AUTOMORPHISM GROUPS OF RIGID AFFINE SURFACES: THE IDENTITY COMPONENT - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

AUTOMORPHISM GROUPS OF RIGID AFFINE SURFACES: THE IDENTITY COMPONENT

M Zaidenberg

Résumé

It is known that the identity component of the automorphism group of a projective algebraic variety is an algebraic group. This is not true in general for quasi-projective varieties. In this note we address the question: given an affine algebraic surface Y , as to when the identity component Aut • (Y) of the automorphism group Aut(Y) is an algebraic group? We show that this happens if and only if Y admits no effective action of the additive group. In the latter case, Aut • (Y) is an algebraic torus of rank ≤ 2.
Fichier principal
Vignette du fichier
Aut-rigid-surfaces.pdf (540.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03848662 , version 1 (10-11-2022)

Identifiants

  • HAL Id : hal-03848662 , version 1

Citer

Alexander Perepechko, M Zaidenberg. AUTOMORPHISM GROUPS OF RIGID AFFINE SURFACES: THE IDENTITY COMPONENT. 2022. ⟨hal-03848662⟩
34 Consultations
21 Téléchargements

Partager

More