Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback

Hugo Parada

Résumé

The stability analysis of the linear and nonlinear Korteweg-de Vries equations in presence of a saturated feedback actuator is studied. The well-posedness is derived by using nonlinear semigroup results, Schauder's and Banach fixed point theorems. The exponential stability is shown thanks to an observability inequality, which is obtained via contradiction and compactness arguments. Finally, an alternative proof of the asymptotic stability of the linear Korteweg-de Vries equation is presented.
Fichier principal
Vignette du fichier
IFAC kdv sat full.pdf (244.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03850406 , version 1 (13-11-2022)

Identifiants

Citer

Hugo Parada. Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback. 4th IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2022, Sep 2022, Kiel, Germany. pp.1-6, ⟨10.1016/j.ifacol.2022.10.368⟩. ⟨hal-03850406⟩
68 Consultations
144 Téléchargements

Altmetric

Partager

More