equation, which is highly non-trivial due to the weak spaces involved and
the lack of compactness of the constraint. On the contrary, non-uniqueness for minimizers
of strongly polyconvex functionals has been established by Spadaro in [20]. However, these
counterexamples rely highly on the fact that the determinant can take on negative values,
which is neither possible in the incompressible nor in the NLE-stetting. John [12] and Spector
and Spector [21] obtain uniqueness of equilibrium solutions for small enough strains and un-
der various boundary conditions. In sharp contrast, Post and Sivaloganathan [16] construct
multiple equilibrium solutions in finite elasticity.

A first treatment of uniqueness in incompressible elasticity can be found in [14, Section 6].
Much research in the incompressible setting is concerned with the double covering problem,
that is, given the Dirichlet Energy D(ξ) = |ξ|2/2 on the unit ball in 2d and subject to double
covering boundary conditions given by u2 = (cos(2θ), sin(2θ)), first considered by Ball [2].
Since then a lot of progress towards a solution has been made and partial results are avail-
able. For instance, Bevan [5] showed that u2 is the unique global minimizer up to the first
Fourier-mode. This paper is central for several reasons, firstly, it introduces the type of
uniqueness argument we provide here and in [8]. Moreover, it also contains the concept of
high-frequency uniqueness. In [7] Bevan and Deane obtained that u2 is the unique global
minimizer for either purely inner or purely outer variations and local minimality is shown for
a subclass of variations allowing a certain mixture of both types. In contrast, in [6], equal
energy stationary points of an inhomogeneous uniformly convex functional (x, ξ) 7→ f(x, ξ)
depending discontinuously on x are constructed. It remains unknown for now if these sta-
tionary points are actually global minimizers.

In the fully non-linear case Bevan and Yan [10] show, that the famous BOP−map, constructed
by Bauman, Owen and Phillips [3], is the unique global minimizer in a suitable sub-class of
admissible maps.

Finally, many papers address uniqueness questions, in situations where the reference domain
agrees with an annulus, see for instance [9, 12,15,16,23,24].

Plan of the paper: After introducing the most important notation, which we will use in
this paper, Then the proof of theorem 1.2 will be given in §.3 followed by some important
remarks in the incompressible situation. §.4 then discusses the compressible case instead and,
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in particular, a proof of theorem 2.2.

Notation: For any 2× 2−matrix A we define its cofactor by

(15) cof A =

(
a22 −a21
−a12 a11

)
.

Moreover, we will make use of the shorthand dA := detA.

The Fourier-representation for any η ∈ C∞(B,R2) (For members of Sobolev- spaces one might
approximate) is given by

η(x) =
∑
j≥0

η(j)(x), where η(0)(x) =
1

2
A0(R), A0(R) =

1

2π

2πˆ

0

η(R, θ) dθ

and for any j ≥ 1 we have

η(j)(x) = Aj(R) cos(jθ) +Bj(R) sin(jθ),

where

Aj(R) =
1

2π

2πˆ

0

η(R, θ) cos(jθ) dθ and Bj(R) =
1

2π

2πˆ

0

η(R, θ) sin(jθ) dθ.

Further we use η̃ := η − η(0).

3. The incompressible case

We immediately start with the proof in the incompressible setting. The proof is obtained
by comparing energies and gaining a lower bound by means of the ELE and a Poincaré-type
inequality.

Proof of Theorem 1.2:

i) Let u ∈ Ap,cu0 be a stationary point of E and let v ∈ Fp,σ,cn∗ be arbitrary and set η := v−u ∈
W 1,2

0 (B,R2) and ση =
∑
j≥n∗

(ση)(j) with n∗ = n + l assuming wlog. η ∈ C∞c (B,R2) and

σ ∈ C∞(B).
We start by the standard expansion

E(v)− E(u) =

ˆ

B

ν(x)(|∇u+∇η|p − |∇u|p) dx

≥p
2

ˆ

B

ν(x)|∇u|p−2|∇η|2 + pν(x)|∇u|p−2∇u · ∇η dx,(16)

where we used the following inequality2

1

p
|b|p ≥ 1

p
|a|p + |a|p−2a(b− a) +

1

2
|a|p−2|b− a|2.(17)

2see, [19, Prop A.1]with σ = 0.
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Henceforth, we shall denote the rightmost term in (16) by

H(u, η) :=

ˆ

B

pν(x)|∇u|p−2∇u · ∇η dx.

Recall, the ELE (3) is given by
ˆ

B

pν(x)|∇u|p−2∇u · ∇η dx =−
ˆ

B

pλcof ∇u · ∇η dx for all η ∈ C∞c (B,R2).(18)

In order for us, to control H from below, we start by rewriting said term via the relation
det∇η = −cof ∇u · ∇η a.e. and lemma 2.1(v) of [8] in the following way

H(u, η) =− p

2

ˆ

B

R((cof ∇η)∇λ) · η dx
R

(19)

=− p

2

ˆ

B

(λ,RReR + λ,θ eθ) ·
[
(η̃1η̃2,θ − η̃2η̃1,θ)

eR
R

+ (η̃2η1,R − η̃1η2,R)eθ]
dx

R
.

An application of Hölder’s inequality in R2, that is, for any y, z ∈ R2 it holds |y ·z| ≤ |y|∞|z|1,
yields

H(u, η) ≥− p

2

ˆ

B

|R∇λ(x)|∞ ·
[
|η1η2,θ − η2η1,θ|

1

R
+ |η2η1,R − η1η2,R|

]
dx

R
.(20)

By applying (12) and Cauchy-Schwarz inequalities with weight ε = n√
2

we get

H(u, η) ≥ −p
2

n√
2

[ n√
2
‖ση1‖2L2(dx/R2) +

n√
2
‖ση2‖2L2(dx/R2)

+
1√
2n

(
‖ση1,θ‖2L2(dx/R2) + ‖ση2,θ‖L2(dx/R2)

+ ‖ση1,R‖2L2(dx) + ‖ση2,R‖2L2(dx)

)]
.

Using (21) and collecting terms yields

H(u, η) ≥− p

2

[
‖ση,θ ‖2L2(B,R2, dx

R2 )
+

1

2
‖ση,R ‖2L2(B,R2,dx)

]
≥− p

2

ˆ

B

ν(x)|∇u|p−2|∇η|2 dx,

completing the proof. For the last step we made used of the following version of the Fourier-
estimate given by

(21) n2
ˆ

B

σ2|η|2 dx
R2
≤
ˆ

B

σ2|η,θ|2 dx.
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This is indeed true, for this sake, first assume that σ ∈ C∞(B). We will make use of a Poincare
type inequality, first established in [5],

(22)

ˆ

B

R−2|ξ,θ|2 dx ≥ N2

ˆ

B

R−2|ξ|2 dx,

which holds true for any ξ ∈ C∞(B,R2) if ξ only consists of Fourier-modes N or higher.

Then an application of (22), the product rule, Minkowski’s inequality and (11) yields

n∗‖ση‖L2
(

dx
R2

) ≤‖(ση),θ ‖L2
(

dx
R2

)
≤‖ση,θ ‖L2

(
dx
R2

) + ‖σ,θ η‖L2
(

dx
R2

)
≤‖σ∇η‖L2(dx) + l‖ση‖

L2
(

dx
R2

).(23)

Absorbing the rightmost term of the latter expression into the LHS yields (21). Additionally,
(23) justifies its own upgrade by remaining valid for any σ ∈ L2(B), satisfying (11).

ii) Let u ∈ Ap,cu0 be a stationary point of E and let v ∈ Fp,σ,c0,m∗
be arbitrary and set η := v−u ∈

W 1,2
0 (B,R2) and ση = (ση)(0) +

∑
j≥m∗

(ση)(j) with m∗ = m+ l assuming wlog. η ∈ C∞c (B,R2)

and σ ∈ C∞(B).
Notice, that

E(v)− E(u) ≥p
2

ˆ

B

ν(x)|∇u|p−2|∇η|2 dx+H(u, η),(24)

remains valid with the same mixed term

(25) H(u, η) =

ˆ

B

pν(x)|∇u|p−2∇u · ∇η dx.

From here on we have to argue more along the lines of the proof of [8, thm 1.2]. Again, by
the ELE (3), the identity det∇η = −cof ∇u · ∇η a.e. and by [8, lem 2.1.(vi)] we get

H(u, η) = −p
ˆ

B

(cof ∇η(0)∇λ(x)) · η̃ dx− p
ˆ

B

(cof ∇η∇λ(x)) · η̃ dx =: (I) + (II).

Now by noting that the 0−mode is only a function of R, we get

(cof ∇η(0)∇λ(x)) · η̃ =
λ,θ
R

(η
(0)
1,Rη̃2 − η

(0)
2,Rη̃1).

Instead of just λ,θ on the right hand side of the latter equation we would like to have the full
gradient of λ. This can be achieved by using the basic relations eθ · eθ = 1 and eR · eθ = 0 to
obtain

(cof ∇η(0)∇λ(x)) · η̃ = (λ,RReR + λ,θ eθ) · (η
(0)
1,Rη̃2 − η

(0)
2,Rη̃1)

eθ
R
.

Arguing similarly for (II), and a short computation shows

H(u, η) =− p
ˆ

B

(λ,RReR + λ,θ eθ) ·
[
(η̃1η̃2,θ − η̃2η̃1,θ)

eR
R



(HIGH FREQUENCY-) UNIQUENESS CRITERIA IN IN- AND COMPRESSIBLE ELASTICITY 9

+ (η̃2(η
(0)
1,R + η1,R)− η̃1(η(0)2,R + η2,R))eθ

] dx

R
.(26)

By Hölder’s inequality in R2 we get

H(u, η) ≥− p
ˆ

B

|∇λ(x)R|∞
[
|η̃1η̃2,θ − η̃2η̃1,θ|

1

R

+
∣∣∣η̃2(η(0)1,R + η1,R)− η̃1(η(0)2,R + η2,R)

∣∣∣] dx

R
.

By |∇λ(x)R|∞ ≤
√
3mσ2(x)

2
√
2

and a weighted Cauchy-Schwarz inequality, we see

H(u, η)≥−
√

3mp

4
√

2

[
2a‖ση̃1‖2

L2
(

dx
R2

)+ 2a‖ση̃2‖2
L2

(
dx
R2

)+
1

a
‖ση(0)2,R + ση2,R‖2L2(dx)

+
1

a
‖ση̃2,θ‖2

L2
(

dx
R2

) +
1

a
‖ση(0)1,R + ση1,R‖2L2(dx) +

1

a
‖ση̃1,θ‖2

L2
(

dx
R2

)] .
Applying the Cauchy-Schwarz inequality, inequality (21), and combining some of the norms
yields

H(u, η) ≥ −
√

3mp

4
√

2

[(
2a

m2
+

1

a

)
‖ση̃,θ ‖2

L2
(

dx
R2

) +
2

a
‖ση,(0)R ‖

2
L2(dx)

+
2

a
‖ση,R ‖2L2(dx)

]
.

By using η̃,θ = η,θ and ‖ση,(0)R ‖2L2(dx) ≤ ‖ση,R ‖
2
L2(dx) we obtain

H(u, η) ≥−
√

3mp

4
√

2

[(
2a

m2
+

1

a

)
‖ση,θ ‖2

L2
(

dx
R2

) +
4

a
‖ση,R ‖2L2(dx)

]
.

Choosing a =
√
3m√
2

and combining the norms even further yields

H(u, η) ≥ −p
2

ˆ

B

ν(x)|∇u|p−2|∇η|2 dx,

completing the 2nd part of the proof. �

Remark 3.1. 1. Notice, that (11) is especially satisfied if p = 2 and ν(x) = ν(R). So
condition (11) can be thought of as a natural extension of this fact to the case, where p might
be arbitrary and σ(x) depends on x instead of R.
2. Despite the fact that the sets F p,σ,cn∗ and F p,σ,c0,m∗

depend on σ it remains true that if n∗ = 0 or

m∗ ∈ {0, 1} one gets uniqueness in the full class Ap,c. Indeed, there are two cases to consider.
Firstly, let n∗ = 0 or m∗ ≤ 1 s.t. n = 0 or m = 0. Then ∇λ ≡ 0 and by (16) and (18) one
obtains

E(v)− E(u) ≥
ˆ

B

ν(x)

2
|∇u|p−2|∇η|2 dx,

implying, that u is a global minimizer in the full class Ap,c. Assuming, additionally, that
σ(x) ≥ σ0 > 0 for a.e. x ∈ B then one can conclude that it needs to be the unique one. In the
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case when m∗ = 1 and m = 1, l = 0, then σ,θ = 0 and (21) can be applied with m∗ = m = 1
completing the argument.

4. Compressible uniqueness criterion

Here we outline the proof for the analogous compressible results, where the proof strategy
remains the same.

Proof of Theorem 2.2:
i) Let u ∈ Apu0 be a stationary point of I and let v ∈ Fp,σn∗ be arbitrary and set η := v − u ∈
W 1,2

0 (B,R2) and ση =
∑
j≥n∗

(ση)(j) with n∗ = n + l assuming wlog. η ∈ C∞c (B,R2) and

σ ∈ C∞(B). Again, by the standard expansion, the subdifferential inequality for Ψ, and
inequality (17) we obtain

I(v)− I(u) =

ˆ

B

ν(x)

p
(|∇u+∇η|p − |∇u|p)

+ Ψ(x,∇u+∇η,det∇u+∇η)−Ψ(x,∇u,det∇u) dx

≥
ˆ

B

ν(x)

2
|∇u|p−2|∇η|2 + ν(x)|∇u|p−2∇u · ∇η

+ ∂ξΨ(x,∇u,det∇u) · ∇η + ∂dΨ(x,∇u,det∇u)cof ∇u · ∇η dx.

Then by applying the ELE (10) we get

I(v)− I(u) ≥
ˆ

B

ν(x)

2
|∇u|p−2|∇η|2 + ∂dΨ(x,∇u,det∇u)d∇η dx.(27)

Replacing λ by ∂dΨ in the argument given in the 1st part of the proof of theorem 2.2, see
§.3, completes the argument.

ii) If ση can be such that the first Fourier-mode (ση)(0) 6= 0 then (27) does still hold, but one
needs to conclude similarly to the 2nd part of the proof of theorem 2.2. �

Remark 4.1. 1. Arguing as in Remark 3.1 in §.3, assuming, additionally, that σ(x) ≥ σ0 > 0
for a.e. x ∈ B then it remains true that if n∗ = 0 or m∗ ∈ {0, 1} one gets uniqueness in the
full class Ap.
2. It seems reasonable to believe, that similar uniqueness criteria could be given in many
other elastic scenarios if the considered situation is such, that the describing functional de-
composes into two parts, the main one and the perturbative one acting like the pressure. If the
perturbation then is assumed to be small in some sense there might be a chance of obtaining
uniqueness.
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