MicroPress: Detecting Pressure and Hover Distance in Thumb-to-Finger Interactions - Archive ouverte HAL
Conference Papers Year : 2022

MicroPress: Detecting Pressure and Hover Distance in Thumb-to-Finger Interactions

Abstract

Thumb-to-finger interactions leverage the thumb for precise, eyes-free input with high sensory bandwidth. While previous research explored gestures based on touch contact and finger movement on the skin, interactions leveraging depth such as pressure and hovering input are still underinvestigated. We present MicroPress, a proof-of-concept device that can detect both, precise thumb pressure applied on the skin and hover distance between the thumb and the index finger. We rely on a wearable IMU sensor array and a bi-directional RNN deep learning approach to enable fine-grained control while preserving the natural tactile feedback and touch of the skin. We demonstrate MicroPress' efficacy with two interactive scenarios that pose challenges for real-time input and we validate its design with a study involving eight participants. With short per user calibration steps, MicroPress is capable of predicting hover distance with 0.57mm accuracy, and on-skin pressure with 6.71% normalized pressure error at 6 locations on the index finger.
Fichier principal
Vignette du fichier
micropress.pdf (2.4 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03850971 , version 1 (14-11-2022)

Identifiers

Cite

Rhett Dobinson, Marc Teyssier, Jürgen Steimle, Bruno Fruchard. MicroPress: Detecting Pressure and Hover Distance in Thumb-to-Finger Interactions. Proceedings of the 2022 ACM Symposium on Spatial User Interaction (SUI 2022), Dec 2022, Online CA USA, France. pp.1-10, ⟨10.1145/3565970.3567698⟩. ⟨hal-03850971⟩
101 View
140 Download

Altmetric

Share

More