Riemannian classification of EEG signals with missing values - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Riemannian classification of EEG signals with missing values

Résumé

This paper proposes a strategy to handle missing data for the classification of electroencephalograms using covariance matrices. It relies on the observed-data likelihood within an expectation-maximization algorithm. This approach is compared to two existing state-of-the-art methods: (i) covariance matrices computed with imputed data; (ii) Riemannian averages of partially observed covariance matrix. All approaches are combined with the minimum distance to Riemannian mean classifier and applied to a classification task of two widely known paradigms of brain-computer interfaces. In addition to be applicable for a wider range of missing data scenarios, the proposed strategy generally performs better than other methods on the considered real EEG data.
Fichier principal
Vignette du fichier
main.pdf (261.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03856816 , version 1 (17-11-2022)

Identifiants

Citer

Alexandre Hippert-Ferrer, Ammar Mian, Florent Bouchard, Frédéric Pascal. Riemannian classification of EEG signals with missing values. 30th European Signal Processing Conference (EUSIPCO 2022), Aug 2022, Belgrade, Serbia. ⟨10.23919/eusipco55093.2022.9909703⟩. ⟨hal-03856816⟩
40 Consultations
71 Téléchargements

Altmetric

Partager

More