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AUTOMORPHISM GROUPS OF RIGID AFFINE SURFACES: THE
IDENTITY COMPONENT

ALEXANDER PEREPECHKO AND MIKHAIL ZAIDENBERG

Abstract. It is known that the identity component of the automorphism group
of a projective algebraic variety is an algebraic group. This is not true in general
for quasi-projective varieties. In this note we address the question: given an
affine algebraic surface Y , as to when the identity component Aut◦(Y ) of the
automorphism group Aut(Y ) is an algebraic group? We show that this happens if
and only if Y admits no effective action of the additive group. In the latter case,
Aut◦(Y ) is an algebraic torus of rank ≤ 2.
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1. Introduction

Let K be an algebraically closed field of characteristic zero and let Ga and Gm

be the additive and the multiplicative groups of K, respectively. If Y is an affine
variety over K, then the automorphism group Aut(Y ) has a canonical structure of
an ind-group endowed with its Zariski ind-topology, see e.g. [18]. In this paper
we concentrate on the identity component Aut◦(Y ) of Aut(Y ) with respect to the
Zariski topology. Notice that, similarly to the case of a projective variety, the group
of components Aut(Y )/Aut◦(Y ) is at most countable, see [18, Proposition 1.7.1].
We address the following conjecture. We say that Y is rigid if Y admits no effective
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Ga-action or, in other words, Aut◦(Y ) contains noGa-subgroup, that is, no nontrivial
unipotent element.

Conjecture 1.0.1. If Y is a rigid affine algebraic variety over K, then the group
Aut◦(Y ) is an algebraic torus of rank ≤ dimY .

If Conjecture 1.0.1 is true, then the following one is true as well1.

Conjecture 1.0.2. If an affine variety Y admits no effective Ga- and Gm-actions,
then Aut(Y ) is a discrete group.

Some partial results on these conjectures can be found e.g. in [1, Theorem 2.1],
[24, Proposition 5], [25, 26], [27, Theorems 4.4 and 4.7], [28, Theorem 1.3 and Section
7], and [36, 37]. Conjecture 1.0.1 holds, for instance, for toric affine varieties, see
[4, Theorem 3]. In the present paper we establish Conjecture 1.0.1 in the case
dimY = 2.

Theorem 1.0.3. Let Y be a normal affine surface over K. Then the following hold.
(a) Aut◦(Y ) is an algebraic group if and only if Y admits no effective Ga-action,

if and only if Aut◦(Y ) is an algebraic torus of rank ≤ 2.
(b) Let (X,D) be a minimal completion of Y by a normal crossing divisor. Then

Aut◦(Y ) is an algebraic group if and only if the dual graph Γ(D) is bira-
tionally rigid.

See Definition 3.2.1 for birationally rigidity of a weighted graph. As a corollary,
we establish the following effective combinatorial criterion of rigidity, cf. Corollary
4.3.5.

Corollary 1.0.4. In the setup of Theorem 1.0.3 the surface Y is rigid if and only
if Γ(D) has no non-admissible extremal linear segment.

An extremal linear segment of a weighted graph Γ is a maximal linear subgraph
with no branching point of Γ which contains a tip of Γ. It is admissible if all its
weights are ≤ −2, see Definitions 2.7.1 and 3.1.2.

Using Corollary 1.0.4 we show that the affine surface Y = P2 \ suppD, where D
is a reduced effective divisor on P2 with only nodes as singularities, is rigid if and
only if deg(D) ≥ 3, see Example 4.3.6.

The first part of Theorem 1.0.3 was announced in [27, Proposition 4.7]. Our
approach goes back to the work of Danilov and Gizatullin [8]. Namely, the auto-
morphism group Aut(Y ) can be realized as a group of birational transformations
between the NC-completions of Y , i.e., the completions (X,D) with a normal pro-
jective surface X and a normal crossing boundary divisor D contained in a smooth
part of X.

Our main instrument is the birational transformations of weighted graphs. Dif-
ferent aspects of this subject were developed e.g. in [6, 7, 8, 9, 11, 13, 17, 20, 23,
34, 35, 39, 40], etc. We consider, more generally, weighted graphs with a distin-
guished subset of marked vertices called rational. In the case where our graph Γ is
the dual graph of a finite collection of curves on a surface, the rational vertices of Γ
correspond to rational curves.

Section 2 contains preliminaries on NC-completions, their dual graphs and bira-
tional transformations of weighted graphs. For the sake of completeness we provide
thorough proofs of some known results.

In Section 3 we discuss birationally rigid weighted graphs. A weighted graph Γ is
minimal if it has no rational vertex of degree ≤ 2 and of weight −1, and birationally

1We thank Hanspeter Kraft who suggested the second conjecture.
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rigid if it is minimal and any birational transformation Γ 99K Γ′ where Γ′ is a
minimal weighted graph is an isomorphism, see Definition 3.2.1.

The proof of Theorem 1.0.3 is done in Section 4, see Theorem 4.3.4. Let us
indicate the main ingredients of the proof.

• It is well known that any birational transformation between smooth surfaces
can be decomposed into a sequence of blowups and blowdowns. The theory of
birational transformations of weighted graphs is parallel to that of birational
transformations of NC-pairs.
• Namely, to every birational transformation of an NC-pair (X,D) there cor-
responds a birational transformation of the dual graph Γ(D) and vice versa,
see Proposition 2.7.8 and Lemma 2.7.11.
• The group Aut(Y ) of automorphisms of a normal affine surface Y contains a
Ga-subgroup if and only if Y admits a minimal NC-completion (X,D) whose
dual graph Γ(D) has an extremal linear segment with a tip of weight zero,
see Proposition 4.1.2 and its proof.
• A minimal linear weighted graph is non-admissible if and only if it is bira-
tionally equivalent to a linear graph with a tip of weight zero, see e.g. [11,
Examples 2.11].
• A minimal weighted graph is birationally rigid if and only if it contains no
non-admissible extremal linear segment, see Proposition 3.2.2.

These facts imply that Y is rigid if and only if the minimal graph Γ(D) is birational
rigid. Now Corollary 1.0.4 follows immediately.

• A blowup of an NC-pair (X,D) is called inner if its center is a node of D. A
blowdown is inner if so is the inverse blowup. A birational transformation is
inner if it is composed of inner blowups, inner blowdowns and isomorphisms,
see Definitions 2.2.1–2.2.2.
• Let Bir(X,D) stand for the subgroup of Bir(X) of birational transformations
biregular on Y = X \D. Then the inner birational transformations of (X,D)
form a subgroup of Bir(X,D) denoted Inn(X,D).
• Similar definitions can be applied for birational transformations of weighted
graphs, see Definitions 2.3.4 and 2.3.7. To every inner birational transfor-
mation of an NC-pair (X,D) there corresponds a unique inner birational
transformation of the dual graph Γ(D) and vice versa, see Proposition 2.7.8.
• If a minimal weighted graph Γ is birationally rigid then any birational trans-
formation of Γ can be replaced by an inner birational transformation, see
Proposition 3.2.3.
• Let (X,D) be a minimal NC-completion of a rigid affine surface Y . Then
the ind-group Aut◦(Y ) =: Bir0(X,D) coincides with its closed ind-subgroup
Inn◦(X,D) of inner automorphisms, see Definitions 2.2.1, 2.2.2 and Theorem
3.2.5.
• In turn, the identity component Inn◦(X,D) coincides with the affine alge-
braic subgroup Aut◦(X,D), see Proposition 4.2.3.
• The absence of nontrivial unipotent subgroups forces Aut◦(Y ) = Aut◦(X,D)
to be an algebraic torus.

These facts imply Theorem 1.0.3. As a side result we obtain that for a rigid
normal affine surface Y the group Aut◦(X,D) does not depend on the choice of a
minimal NC-completion (X,D) of Y .

Acknowledgments. We are grateful to Ivan Arzhantsev, Hanspeter Kraft and
Alvaro Liendo for some remarks and indications in the literature.
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2. NC-pairs and dual graphs

We recall here the correspondence between compactifications of affine algebraic
surfaces and weighted graphs following [11]. We use a slightly modified version of
the terminology in [11].

2.1. Birational transformations of NC-pairs.

Definition 2.1.1. Let X be a normal projective surface over K and D be a reduced
effective divisor onX. The pair (X,D) is called an NC-pair ifD is a normal crossing
divisor (i.e., the only singularities of D are nodes) contained in the smooth locus of
X. An NC-pair (X,D) is called an SNC-pair if D is a simple normal crossing divisor,
i.e., each component of D is smooth and any two components of D are disjoint or
intersect at a single point.

Clearly, an NC-pair (X,D) is not an SNC-pair if and only if D has either a nodal
component, or a pair of components with more than one point in common. As an
example, one can consider the pair (P2, C), where C ⊂ P2 is a nodal cubic curve.
Any NC-pair is dominated by an SNC-pair. For instance, in the above example such
a domination is obtained after blowing up P2 in the node of C and one more blowing
up in a node of the resulting curve, cf. Example 2.7.2.

Definition 2.1.2. Let (X,D) and (X ′, D′) be NC-pairs. We denote by
(1) Bir((X,D), (X ′, D′)) the group of birational transformationsX 99K X ′ which

restrict to biregular isomorphisms of the complements X \ suppD
'−−→ X ′ \

suppD′;
(2) Bir(X,D) the group Bir((X,D), (X,D));
(3) Aut(X,D) the group of biregular automorphisms of X that preserve D;
(4) Aut\(X,D) the subgroup of Aut(X,D) of automorphisms preserving each

component and each node of D;
(5) Aut◦(X,D) the identity component of Aut(X,D).

Remark 2.1.3. The group Bir(X,D) is naturally isomorphic to the automorphism
group of the complement Y = X \ suppD. Indeed, for g ∈ Bir(X,D) the restriction
g|Y is an automorphism of Y , and any f ∈ Aut(Y ) extends to a unique birational
transformation of X.

Thus, the group Bir(X,D) ' Aut(Y ) does not depend on the completion (X,D)
of Y = X \ suppD. However, the group Aut(X,D) generally depends on the chosen
completion. For instance, for the completion of the affine plane A2 ↪→ P2 we have
Aut(P2,P1) ' Aff(A2), whereas for the completion A2 ↪→ P1 × P1 we have

Aut(P1 × P1,P1 × {∞} ∪ {∞} × P1) ' Z2 n (Aff(A1))2.

2.2. Inner transformations.

Definition 2.2.1. A blowup of an NC-pair (X,D) with center x ∈ D gives again
an NC-pair. Such a blowup is called inner if x is a node of D and outer otherwise.
A blowdown of a component of D is called inner (resp. outer) if the inverse blowup
is inner (resp. outer).

Definition 2.2.2. A birational transformation (X,D) 99K (X ′, D′) is called in-
ner if it can be decomposed into a sequence of inner blowups, inner blowdowns
and isomorphisms of NC-pairs. The subset of inner birational transformations
Inn(X,D) ⊂ Bir(X,D) forms a subgroup.

Lemma 2.2.3. We have

Aut◦(X,D) ⊂ Aut\(X,D) ⊂ Aut(X,D) ⊂ Inn(X,D) ⊂ Bir(X,D).
4



Proof. This is immediate from our definitions. �

Lemma 2.2.4. Aut◦(X,D) = (Aut\(X,D))◦ is a connected algebraic group.

Proof. It is well known that Aut◦(X) is a connected algebraic group, see [31, 32, 38],
and so is its closed connected subgroup Aut◦(X,D). �

Lemma 2.2.5. Every inner birational transformation φ : (X,D) 99K (X ′, D′) satis-
fies the relation

φ ◦ Aut\(X,D) = Aut\(X ′, D′) ◦ φ.
In particular, Aut\(X,D) is a normal subgroup of Inn(X,D).

Proof. It is enough to check the statement for an inner blowdown σ : (X1, D1) →
(X2, D2). Indeed, σ induces an isomorphism

σ∗ : Aut\(X1, D1)
'−→ Aut\(X2, D2)

where π∗ : α 7→ σ ◦ α ◦ σ−1. �

Remark 2.2.6. The group Aut\(X,D) is the kernel of the natural homomorphism
Aut(X,D)→ Aut(Γ(D)), where Γ(D) is the dual graph of D, see Definition 2.7.1.

Proposition 2.2.7. The group Inn(X,D)/Aut\(X,D) is countable.

Proof. Since Aut(X,D)/Aut\(X,D) is a finite group, it suffices to show that
Inn(X,D)/Aut(X,D) is countable. We claim that any φ ∈ Inn(X,D) can be writ-
ten as

(1) φ = ασ±1
n · · ·σ±1

1 = σ′
±1
n · · ·σ′

±1
1 β

where α, β ∈ Aut(X,D) and the σi, σ′i are inner blowdowns. Indeed, consider a
commutative diagram

(X1, D1)

(X ′1, D
′
1)

(X2, D2)

(X ′2, D
′
2)

σ±1

α1 '

σ′±1

α2'

where σ and σ′ are inner blowdowns. Given a pair (σ′, α1) there exists a unique pair
(σ, α2) fitting in the diagram, and vice versa. Now the claim follows.

Therefore, any left coset in Inn(X,D)/Aut(X,D) has the form ψ ·Aut(X,D) for
some ψ = σ′±1

n · · ·σ′
±1
1 ∈ Inn(X,D). These cosets form a countable set. �

2.3. Weighted graphs. The birational geometry of NC-pairs has its combinatorial
counterpart, namely, the birational geometry of weighted graphs, see the references
in the Introduction.

Definition 2.3.1. Let Γ be a (nonempty) finite weighted graph with the set of
vertices Vert(Γ) where vertices are weighted by integer numbers, and let Ratio(Γ) ⊆
Vert(Γ) be a distinguished subset of vertices which we call rational vertices. A
rational vertex of weight −1 (resp. of weight 0) is called (−1)-vertex (resp. (0)-
vertex ). The graph Γ may be disconnected and may contain loops, cycles and
multiple edges, that is, several edges joining the same pair of vertices.

Definition 2.3.2.
• Given a weighted graph Γ, the degree degΓ(v) of a vertex v ∈ Vert(Γ) is the
number of incident edges of Γ at v, where a loop [v, v] is counted twice. We
simply write deg(v) when the graph Γ has been fixed.
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• A rational vertex v of Γ is called an end vertex if deg(v) = 1, linear if
deg(v) = 2 and at most linear if deg(v) ≤ 2 and no loop of Γ is incident with
v. We let End(Γ) be the set of end vertices of Γ.
• A vertex v is called branching if either v is non-rational or deg(v) ≥ 3. We
let Br(Γ) be the set of all branching vertices of Γ. Thus, Vert(Γ)\Ratio(Γ) ⊆
Br(Γ).
• Given a vertex v ∈ Γ, the connected components of Γ \ {v} linked to v are
the branches of Γ at v. A branch linked to v via exactly one edge is called
simple.

Definition 2.3.3. Let Γ be a weighted graph with vertices v1, . . . , vn. The inter-
section form I(Γ) is a bilinear form on Rn given by the symmetric square matrix
A(Γ) = (ai,j) where ai,i is the weight of vi and for j 6= i, ai,j equals the number of
edges between vi and vj. The discriminant of Γ is the determinant det(−A(Γ)). We
let i+(Γ), i−(Γ) and i0(Γ) be the inertia indices of the quadratic form I(Γ).

Definition 2.3.4. Let [v1, v2] (where possibly v1 = v2) be an edge of Γ. The inner
blowup in [v1, v2] consists in adding a new (−1)-vertex v, replacing the edge [v1, v2]
by two new edges [v1, v] and [v, v2] and decreasing the weights of v1 and v2 by 1 if
v1 6= v2 and by 4 if v1 = v2 (i.e. [v1, v2] is a loop).

The outer blowup at a vertex v in Γ consists in introducing a new (−1)-vertex v′
along with a new edge [v, v′] and decreasing the weight of v by 1.

The modifications inverse to inner and outer blowups are called inner and outer
blowdowns, respectively.

Proposition 2.3.5 (cf. [34, Proposition 1.1], [40, [Proposition 1.14], [11, Lemma
4.6]). A blowup of a weighted graph Γ adds 1 to i−(Γ) while i+(Γ) and i0(Γ) remain
unchanged.

Proof. Letting Vert(Γ) = {v1, . . . , vn} consider the R-vector space V =
⊕

iRvi with
the dot product given by I(Γ). The symmetric matrix Mn of I(Γ) is diagonal in a
suitable orthogonal basis {e1, . . . , en} of V .

A blowup δ : Γ′ 99K Γ creating a vertex vn+1 induces a map δ∗ : V ↪→ V ′ =⊕n+1
i=1 Rvi defined by

δ∗ : v 7→ v + I(Γ′)(v, vn+1)vn+1.

The vector vn+1 is an eigenvector of the matrix Mn+1 of I(Γ′) with eigenvalue −1.
One can check that I(Γ′) restricted on δ∗(V ) coincides with δ∗I(Γ) and vn+1 is
orthogonal to δ∗(V ). The orthogonal basis in V ′ of the eigenvectors

δ∗(e1), . . . , δ∗(en), vn+1

is diagonalizing for Mn+1, which proves the claim. �

Remark 2.3.6. In the case where Γ = Γ(D) is the dual graph of an NC-divisor
D on a smooth surface X and δ : X ′ → X is the blowup of a point on D, the
homomorphism δ∗ sends any divisor N supported on suppD to its total transform
δ∗(N) on X ′, and vn+1 represents the exceptional (−1)-curve of δ. The properties
of δ∗ used in the proof follow in this case from the Projection Formula.

Definition 2.3.7. A birational transformation of weighted graphs φ : Γ 99K Γ′ is a
finite sequence of blowups, blowdowns and isomorphisms. If all these blowups and
blowdowns are inner, then φ is called inner. Two weighted graphs are called bira-
tionally equivalent if one can be transformed into the other by means of a birational
transformation.

From Proposition 2.3.5 we deduce the following

Corollary 2.3.8. The inertia indices i+(Γ) and i0(Γ) are birational invariants.
6



Remarks 2.3.9. 1. The definition of inner birational transformations of weighted
graphs in [11, Definitions 2.3 and 2.8] has a broader meaning. Indeed, the inverse
of an outer blowup is considered in loc.cit. to be inner. With our more restrictive
definition the inverse of an inner transformation is inner, while the inverse to an
outer blowup is not. Cf. also Remark 2.7.2 below.

2. Given a weighted graph Γ and a sequence φ of blowups, blowdowns and iso-
morphisms, the final graph Γ′ appears usually as the result of applying φ to Γ. If,
besides isomorphisms, φ includes also blowups or blowdowns, then one can ignore
the isomorphisms which participate in φ by simply renaming the created graphs,
including the final one. If Γ′ = Γ, then one can reduce to a single isomorphism
either before or after the sequence of blowups and blowdowns, see (1).

3. A birational transformation of weighted graphs φ : Γ 99K Γ′ is not a mapping of
graphs: in general, it is not well defined neither on the sets of vertices nor on the sets
of edges. Nonetheless, given a second birational transformation φ′ : Γ′ 99K Γ′′ the
composition φ′ ◦ φ : Γ 99K Γ′′ is a well defined birational transformation of weighted
graphs. The identical map and the inverse φ−1 : Γ′ 99K Γ are well defined too.

2.4. Contractible graphs.

Definition 2.4.1. A birational transformation φ is a birational morphism (or dom-
ination) if no blowup participates in φ. In this case we write φ : Γ → Γ′. Notice
that a birational morphism of graphs is surjective. If, moreover, φ is composed only
of blowdowns then we say that φ is a contraction. The contractions form a proper
subset of the set of birational morphisms.

Remark 2.4.2. The composition of birational morphisms (resp., contractions) of
weighted graphs is a birational morphism (resp., a contraction).

Definition 2.4.3. A connected weighted graph Γ is said to be contractible if either
Γ consists of a single (−1)-vertex with no loop, or there exists a contraction of Γ to
a graph consisting of a single (−1)-vertex with no loop.

The following lemma is well known.

Lemma 2.4.4. Let Γ be a weighted graph.
(a) If Γ is contractible, then Γ is a tree with only rational vertices. Furthermore,

the intersection form I(Γ) is negative definite of discriminant 1.
(b) Conversely, if Γ is a tree with only rational vertices and negative definite

intersection form I(Γ) of discriminant 1, then Γ is contractible.
(c) Contracting at most linear (−1)-vertex of a contractible graph with at least

two vertices yields a contractible graph and so does a blowup of a contractible
graph. Thus, the contractibility is a birational invariant.

Proof. To show the first assertion in (a) it suffices to look at the reconstruction
process of blowups starting from the graph which consists of a single isolated (−1)-
vertex. The second assertion follows from [23, Section 3, Proposition]. We address
[40, Proposition 1.20] and [11, Remark 4.8, formula (17)] for statement (b). State-
ment (c) follows e.g. from (b) due to [11, Remark 4.8, formula (17)]; cf. also [23,
Section 3, Proposition]. �

The next corollary is immediate.

Corollary 2.4.5. For a contractible weighted graph Γ the following hold.
(a) The weight of every vertex v of Γ is negative.
(b) No two (−1)-vertices of Γ are neighbors.
(c) Every (−1)-vertex v of Γ is at most linear.

7



(d) If Γ contains at least two vertices, then every (−1)-vertex of Γ is contracted in
any process of contraction of Γ to a graph which consists of a single isolated
(−1)-vertex.

2.5. Contraction of a subgraph. More generally, we have the following facts.
Given a birational morphism φ : Γ → Γ′ and a vertex v of Γ we let φv be the
maximal subsequence of blowdowns and isomorphisms in φ preserving v. Thus,
φv = φ if and only if v is not contracted by φ.

Lemma 2.5.1 (see [11, Lemma 2.4(a)]). If a branching vertex v ∈ Br(Γ) is blown
down under a contraction p : Γ → Γ′, then v is rational and has no incident loop.
Moreover, at least deg(v)− 2 branches of Γ at v are simple and contracted by pv.

Proof. Consider the contraction pv : Γ → Γv and let σv : Γv → Γ′ be the blowdown
of v. Observe that pv(v) is at most linear (−1)-vertex of Γv blown down by σv. By
Lemma 2.4.4(a) the maximal subgraph E of Γ contracted by the subsequence σv ◦pv
of p is a forest. In particular, the connected component of E which contains v is a
tree. Thus all branches of Γ at v contracted by pv are trees, are simple, there are at
least deg(v)− 2 branches, and v is rational. �

Definition 2.5.2. Given a blowup δ : Γ 99K Γ′ we define the image of a vertex
v ∈ Vert(Γ) as being the vertex δ(v) and the image of an edge e = [u, v] where
u, v ∈ Vert(Γ) as being the edge [δ(u), δ(v)] except in the case where δ is the inner
blowup at e; in the latter case δ(e) is the path of length 2 joining δ(u) and δ(v) which
contains the vertex introduced by δ. We define the image δ(∆) of a subgraph ∆ ⊂ Γ
as being the subgraph of Γ′ whose vertices and edges are images of the vertices and
edges of ∆ including the blown-up vertices.

Given a blowdown σ : Γ′ → Γ and a subgraph ∆ ⊂ Γ we define the preimage
σ−1(∆) as being the image of ∆ under the blowup δ = σ−1. We extend this notion
inductively to any birational morphism φ : Γ1 → Γ2.

Recall that a subgraph ∆ of Γ is induced if ∆ contains every edge of Γ that
connects vertices of ∆.

Lemma 2.5.3. Consider a birational morphism φ : Γ′ → Γ.
(a) The preimage φ−1(γ) of a simple path γ connecting vertices u, v ∈ Vert(Γ) is

a simple path connecting φ−1(u) and φ−1(v).
(b) The preimage φ−1(∆) of a subgraph ∆ ⊂ Γ is a subgraph of Γ′ homeomorphic to

∆, i.e. the associated simplicial 1-complexes are homeomorphic as topological
spaces. If ∆ ⊂ Γ is an induced subgraph then so is φ−1(∆) ⊂ Γ′.

Proof. These statements can be easily checked for a single blowdown. Therefore,
they hold for an arbitrary φ. �

Let us introduce the following notions.

Definition 2.5.4. Given a weighted graph Γ we say that two birational morphisms
pi : Γ → Γi, i = 1, 2, are equivalent if there is a (uniquely defined) isomorphism
of weighted graphs ι : Γ1 → Γ2 such that p−1

1 (∆) = p−1
2 (ι(∆)) for any subgraph

∆ ⊂ Γ1. If this holds for Γ1 = Γ2 with ι = id then we say that p1 and p2 are equal
and we write p1 = p2. We say that a diagram of weighted graphs

Γ

Γ1 Γ2

p1

p3

p2

8



where the pi are birational morphisms of graphs, commutes if p3 ◦ p1 = p2. In the
latter case the diagram

Γ

Γ2 Γ1

p2

p−1
3

p1

is also called commutative. Square commutative diagrams of birational morphisms
and more complicated commutative diagrams are defined in a similar way.

Lemma 2.5.5.
(a) Given a birational morphism φ : Γ→ Γ′ there is a contraction p : Γ→ Γ′′ equiv-

alent to φ.
(b) Consider a composition Γ

φ→ Γ1
σ→ Γ2 of a birational morphism φ and a blow-

down σ of a vertex v which is not adjacent in Γ to any vertex contracted by φ.
Then there exists a birational morphism φ′ : Γ→ Γ′2 equivalent to φ and starting
with the blowdown of v.

(c) Consider a birational morphism φ : Γ → Γ1 and a (−1)-vertex v ∈ Vert(Γ)
contracted by φ. Then there exists a birational morphism φ′ : Γ→ Γ2 equivalent
to φ and starting with the blowdown σv of v.

Proof. (a) We obtain the desired contraction by blowing down the vertices of Γ
blown down by φ in the same order as this is done under φ.

(b) The weight of v is−1 both in Γ and Γ1, and the weight of any vertex contracted
by φ is the same in Γ and after the blowdown of v in Γ. Thus, we obtain φ′ by
contracting v first and then contracting all the vertices contracted by φ in the same
order. The weights of the non-contracted vertices are the same under σ ◦ φ and φ′.
Now the assertion follows.

(c) The vertex v does not change its weight under φv, hence it is adjacent to no
vertex contracted by φv. The claim follows now from (b) applied to φv and σv. �

Proposition 2.5.6. Two birational morphisms φi : Γ → Γi, i = 1, 2 are equivalent
if and only if the subsets of vertices of Γ contracted by φ1 and φ2 coincide.

Proof. The ‘only if’ part is clear. To show the ‘if’ part assume that each vertex
contracted by φ1 is contracted by φ2 and vice versa. If there are no contracted
vertices in Γ, then both φ1 and φ2 are isomorphisms and it suffices to set ι = φ2◦φ−1

1 ,
see Definition 2.5.4. Let now v ∈ Vert(Γ) be a (−1)-vertex contracted by the φi.
By Lemma 2.5.5(c), up to equivalence we may suppose that both φ1 and φ2 start
with the blowdown σv of v. This reduces the assertion to the one for the birational
morphisms φ′i : σv(Γ)→ Γi. Now the induction by the number of contracted vertices
ends the proof. �

2.6. Relatively minimal graphs. Recall the following well known fact.

Lemma 2.6.1. Any birational transformation of NC-pairs Φ: (X1, D1) 99K (X2, D2)
fits in a commutative diagram

(2)
(X̃, D̃)

(X1, D1) (X2, D2)

P1

Φ

P2

where every Pi is a composition of an isomorphism and blowdowns of smooth rational
(−1)-components of boundary divisors and all the intermediate pairs are NC-pairs.
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Proof. Any birational transformation of smooth projective surfaces Φ: X1 → X2 fits
in a commutative diagram

X̃

X1 X2

P1

Φ

P2

where Pi is a composition of an isomorphism and blowdowns of smooth rational
(−1)-curves, see e.g. [33, Corollaries (8.10)-(8.11)] or [3, Corollary II.12]. This
can be applied as well in our setting after a simultaneous resolution of singularities
of X1 and X2. Indeed, Φ|X1\suppD1 : X1 \ suppD1 → X2 \ suppD2 is a biregular
isomorphism and Xi is smooth near Di.

Notice that P−1
i is either isomorphism or a composition of blowups with smooth

centers. A blowup of an NC-pair (X,D) in a point of D yields an NC-pair. Hence
all the intermediate pairs in the decomposition

Pi : (X̃, D̃)
σi,ni−→ (Xi,ni−1, Di,ni−1) −→ · · · −→ (Xi,2, Di,2)

σi,2−→ (Xi,1, Di,1) = (Xi, Di)

are NC-pairs. �

To formulate an analog of this lemma for birational transformations of weighted
graphs one needs to define the meaning of the corresponding commutative diagram.

Definition 2.6.2. Consider a diagram of weighted graphs

(3)
Γ

Γ1 Γ2

p1 p2

where the pi are birational morphisms of graphs. Consider also a birational trans-
formation φ : Γ1 99K Γ2 written as

(4) φ : Γ1 = ∆1

ψ1
99K ∆2

ψ2
99K · · ·

ψn−2

99K ∆n−1

ψn−1

99K ∆n = Γ2

where the ∆i are weighted graphs and for n > 1 exactly one of the ψi and ψi+1 is a
birational morphism and the other one is the inverse of a birational morphism. We
say that φ fits in (3) and that (3) dominates φ if (4) is included in a sequence of
commutative diagrams

(5)

Γ

∆i ∆i+1

ηi

ψi

ηi+1

where η1 = p1 and ηn = p2; see Definition 2.5.4.

Remark 2.6.3. The graphs Γ1 and Γ2 in diagram (3) are birationally equivalent
via the birational transformation φ′ = p2 ◦ p−1

1 : Γ1 99K Γ2. Thus, starting with a
diagram (3) we come to a birational transformation φ′. In the next proposition we
show that, conversely, given a birational transformation of weighted graphs one can
construct a corresponding diagram (3).

Proposition 2.6.4 (see [13, Remark A1(1)]). Let φ : Γ1 99K Γ2 be a birational
transformation of weighted graphs. Then φ fits in a diagram (3) for some Γ, p1, p2.

Proof. The assertion is evidently true if φ is an isomorphism. Assuming this is not
the case, up to an isomorphism of Γ2, we can write φ as in (4) with every ψi being
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a product of blowdowns or the inverse of such a product, see Remark 2.3.9.2. For
n = 1 our assertion is obvious.

Assume now that n = 2 and φ = σ−1
2 σ1 where the σi : Γi → Γ0 are blowdowns.

If both σ−1
1 and σ−1

2 are inner blowups of the same edge of Γ0, then the graph
Γ = Γ1 = Γ2 dominates both Γ1 and Γ2 via isomorphisms. Otherwise, applying
simultaneously both of them one transforms Γ0 into a graph Γ with two distinct
vertices v1 and v2 such that Γ dominates Γ1 (resp., Γ2) via the contraction p1 of v2

(resp., p2 of v1). This produces a desired diagram (3).

Γ0,2,3 = Γ

+�
�
�
�
� Q

Q
Q
Q
Qs

Γ0,2,2
- Γ0,1,3

+�
�
�
�
� Q

Q
Q
Q
Qs +�

�
�
�
� Q

Q
Q
Q
Qs

Γ0,2,1
- Γ0,1,2

- Γ2,3 = Γ2

+�
�
�
�
� Q

Q
Q
Q
Qs +�

�
�
�
� Q

Q
Q
Q
Qs +�

�
�
�
�

σ2,3

Γ1,2 = Γ1
- Γ0,1,1

- Γ2,2
Q
Q
Q
Q
Qσ1,2 s +�

�
�
�
� Q

Q
Q
Q
Qs +�

�
�
�
�

σ2,2

Γ1,1
- Γ2,1

Q
Q
Q
Q
Qσ1,1 s +�

�
�
�
�

σ2,1

Γ0

Figure 1. Construction of diagram (3) for m1 = 2 and m2 = 3.

Let further n = 2 and φ = ψ−1
2 ψ1, where this time the ψi stand for birational

morphisms. We can write

ψi = σi,1 · · ·σi,mi
: Γi = Γi,mi

→ Γ0 = Γi,0

where σi,j : Γi,j → Γi,j−1 is a blowdown, i = 1, 2. Applying the preceding case to
the composition σ−1

2,1σ1,1 : Γ1,1 99K Γ2,1 we can find a weighted graph Γ0,1,1 which
dominates both Γ1,1 and Γ2,1 making the square diagram commutative, see Figure
1. The same procedure applied to the pairs {Γ2,2, Γ0,1,1} and {Γ0,1,1, Γ1,2} yields two
new graphs Γ0,1,2 and Γ0,2,1 which dominate the corresponding pairs. Continuing in
this way we fill in a commutative diagram in the form of a lattice parallelogram
consisting of (m1 + 1)(m2 + 1) weighted graphs and their morphisms. This parallel-
ogram has the pairs of opposite vertices {Γ1, Γ2} and {Γ0, ,Γ}, where Γ = Γ0,m1,m2

dominates both Γ1 and Γ2 via sequences of blowdowns inducing φ, see Figure 1 for
m1 = 2 and m2 = 3. This yields the assertion for n = 2.

Proceeding by induction on n we assume that n ≥ 3 and we choose i ≥ 2 such
that ψ−1

i and ψi−1 in (4) are morphisms. By the preceding, the product ψiψi−1 can
be replaced by ρiρi−1 where this time ρi and ρ−1

i−1 are morphisms. Replacing now
ψi+1ρi by ψ′i+1 provided i ≤ n− 1 and ρi−1ψi−2 by ψ′i−2 provided i ≥ 3 we transform
(4) into a shorter decomposition of the same type. This gives the inductive step.

The graph Γ in diagram (3) constructed in the proof dominates every pair of
intermediate graphs obtained under our procedure. In particular, φ fits in this
diagram, see Definition 2.6.2. �
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Remark 2.6.5. Given a birational map φ : Γ1 99K Γ2 fitting in (3), the graph Γ is
not uniquely defined, in general; see Figure 2 for a simple example. In this example
Γ1 and Γ2 are isomorphic linear graphs, the σi are blowdowns of (−1)-vertices and
φ = σ−1

2 ◦ σ1 : Γ1 99K Γ2 is a birational map. The morphisms p1 and p2 in the first
diagram on Figure 2 are isomorphisms, while p′1 and p′2 in the second diagram are
blowdowns of distinct (−1)-vertices of Γ′. The vertical arrows in both diagrams
correspond to the left arrow in diagram (5) with i = 2.

Γ
−1 1

Γ1

−1 1
Γ2

−1 1

Γ0

2

Γ′
−1 −10

Γ1

−1 1
Γ2

−1 1

Γ′0
2

p1

σ1 σ2

p2 p′1

σ1 σ2

p′2

Figure 2. Two different dominations of the same weighted graphs.

Definition 2.6.6. A weighted graph Γ is called minimal if any birational morphism
Γ → Γ′ is in fact an isomorphism. A graph Γ is minimal if and only if it has no at
most linear (−1)-vertex. Clearly, any weighted graph Γ dominates a minimal one
called a minimal model of Γ.

A simple example of a minimal weighted graph is a graph consisting of a single
vertex v and a loop, cf. Example 2.7.2. Indeed, recall that an at most linear (−1)-
vertex has no incident loop, see Definition 2.3.2.

Definition 2.6.7. A diagram (3) with two minimal weighted graphs Γ1 and Γ2 is
called relatively minimal if no (−1)-vertex of Γ is contracted in both Γ1 and Γ2.

According to the following lemma, for any pair of birationally equivalent minimal
weighted graphs Γ1 and Γ2 there is a weighted graph Γ and birational morphisms
pi : Γ→ Γi that form a relatively minimal diagram (3).

Lemma 2.6.8 (cf. [13, Remark A1(1)]). Given a diagram (3) with minimal weighted
graphs Γ1 and Γ2 there exist birational morphisms

Γ
ψ−→ Γ′

p′i−→ Γi, i = 1, 2

such that pi is equivalent to p′i ◦ψ for i = 1, 2 and Γ′, p′1, p
′
2 form a relatively minimal

diagram (3).

Proof. Let v ∈ Vert(Γ) be a (−1)-vertex contracted by both p1 and p2. Replacing
the pi by equivalent birational morphisms Γ → Γi as in Lemma 2.5.5(c) we may
suppose that both p1 and p2 start with the same blowdown σv : Γ → Γv of v and
there are the factorizations

pi : Γ
σv−→ Γv

p′v,i−→ Γi

where Γv, p
′
v,1 and p′v,2 form a diagram (3). Now the recursion on the number of

vertices of Γ ends the proof. �

Remark 2.6.9. Notice that under the assumptions of Lemma 2.6.8 the resulting
relatively minimal diagram (3) is not unique, in general, see Example 3.1.5 and
[11, Example 2.6]. For the both examples, in the corresponding relatively minimal
diagram (3) we have Γ1 = Γ2 6' Γ. So in both cases there is a second relatively
minimal diagram (3) with Γ = Γ1 = Γ2.
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2.7. Dual graphs. Let us recall the correspondence between NC-pairs and weighted
graphs.

Definition 2.7.1. Given an NC-pair (X,D) the dual graph Γ(D) is a weighted graph
whose vertices are in bijection with the irreducible components of D and edges are
in bijection with the nodes of D. The loops of Γ(D) at a vertex C are in bijection
with the self-intersection points of the component C of D, and the edges joining two
different vertices C1 and C2 of Γ(D) are in bijection with the points of C1∩C2. The
weight of C in Γ(D) is the self-intersection index C2 of the component C in X. The
rational vertices in Ratio(Γ(D)) correspond to the rational components of D.

An NC-pair (X,D) is an SNC-pair if and only if Γ(D) contains no loops and
multiple edges. Clearly, any NC-pair is dominated by an SNC-pair. An NC-pair
(X,D) is called minimal if the dual graph Γ(D) is minimal.

The notions of inner and outer blowups of an NC-pair are consistent with the
notions of inner and outer blowups of the dual graph Γ(D), respectively.

Example 2.7.2. Recall that any non-complete normal algebraic surface Y admits
an SNC-completion (X,D), where Y = X \ suppD, and an NC-completion with a
minimal dual graph.

For example, if X = P2 and D is a nodal cubic, then Γ(D) is minimal and consists
of a single vertex of weight 9 and a loop. So the pair (P2, D) is an NC-completion of
the affine surface Y = P2\D with a minimal dual graph. There exists a non-minimal
SNC-completion (X,D1) whose dual graph Γ(D1) is a cycle with three rational ver-
tices and a cyclically ordered sequence of weights ((−2,−1, 4)). Moreover, there ex-
ists a minimal such completion with a sequence of weights ((0, 0,−2,−2,−2,−2,−3)).
Thus, two minimal cyclic graphs with rational vertices and the cyclically ordered
sequences of weights ((9)) and ((0, 0,−2,−2,−2,−2,−3)), respectively, are bira-
tionally equivalent.

Similarly, one can show that for any a, b > 0 the minimal linear graphs with
sequences of weights

[[a]], [[−2,−2, . . . ,−2, 0, 0︸ ︷︷ ︸
a+1

]] and [[−2, . . . ,−2,−3︸ ︷︷ ︸
a−1

,−2, . . . ,−2, 0, 1︸ ︷︷ ︸
b+1

]]

are birationally equivalent, cf. Proposition 5.0.8.

The following criterion of affiness is a particular case of the Goodman criterion
[21, Theorem 1].

Lemma 2.7.3. Let (X,D) is an NC-pair. The open surface Y = X \ suppD is
affine if and only if there is a sequence of blowups φ : X ′ → X in the points of suppD
and infinitesimally near points such that suppφ∗(D) coincides with the support of
an effective ample divisor on X.

Remark 2.7.4. In particular, if suppD coincides with the support of an effective
ample divisor then Y is affine. Anyway, if Y is affine then suppD is connected and
cannot be contractible, see the next Lemma 2.7.5.

The assumption that the surface Y = X \ suppD is affine imposes severe restric-
tions on the dual graph Γ(D).

Lemma 2.7.5. Let (X,D) be an NC-pair such that the surface Y = X \ suppD is
affine. Then the following hold.

(a) suppD is connected and supports a nef 2 divisor.

2I.e. numerically effective.
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(b) The dual graph Γ(D) is connected, the intersection form I(Γ(D)) is not neg-
ative definite, and D and Γ(D) are not contractible.

(c) If D = C is a curve, then C2 > 0 and the linear system |C| is ample. If,
moreover, C is smooth and rational then X is rational.

Proof. It is well known that suppD is connected if Y is affine, see e.g. [21, p. 166,
Corollary] or [22, Corollary II.6.2]. Hence Γ(D) is connected. Consider a proper
embedding Y ↪→ An and the closure Y of Y in Pn ⊃ An. The hyperplane at
infinity in Pn cuts out an ample effective divisor H on Y with suppH = Y \ Y . Let
π′ : (X ′, H ′red) → (Y ,Hred) be a partial embedded resolution of singularities such
that (X ′, H ′red) is an SNC-completion of Y and H ′ = (π′)∗(H) is an effective divisor
on X ′ with suppH ′ = X ′\Y . By the Projection Formula, H ′ is nef, see [30, Example
1.4.4]. According to Lemma 2.6.1 there exists a commutative diagram

(X̃, D̃)

(X ′, H ′red) (X,D)

π̃

Φ

π

where Φ is a birational map which extends idY and (X̃, D̃) is an NC-completion of Y .
By the above argument the effective divisor H̃ = π∗(H ′) on X̃ with supp H̃ = supp D̃

is nef. The effective divisor H = π∗(H̃) on X with suppH = suppD is nef too.
Indeed, if C is a curve on X then, by the Projection Formula, H ·C = H̃ ·π∗(C) ≥ 0.
In more detail, first we resolve the singularities of Y in X and X̃ simultaneously,
then apply the Projection Formula, and finally contract the exceptional divisors,
which does not affect the resulting inequalities. This proves statement (a).

Since H2 ≥ 0 and H 6= 0, the intersection form I(Γ(D)) cannot be negative
definite. By Lemma 2.4.4 the graph Γ(D) is non-contractible, hence also D is, as
stated in (b).

Assume now that D = C is irreducible. Then C2 > 0, see [19, Lemma 2], and the
linear system |C| is ample by the Nakai-Moishezon criterion. If C is smooth and
rational thenX is rational as well, see [19, Remarks 2 and 3] or [2, Proposition V.4.3].
This shows (c). �

Remark 2.7.6. The assumption of nefness in (a) is a necessary condition for Y to
be affine, but not sufficient. Indeed, the complement Y to a rational (0)-curve C on
a smooth rational surface X is not affine because Y contains complete curves which
are members of the linear pencil |C|, see e.g. [19]. Notice that C is a nef divisor on
X.

Lemma 2.7.5 justifies the following convention.

2.7.7. Convention. We consider in the sequel only weighted graphs Γ with no
contractible connected component.

Definition 2.7.8. Every decomposition of Φ ∈ Bir((X1, D1), (X2, D2)) into a se-
quence of isomorphisms, blowups and blowdowns induces a birational transforma-
tion of dual graphs φ : Γ(D1) 99K Γ(D2) called a representation of Φ.

Concerning the inverse correspondence, one has the following result.

Proposition 2.7.9 (cf. [11, Proposition 3.34]). Given an NC-pair (X,D) and a bi-
rational transformation of the dual graph φ : Γ(D) 99K Γ′ consisting of a sequence of
blowups and blowdowns one can find a new NC-pair (X ′, D′) and a birational trans-
formation of NC-pairs Φ: (X,D) 99K (X ′, D′) such that Φ|X\suppD : X \ suppD →
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X ′\suppD′ is an isomorphism and Φ is represented by φ; in particular, Γ(D′) = Γ′.
If φ contains no outer blowups then Φ is uniquely defined up to isomorphism of NC-
pairs.

Proof. The first statement clearly holds for a single blowup and a single blowdown of
Γ(D). By recursion, it holds in the general case. The uniqueness follows by recursion
from the facts that to an inner blowup of Γ(D) there corresponds the blowup of X
at a uniquely defined node of D, and to a blowdown of a (−1)-vertex of Γ(D) there
corresponds the contraction of a uniquely defined (−1)-component of D. �

Remark 2.7.10. Let (X,D) be an NC-pair, and let C be a smooth component of
D which corresponds to a non-isolated at most linear (0)-vertex of Γ(D). Blowing
up a node of D on C and contracting the proper transform of C yields a birational
transformation Φ of (X,D) called an inner elementary transformation. The corre-
sponding birational transformation φ of Γ(D) is also called elementary ; it affects
the weights of the neighbors of C in Γ(D).

In the case where C is an end (0)-vertex of Γ(D) and the center of blowup on C
is a smooth point of D we have an outer elementary transformation; see (7) for an
example.

Let now D = C be a smooth rational curve and so Γ(D) consists of a single
isolated vertex C of weight a = C2 with no loop. Take two distinct points P1 and
P2 of C. Blowing up Pi produces an NC-pair (Xi, Di) whose dual graph Γ(Di) has
sequence of weights [[−1, a−1]]. Let σi : Xi → X be the blowdown of the exceptional
curve. The pairs (X1, D1) and (X2, D2) are not isomorphic, in general, while the
dual graphs Γ(D1) and Γ(D2) are. The corresponding birational transformation
Φ = σ−1

2 σ1 : (X1, D1) 99K (X2, D2) is not an isomorphism of pairs. It restricts
to the identity on Y = X \ suppD. On the level of dual graphs, the birational
map φ = σ−1

2 σ1 : Γ(D1) 99K Γ(D2) in the induced representation of Φ fits in the
commutative diagram

Γ(D)

−1 a− 1−1a− 1
Γ(D1)

a

Γ(D2)

a− 2−1
Γ

−1

φ
σ1 σ2

p1 p2

where Γ is the dual graph of the pair (X̃, D̃) obtained from (X,D) by blowing up
the points P1 and P2 on X. Varying the positions of P1 and P2 on C yields nontrivial
deformations of the participating pairs. Thus, Φ cannot be reconstructed in general
from its representation φ = p2 ◦ p−1

1 once outer blowups are involved.

We have the following geometric analog of Lemma 2.6.8.

Lemma 2.7.11. Any birational transformation of NC-pairs Φ: (X1, D1) 99K (X2, D2)
fits in a commutative diagram (2) such that a representation φ of Φ fits into the cor-
responding relatively minimal diagram (3) of dual graphs.

Proof. Starting with an arbitrary commutative diagram (2) we repeat the procedure
in the proof of Lemma 2.6.8 on the geometric level. Namely, to each at most lin-
ear (−1)-vertex of Γ(D̃) there corresponds a (−1)-component C of D̃ which meets
transversally in at most two points the union of other components. If C is contracted
under the both Pi : X → Xi, i = 1, 2 then there are factorizations

Pi : X̃
σC−→ X̃ ′

P ′i−→ Xi,
15



where σC stands for the contraction of C in X̃, see [3, Proposition II.8]. This
produces a new NC-pair (X̃ ′, D̃′) which still dominates the both (Xi, Di) fitting
in a new diagram (2) with the same Φ: (X1, D1) 99K (X2, D2). A simultaneous
resolution of singularities of X1, X2 and X̃ does not affect our procedure. Hence
we may assume that all these surfaces are smooth. We have ρ(X̃ ′) = ρ(X̃) − 1
where ρ stands for the Picard rank, see e.g. [3, Proposition II.3]. The induction on
the Picard rank shows that this procedure ends with a relatively minimal diagram.
Finally we contract simultaneously the exceptional divisors and arrive at the same
conclusion for the original surfaces. �

3. The Graph Lemma and birational rigidity of weighted graphs

In this section we elaborate a criterion as to when Bir(X,D) = Inn(X,D), see
Theorem 3.2.5.

3.1. The Graph Lemma. The Graph Lemma 3.1.4 plays an important role when
dealing with birational transformations of weighted graphs. It provides a criterion
as to when every birational transformation corresponding to a relatively minimal
diagram between two given weighted graphs is inner. We use the following termi-
nology.

Definition 3.1.1. For a proper subset V of Vert(Γ) we let Γ	 V be the subgraph
of Γ obtained by deleting V and all its incident edges. The connected components
of Γ	Br(Γ) are called segments. We also call a segment a connected graph without
branching vertices; such a graph coincides with its only segment.

A segment can be either linear or circular. A circular segment is a cycle in Γ
which passes through no branching vertex; it is a connected component of Γ.

Definition 3.1.2. Let Γ be a minimal weighted graph. A circular segment C of Γ
is called admissible if either the weights of its vertices are ≤ −2, or it consists of a
single vertex of weight ≤ 2 and a loop. A linear segment L of Γ is called admissible
if the weights of its vertices are ≤ −2. It is called

(1) extremal if L contains one or two end vertices of Γ;
(2) inner if L contains no end vertices of Γ. So the end vertices of L are linked

to branching vertices of Γ.

The following Graph Lemma is based on [13, Proposition A1] and [11, Lemma
2.4(b)]. For the reader’s convenience we provide a proof. In the proof we use the
following notion.

Definition 3.1.3. Let p : Γ → Γ′ be a a contraction. Recall that for a vertex
v ∈ Vert(Γ) we denote by pv the maximal subsequence of blowdowns in p preserving
v. We say that v is p-rigid if pv = p and the degree of v does not change under pv.

Graph Lemma 3.1.4. Any relatively minimal diagram (3) with minimal weighted
graphs Γ1 and Γ2 satisfies the following.

(a) For the branching sets we have

Br(Γ1) = Br(Γ) ∩ Vert(Γ1) = Br(Γ) ∩ Vert(Γ2) = Br(Γ2),

where Vert(Γi) is considered to be a subset of Vert(Γ), that is, we identify
every vertex of Γi with its preimage under pi in Γ. Furthermore, the degrees
of the vertices in B := Br(Γ1) = Br(Γ2) do not change under the contractions
p1 and p2.

(b) The image under pi of any connected component of Γ \ B is a segment of
Γi, i = 1, 2. This provides a one-to-one correspondence between the sets of
circular, inner linear and extremal linear segments of Γ1 and Γ2, respectively.
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(c) If Br(Γ) 6= B, then both Γ1 and Γ2 contain non-admissible extremal linear
segments. More precisely, for every v ∈ Br(Γ) \ B there are two simple
branches W1 and W2 of Γ at v such that p1 contracts W1 and v and sends
W2 into a non-admissible extremal linear segment of Γ1, and symmetrically
for p2. Moreover, degΓ(v) = 3, there are exactly 3 branches of Γ at v and all
of them are simple.

Proof of Graph Lemma 3.1.4. (a) Given a branching vertex v in Γ, there are the
following implications:

v is contracted in Γ1 v is contracted in Γ2

v is not p1-rigid v is not p2-rigid

(α) (γ) (β)(δ)

Indeed, implications (α) and (β) follow from Definition 3.1.3. By symmetry, it
suffices to show (γ). Assuming that v ∈ Br(Γ) is not p1-rigid there is a simple
branch W1 of Γ at v contracted by pv1. The latter follows from Lemma 2.5.1 if p1

contracts v and from Definition 3.1.3 if p1 = pv1 contracts a branch W1 at v and
changes the degree of v. Indeed, assuming on the contrary that W1 is not simple,
the contraction of W1 creates some loops at v without changing the degree of v, a
contradiction.

Let v1 be at most linear (−1)-vertex of W1 contracted the first by pv1. Due to
the relative minimality assumption, v1 is not contracted by p2. On the other hand,
p2(W1) ⊂ Γ2 contains no at most linear (−1)-vertex due to the minimality of Γ2.
Since bothW1 and p2(W1) are contractible, see Lemma 2.4.4(c), the latter is possible
only if v is contracted by p2, and so (γ) follows.

It follows from the above diagram that Br(Γ) splits into two disjoint subsets,
namely, the set B of vertices which are simultaneously p1- and p2-rigid and the set
Br(Γ) \B of vertices contracted by both p1 and p2. This implies (a).

(b) By (a), any connected component of Γ\B is contracted by pi into a segment of
Γi, i = 1, 2. This provides a bijective correspondence between the sets of segments
of Γ1 and Γ2. It is easily seen that this correspondence has desired properties.

(c) Clearly, every non-rational vertex of Γ belongs to B. Given a vertex v ∈
Br(Γ)\B, v is rational and there are simple branchesW1 andW2 of Γ at v contracted
by pv1 and pv2, respectively. Due to the relative minimality assumption, these branches
are distinct. In fact, there are exactly 3 distinct branches W1,W2 and W3 of Γ at
v, since pv1 contracts W1, does not contract W2 and p1 contracts v. By the same
reason degΓ(v) = 3, that is, all the three branches of Γ at v are simple. Since W1

is contracted in Γ1, it contains no vertex of B = Br(Γ1) = Br(Γ2); the latter also
holds for W2. Hence pi(Wj)∩Br(Γj) = ∅ for i 6= j, i, j ∈ {1, 2}, that is, Wi is a tree
whose image under pj contains no branching point of Γj. It follows that pi(Wj) is
contained in a segment, say, Si of Γi. We claim that the Si are linear, extremal and
non-admissible.

Assume on the contrary that, say, S1 is a circular segment of Γ1. Then p−1
1 (S1)

is a connected component of Γ which contains v and all three branches W1,W2 and
W3 of Γ at v, where W1 and W2 are simple branches and trees and W3 contains a
cycle. Then p1(W3) = S1 ⊃ p1(W2) 6= ∅, which is impossible. Thus, S1 is linear and
by symmetry also S2 is. Clearly, both of these segments are extremal.

The contractible treeWi contains an at most linear (−1)-vertex, say, vi contracted
in Γi, i = 1, 2. Since Γ is relatively minimal, vi is not contracted by pj (j 6= i). Its
weight can only increase under the contraction pj, and it must increase indeed as Γj
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is minimal. Thus the extremal linear segment Sj has a vertex pj(vi) of non-negative
weight, hence is non-admissible, which proves (c). �

Example 3.1.5. We present on Figure 3 a graph Γ which dominates two minimal
linear graphs Γ1 and Γ2. The birational morphism p1 contracts the branch W1 of Γ
and the vertex v, while p2 contracts the branch W2 and v.

Γ:
a

0

v

−3 v1

−1 b1

−2

v2

−1

b2

−2

W1

W2

Γ1 :
a

1

v2

0

b2

−2

Γ2 :
a

1

v1

0

b1

−2

p1

p2

Figure 3. A weighted graph Γ with branches W1 and W2 at vertex
v which dominates Γ1 and Γ2 via non-inner contractions p1 and p2.

3.2. Birationally rigid graphs.

Definition 3.2.1. A minimal weighted graph Γ1 is said to be birationally rigid if in
any relatively minimal diagram (3) with a minimal graph Γ2 no vertex of Vert(Γ1) ⊂
Vert(Γ) is contracted in Γ2. In particular, p2 ◦ p−1

1 in (3) is an isomorphism. We say
that Γ1 is admissible if all its segments are admissible.

We have the following criterion of birational rigidity; cf. [13, Corollaries A.3 and
A.4]. Notice that our birationally rigid graphs correspond to absolutely minimal
graphs of [13].

Proposition 3.2.2. A minimal weighted graph Γ1 is birationally rigid if and only
if it is admissible.

Proof. Assume that all the segments of Γ1 are admissible and, on the contrary, Γ1

is not birationally rigid. Consider a relatively minimal diagram (3) with a minimal
graph Γ2. Let v ∈ Vert(Γ) be the (−1)-vertex blown down the first under the
morphism p2 : Γ→ Γ2. Due to relative minimality of diagram (3), v is not contracted
under p1 : Γ→ Γ1, that is, v ∈ Vert(Γ1) ⊂ Vert(Γ).

According to Graph Lemma 3.1.4(a), v /∈ B := Br(Γ1) = Br(Γ2), hence v lies on
a segment S1 of Γ1. Let w1(v) be the weight of v in Γ1 and w(v) be its weight in Γ.
Clearly, w(v) ≤ w1(v). If the admissible segment S1 is is either linear or circular and
contains at least two vertices, then we have −1 = w(v) ≤ −2, which is impossible.
Let now S1 be circular with a single vertex v of weight w1(v) ≤ 2, and let S be the
preimage of S1 in Γ. If S has at least two vertices, that is, the loop of S was blown
up, then again −1 = w(v) ≤ −2 hold, a contradiction. If S contains a single vertex
v, then v is incident to a loop in Γ, hence cannot be contracted in Γ2, which once
again gives a contradiction.

To show the converse assume that Γ1 has a non-admissible segment S1. Both Γ1

and S1 are minimal, so they are not contractible. Being non-admissible S1 has a
vertex v of weight a, where a ≥ 0 if S1 is different from a circular segment with a
single vertex and a ≥ 3 otherwise. Blowing up Γ1 successively we reduce the weight
of v to −1 while keeping it at most linear. In more detail, first we blowup at an
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edge [u, v] incident to v in Γ1 unless Γ1 consists of a single isolated vertex v; in the
latter case we start with an outer blowup at v. Let e1 be the (−1)-vertex created in
the first step. In the second step, we blowup the edge [e1, v] creating a new vertex
e2, etc. In the ith step we blowup the edge [ei−1, v] by adding a new vertex ei. After
k > 0 successive blowups, where k = a+ 1 if S1 is different from a circular segment
with a single vertex and k = a−2 otherwise, we obtain a weighted graph Γ with the
vertices e1, . . . , ek appearing in that order under our procedure. For i = 1, . . . , k− 1
the weight of ei in Γ equals −2 while ek and v are at most linear (−1)-vertices of
Γ. Notice that ek is the unique (−1)-vertex of Γ blown down under the contraction
p1 : Γ→ Γ1 of ek, . . . , e1 in this order.

Starting with the blowdown of v in Γ we continue to blowdown the new appearing
(−1)-vertices until we reach a minimal graph Γ2; this yields a birational morphism
p2 : Γ→ Γ2.

By Lemma 2.4.4(c) the contractibility is a birational invariant. Hence Γ2 is not
empty. The graphs Γ,Γ1 and Γ2 along with the birational morphisms pi : Γ → Γi
form a diagram (3).

After the blowdown of v under p2 the weight of ek becomes 0 and remains ≥ 0
under the successive blowdowns which form p2. Thus, the only (−1)-vertex ek of Γ
blown down under p1 is not blown down under p2. This shows that the resulting
diagram (3) is relatively minimal. Since the vertex v of Γ1 is contracted in Γ2, the
graph Γ1 is not birationally rigid, see Definition 3.2.1. �

Summarizing we get the following proposition.

Proposition 3.2.3. Assume we are given a relatively minimal diagram (3) with
minimal weighted graphs Γ1 and Γ2 dominated by a graph Γ. Then the following
hold.

1. The birational map φ′ := p2 ◦ p−1
1 : Γ1 99K Γ2 induces

(a) a bijection between the sets of branching vertices Br(Γ1) ' Br(Γ2);
(b) a bijection between the sets of segments that sends admissible (extremal,

respectively) linear segments of Γ1 to admissible (extremal, respectively)
linear segments of Γ2 and circular segments to circular ones;

(c) isomorphisms between every pair of corresponding admissible linear (resp.,
admissible circular) segments;

(d) an inner birational transformation between every pair of corresponding
non-admissible non-extremal linear segments;

(e) a birational transformation between every pair of corresponding non-
admissible extremal linear segments.

2. If the Γi are circular graphs, then Γ in diagram (3) is also circular and the
birational morphisms pi are inner.

3. If all extremal linear segments in either Γ1 or Γ2 are admissible, then the
birational transformation φ′ = p2 ◦ p−1

1 : Γ1 99K Γ2 is inner and induces a
bijection between the sets of end vertices End(Γ1) ' End(Γ2).

4. If φ′ is inner and the Γi are linear graphs, then also Γ is a linear graph.
5. If φ′ is inner and the Γi are linear graphs with two vertices, then φ′ : Γ1

'−→ Γ2

is an isomorphism of weighted graphs.

Proof. Statement 1(a) follows from Graph Lemma 3.1.4(a). By Graph Lemma 3.1.4(b)
we may restrict φ′ to any segment of Γ1 extended by its incident edges and adjacent
branching vertices. Such a restriction includes all the blowups and blowdowns in φ′
that happen on this segment, its incident edges and their successive images. It yields
again a relatively minimal diagram (3) with minimal dominated graphs. Thus, 1(b)
and 1(c) follow from Graph Lemma 3.1.4(b) and Proposition 3.2.2, respectively.
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To prove 1(d) we have to show that a relatively minimal transformation between
non-admissible non-extremal linear segments is inner with respect to the graphs Γi
and their successive images. Assuming the contrary, the connected component of Γ\
B corresponding to these segments contains a branching vertex v ∈ Br(Γ)\B. Then
by Graph Lemma 3.1.4(c) these segments are extremal, contrary to our assumption.

See [11, Lemma 2.7] for statement 2. Statement 3 is immediate from 1(c), 1(d)
and statement 2. To show statement 4 it suffices to observe that an inner blowup
cannot create a new branching point.

To show statement 5 suppose that the linear segment Γ in diagram (3) contains
more than 2 vertices. Clearly, pi sends the end vertices of Γ to the end vertices of Γi,
cf. statement 3. Therefore, Γ contains a (−1)-vertex contracted in both Γ1 and Γ2,
which is impossible since our diagram (3) is relatively minimal. Hence Γ contains
just 2 vertices, and so the pi are isomorphisms. �

Remark 3.2.4. Given a relatively minimal diagram (3), where Γ1 and Γ2 are min-
imal non-admissible extremal linear segments, the morphisms pi do not need to be
inner, in general, see Example 3.1.5 and [11, Examples 2.6 and 3.30].

Proposition 3.2.3 leads to the following theorem.

Theorem 3.2.5. Let (X,D) be an NC-pair with minimal dual graph Γ(D) such that
all extremal linear segments of Γ(D) are admissible. Then Bir(X,D) = Inn(X,D).

Proof. By Lemma 2.7.11 any Φ ∈ Bir(X,D) fits in a relatively minimal commutative
diagram (2). Hence Φ = P2 ◦ P−1

1 , where Pi : (X̃, D̃) → (X,D) for i = 1, 2 is a
birational morphism of NC-pairs composed of a sequence of blowups of X in points
of D and infinitesimally near points and an isomorphism. Let pi : Γ(D̃)→ Γ(D) be
the birational morphism of dual graphs induced by Pi, i = 1, 2. Then the induced
birational transformation of dual graphs φ = p2◦p−1

1 : Γ(D) 99K Γ(D) (see Definition
2.7.1) fits in a relatively minimal diagram (3). According to Proposition 3.2.3 φ is an
inner birational transformation of weighted graphs. Hence Φ is an inner birational
transformation of NC-pairs, i.e. Φ ∈ Inn(X,D). �

4. Ga-actions and rulings by affine lines

In this section we show that Bir(X,D) = Inn(X,D) if and only if the surface
Y = X \ suppD admits no Ga-action. We deduce that in the latter case the identity
component Aut◦(X) is an algebraic torus, see Theorem 4.3.4.

4.1. Ga-actions. Recall that an A1-fibration, or an affine ruling, on a normal affine
surface Y is a morphism Y → B to a smooth curve with a general fiber isomorphic
to the affine line A1. The following lemma is well known, see e.g. [12, Lemma 1.6];
cf. the proof of Proposition 4.1.2.

Lemma 4.1.1. Let Y be a normal affine surface. Given an A1-fibration π : Y →
B over a smooth affine curve B there exists an SNC-completion (X,D) with the
following properties:

• π extends to a P1-fibration π̄ : X → B̄ over the smooth completion B̄ of B;
• there is a unique component S of D with S2 = 0 which is a section of π̄;
• all the other components of D are smooth rational curves contained in fibers
of π̄;
• the dual graph Γ(D) is a minimal tree;
• the (0)-vertices of Γ(D) different from S belong to End(Γ(D)); these corre-
spond to the components of D that are full fibers of π̄.

For the following facts see e.g. [14, Lemma 1.6] or [12, Remark 1.7].
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Proposition 4.1.2. Let Y be a normal affine surface and let (X,D) be a minimal
NC-completion of Y . The following conditions are equivalent:

(i) Y admits an effective Ga-action;
(ii) Y admits an A1-fibration over a smooth affine curve;
(iii) the dual graph Γ(D) has a non-admissible extremal linear segment.

For the convenience of the reader we provide a proof.

Proof. Assuming (iii) Γ(D) is birationally equivalent to a graph Γ′ with a (0)-vertex
v of degree 1, see e.g. [11, Examples 2.11]. By Proposition 2.7.9 we can replace
the original NC-completion (X,D) by a new one (X ′, D′) with Γ(D′) = Γ′. The
vertex v corresponds to a smooth rational component, say, C of D′ with C2 =
0. Resolving singularities of X ′ we obtain a smooth projective surface X̃ ′ with
exceptional divisor E and a (0)-curve C. Indeed, the singular points of X ′ being
points of Y = X ′ \ SuppD′ the resolution does not affect the divisor D′. Such a
curve C on X̃ ′ is a reduced member of a linear pencil with no base point, see e.g.
[2, Proposition V.4.3]. This pencil defines a P1-fibration π̃ : X̃ ′ → B̄ over a smooth
projective curve B̄ such that C is a reduced fiber of π̃. Since E · C = 0, each
connected component of E is properly contained in a fiber of π̃. The contraction of
E yields a P1-fibration π̄ : X ′ → B̄ with a reduced fiber C.

The surface Y = X ′ \ suppD′ being affine, suppD′ is connected (see Lemma
2.7.5(a)) and Y contains no complete curve, in particular, no entire fiber of π̄. It
follows that suppD′ 6= C. Since deg(v) = 1, C meets transversally just one other
component S of D′. Since C · S = 1, S is a section of π̄. Hence π̄|Y : Y → B is
an A1-fibration over an affine curve B ⊂ B̄ \ {π̄(C)}. This proves the implication
(iii)⇒(ii).

Assume now that (ii) holds. By Lemma 4.1.1 the A1-fibration π : Y → B over
a smooth affine curve B admits an extension π̄ : X̄ → B̄ to an SNC-completion
(X̄, D̄) of Y , where B̄ is a smooth completion of B. Places at infinity in general
A1-fibers of π lie on a section, say, S of π̄. If P ∈ B̄ \ B, then π̄−1(P ) ⊂ D̄.
Contracting subsequently (−1)-curves in the fiber π̄−1(P ) yields an NC-completion
(X̄ ′, D̄′) of Y along with a P1-fibration π̄′ : X̄ ′ → B̄ with a reduced irreducible fiber
C = (π̄′)−1(P ). The component C of D̄′ corresponds to a (0)-vertex v of the dual
graph Γ(D̄′). We have C ·(D̄′−C) = C ·S = 1. It follows that v is an end vertex of a
non-admissible extremal linear segment of Γ(D̄′). The latter segment corresponds to
a non-admissible extremal linear segment of Γ(D), see Proposition 3.2.3.1(b). This
yields the equivalence (iii) ⇔ (ii).

Assume that (i) holds, that is, Y admits an effective Ga-action. Let δ be the
nonzero locally nilpotent derivation on O(Y ) generating the given Ga-action. The
algebra of Ga-invariants ker δ is finitely generated, see [10, Lemma 1.1]. The embed-
ding ker δ ↪→ O(Y ) yields an A1-fibration Y → B along the orbits of the Ga-action,
where B = Spec(ker δ) is a smooth affine curve. Thus, (ii) holds.

Conversely, given an A1-fibration π : Y → B over a smooth affine curve B as in (ii)
there exists as before an SNC-completion (X,D) of Y and an extension π̄ : X → B
to a P1-fibration on X with a section S ⊂ D. Shrinking the base B suitably we
obtain a principal Zariski open cylinder U ' Z×A1 on Y with an affine base Z ⊂ B,
where U = π̄−1(Z) \ S. By [27, Proposition 3.1.5] there is an effective Ga-action on
Y . This shows the equivalence (i) ⇔ (ii). �

Remark 4.1.3. Under the assumptions of Proposition 4.1.2 assume that Γ(D) has
a non-admissible extremal linear segment, and let (X ′, D′), S and C be as in the
proof of the proposition. Then Γ(D′) is a tree with at most one non-rational vertex
S, a root of Γ(D′). Indeed, Γ(D′) is connected and every component C ′ of D′ except
the section S is a component of a fiber of π̄, because C ·C ′ = 0. Since the fibers of π̄
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are trees of rational curves, our claim follows. Since Γ(D) and Γ(D′) are birationally
equivalent, Γ(D) also is a tree.
4.2. Degree function. Let (X,D) be an NC-pair with an affine open subset Y =
X \ suppD. By Lemma 2.7.3, up to passing to a suitable new NC-pair which
dominates (X,D) we may consider that there exists an ample divisor H ⊂ X such
that suppH = suppD. Replacing H by its suitable high multiple we also may
consider that X ⊂ Pn and H ⊂ X is a hyperplane section. Then Y = X \suppH ↪→
An = Pn \ suppH is a proper embedding.
Definition 4.2.1 (cf. e.g. [5, (1.1)]). For Φ ∈ Bir(X,D) we define its degree as
deg Φ = H · Φ∗(H). For Φ ∈ Aut(Y ) we understand deg Φ as the degree of the
extension Φ̂ ∈ Bir(X,D).
Remarks 4.2.2. 1. The above degree function coincides with the usual degree of an
automorphism of an affine subset Y ⊂ An. Indeed, let Φ be written in homogeneous
coordinates of Pn as

Φ = (p0 : . . . : pn)|X
where the pi are homogeneous polynomials in n + 1 variables of the same degree d
which do not belong simultaneously to the homogeneous ideal of X. Then deg Φ =
min{d} where the minimum is taken over all such representations.

2. We have Bir(X,D) = lim−→Bir(X,D)≤d where

Bir(X,D)≤d =
{

Φ ∈ Bir(X,D) | max{deg Φ, deg Φ−1} ≤ d
}

is an affine algebraic variety and Bir(X,D)≤d ⊂ Bir(X,D)≤d+1 is a closed embed-
ding. This yields an affine ind-structure on Bir(X,D). It is easily seen that this
structure coincides with the usual ind-structure on Aut(Y ) defined by the closed
embedding Y ⊂ An, see e.g. [18, Section 5.1] or [27, Section 2.1]. By definition
of the Zariski ind-topology, a subgroup G ⊂ Bir(X,D) is connected if any element
g ∈ G belongs to a connected algebraic subset of G which contains the identity.
The identity component G◦ of a subgroup G ⊂ Bir(X,D) is the maximal connected
subgroup of G.

In this subsection we prove the following result.
Proposition 4.2.3. Inn◦(X,D) = Aut◦(X,D) and any connected algebraic sub-
group G ⊂ Inn(X,D) is contained in Aut◦(X,D).

We start with some preliminaries.
Lemma 4.2.4. Let X be a normal projective surface and H be an ample divisor on
X. Then for any n ∈ N the number of effective divisor classes C in the Néron-Severi
group NS(X) with H · C ≤ n is finite.
Proof. This follows from [30, Example 1.4.31]. �

Lemma 4.2.5. For any d ≥ 0 there exists N = N(d) ∈ N such that each Φ ∈
Bir(X,D)≤d admits a representation with at most N blowups and N blowdowns.
Proof. By Lemma 4.2.4 the Cartier divisors Φ∗(H) with deg(Φ) = H · Φ∗(H) ≤ d
fall in a finite number of classes in the Néron-Severi group NS(X). Clearly, the
latter holds as well for Φ running over Bir(X,D)≤d. Thus, the quantity

N(d) := max{(Φ∗H)2 |Φ ∈ Bir(X,D)≤d}
is finite. It follows by [3, Theorem II.7]3 that each Φ ∈ Bir(X,D)≤d fits in a com-
mutative diagram (2) where X1 = X2 = X and the morphism P1 is composed of at

3In [3, Theorem II.7] the surface X is supposed to be smooth. However, since all the indeter-
minacy points of Φ are situated in the smooth part of X, the proof goes without changes in our
setting as well.
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most N(d) blowdowns. Since every blowdown decreases the Picard rank by 1, P1

and P2 contain the same number of blowdowns. �

Lemma 4.2.6. Any irreducible algebraic subset A of Inn(X,D) is contained in a
left coset h ◦ Aut\(X,D) for some h ∈ Inn(X,D).

Proof. Let d ∈ N be such that A ⊂ Bir(X,D)≤d. By Lemma 4.2.5 there exists
a natural number N = N(d) such that each Φ ∈ A admits a representation with
at most N blowups and N blowdowns. Since A ⊂ Inn(X,D), these blowups and
blowdowns are inner, and there are in total a finite number of them when Φ runs
over A. Recall that Aut\(X,D) is a normal algebraic subgroup of Inn(X,D) closed
in Bir(X,D), see Lemma 2.2.3. Therefore, Inn(X,D) is the union of the closed
algebraic subvarieties h ◦ Aut\(X,D) of Bir(X,D) with h ∈ Inn(X,D). By the
preceding, A is covered by a finite number of these cosets. Since the ground field K
is infinite and A is irreducible, it is covered by one of them. �

Corollary 4.2.7. Inn(X,D) is a closed ind-subgroup of Bir(X,D).

Proof. By Lemma 4.2.6 and its proof, for any d ∈ N

Inn(X,D)≤d = Inn(X,D) ∩ Bir(X,D)≤d

is contained in a finite union of left cosets hi ◦ Aut\(X,D), i = 1, . . . , n. The
latter union is closed in Bir(X,D), and also Bir(X,D)≤d is. Hence their intersection
Inn(X,D)≤d is a closed algebraic subvariety of Bir(X,D)≤d. Now the claim follows.

�

Proof of Proposition 4.2.3. We have Inn◦(X,D) = lim−→Ai, where theAi ⊂ Inn(X,D)
are closed irreducible algebraic subsets of the ind-group Inn(X,D) containing the
identity, see [18, Proposition 1.6.3]. By Lemma 4.2.6 for each i the image of Ai
in the quotient group Inn(X,D)/Aut\(X,D) is the identity, i.e. Ai ⊂ Aut\(X,D)
and moreover, Ai ⊂ (Aut\(X,D))◦ = Aut◦(X,D), see Lemma 2.2.4. Then also
Inn◦(X,D) ⊂ Aut◦(X,D). For the converse inclusion see Lemma 2.2.3. This proves
the first assertion. The second follows from Lemma 4.2.6. �

4.3. Proof of the main theorem. The following lemma is well known.

Lemma 4.3.1 ([14, Corollary 1.2]). If an affine variety Y of dimension ≥ 2 ad-
mits a nontrivial Ga-action, then Aut(Y ) contains a connected infinite-dimensional
commutative unipotent ind-subgroup.

Proof. Indeed, let H ⊂ Aut◦(Y ) be the one-parameter unipotent subgroup which
corresponds to the given Ga-action. Then H can be written as H = exp(K∂), where
∂ is a nonzero locally nilpotent derivation of the algebra O(Y ), see [16]. The ring of
invariants ker ∂ = O(Y )H is an infinite dimensional vector space, and exp((ker ∂)∂)
is a desired subgroup of Aut◦(Y ). �

Remark 4.3.2. The assumption that Y is affine is important in Lemma 4.3.1. For
instance, the open surface Y = P1×A1 does admit a nontrivial Ga-action. However,
Aut(Y ) is an algebraic group; see [29] for a description of Aut(Y ).

Lemma 4.3.3 ([15, Lemma 3.1]). Let Y be an affine variety over an algebraically
closed field K of characteristic zero. Assume that Y admits no Ga-action. Then any
two Gm-actions on Y commute.

For the reader’s convenience we provide an argument.
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Proof. Suppose there are two non-commuting Gm-actions on Y . Let δ1 and δ2 be
corresponding non-zero locally finite (semi-simple) derivations on O(Y ). Consider
the grading on O(Y ) which corresponds to δ1, and a decomposition

(6) δ2 =
l∑

i=k

δ
(i)
2

into homogeneous derivations with respect to this grading, where the extremal com-
ponents δ(k)

2 and δ(l)
2 are non-zero. Since δ1 and δ2 do not commute, either the highest

index l in (6) is strictly positive, or the lowest index k is strictly negative. By [15,
Lemma 3.1] the non-zero derivation δ

(k)
2 in the first case and δ

(l)
2 in the second is

locally nilpotent, which contradicts our assumption. �

The next theorem yields Theorem 1.0.3 from the Introduction.

Theorem 4.3.4. Let (X,D) be a minimal NC-completion of a normal affine surface
Y . Then the following are equivalent:
(a) all the extremal linear segments of the dual graph Γ(D) are admissible;
(b) Y admits no effective Ga-action;
(c) Bir(X,D) = Inn(X,D);
(d) Aut◦(Y ) is an algebraic torus of rank ≤ dimY .

Proof. Properties (a) and (b) are equivalent by Proposition 4.1.2. The implication
(a) =⇒ (c) follows from Theorem 3.2.5.

To deduce the implication (c) =⇒ (b) assume that (c) holds. If in contrary Y ad-
mits an effective Ga-action, then Bir(X,D) = Aut(Y ) contains connected algebraic
subgroups of arbitrary dimension, see Lemma 4.3.1. This contradicts the fact that
every connected algebraic subgroup G of Bir(X,D) = Inn(X,D) is contained in the
algebraic group Aut◦(X,D), see Proposition 4.2.3. Thus, the conditions (a)–(c) are
equivalent.

The implication (d) =⇒ (b) is immediate. Suppose now that one of the equiv-
alent conditions (a)–(c) is fulfilled. By (c) Aut(Y ) = Bir(X,D) = Inn(X,D).
By Proposition 4.2.3 the closed connected ind-subgroup Aut◦(Y ) = Inn◦(X,D) of
Bir(X,D) coincides with its algebraic subgroup Aut◦(X,D). Since Aut◦(Y ) con-
tains no Ga-subgroup, it is an algebraic torus. This proves the remaining implication
(b) =⇒ (d). �

Combining Theorem 4.3.4, Proposition 4.1.2 and its proof we arrive at the follow-
ing corollary; cf. [11, Proposition 3.34].

Corollary 4.3.5. For a normal affine surface Y the following are equivalent.
(i) Y admits an effective Ga-action;
(ii) Y admits an A1-fibration over a smooth affine curve;
(iii) for every minimal NC-completion (X,D) of Y the dual graph Γ(D) has a

non-admissible extremal segment;
(iv) there exists a minimal NC-completion (X,D) of Y such that Γ(D) has a

(0)-vertex of degree 1;
(v) Bir(X,D) 6= Inn(X,D) for every minimal NC-completion (X,D) of Y ;
(vi) there exists a minimal NC-completion (X,D) of Y such that Bir(X,D) 6=

Inn(X,D).

Example 4.3.6. As a simple application of Corollary 4.3.5, let us show that the
affine surface Y = P2 \ suppD, where D is a nonzero reduced effective divisor on P2

with only nodes as singularities, is rigid if and only if deg(D) ≥ 3.
First of all, consider the case deg(D) ≤ 2, that is, suppD is either a projective

line, or a pair of lines, or a smooth conic. In all three cases there exists a pencil of
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conics L on P2 which includes D (resp. 2D in the former case) and has a unique
base point. The restriction L|Y yields an A1-fibration over A1. Thus, Y admits an
effective Ga-action and so is not rigid, see Corollary 4.3.5(i)–(ii).

Suppose further that deg(D) ≥ 3. Using the Bezout theorem and analyzing
separately the cases where D has 1, 2 and at least 3 components, one can easily
conclude that any component C of D corresponds either to a branching vertex of
Γ(D), or to a vertex sitting on a cycle. Therefore, Γ(D) has no non-admissible
extremal linear segment. By Corollary 4.3.5 this implies the rigidity.

As an alternative proof in the case deg(D) ≥ 3 one can use the fact that k̄(Y ) =
−∞ provided Y admits an effective Ga-action, where k̄ stands for the logarithmic
Kodaira dimension. Since D is nodal one has KP2 + D = (deg(D) − 3)H, where
H ∈ Pic(P2) is the class of a line. Therefore, k̄(Y ) = −∞ if and only if deg(D) ≤ 2.

The third alternative approach4, is as follows. Suppose Y admits an effective
Ga-action. Consider an SNC-completion(X̄, D̄) of Y constructed in the proof of
Proposition 4.1.2. Since X is rational the dual graph Γ(D̄) is a tree with only
rational vertices, see Remark 4.1.3. The latter properties of Γ(D̄) are preserved
under birational transformations. Hence Γ(D) is also a tree with only rational
vertices. By the Bezout theorem this implies as before that deg(D) ≤ 2.

5. Appendix: Minimal models of weighted graphs

In this section we classify the weighted graphs with a unique up to isomorphism
minimal model, and show that any other weighted graph has an infinite number
of non-isomorphic minimal models, see Proposition 5.0.8. We use the following
notation from [11]. We let [[w1, . . . , wn]] stand for the linear segment with a sequence
of weights of its vertices w1, . . . , wn. Similarly, we let ((w1, . . . , wn)) be the circular
graph with a cyclically ordered sequence of weights w1, . . . , wn. We abbreviate by
ak the sequence a, . . . , a︸ ︷︷ ︸

k

.

The following corollary of Propositions 3.2.2 and 3.2.3.1(a)–(c) is immediate.

Corollary 5.0.1. Let Γ be a birationally rigid minimal weighted graph. Then up to
isomorphism Γ is a unique minimal graph in its class of birational equivalence.

However, the sufficient condition of birational rigidity in Corollary 5.0.1 is not a
necessary one. In the following proposition we provide examples of non-birationally
rigid minimal weighted graphs with a unique minimal model. We use the following
definitions.

Definition 5.0.2 (Triangulation of a circular graph). Recall that a simplicial 2-
complex C is homeomorphic to a disc if and only if the incidence graph of triangles
in C is a tree. Assume that all vertices of C lie on the boundary of the disc ∂C = B.
Then the 1-complex B represents a circular graph; we assume that all its vertices
are rational. To a vertex of degree k we prescribe the weight −k + 1. Under this
setting we call C a triangulation of the weighted graph B, and we say that B is
triangulable.

Definition 5.0.3. We say that an inner segment S of a weighted graph Γ is a charm
earring if S consists of a single linear (0)-vertex adjacent to a branching vertex via
two edges. We say that a minimal graph Γ is admissible modulo charm earrings if
every non-admissible segment of Γ is a charm earring.

Proposition 5.0.4. Let Γ1 be either one of the graphs [[0]], ((3)), ((4)), ((0,m))
with m ≤ −2 and ((0, 0)), or a graph admissible modulo charm earrings. Then up
to isomorphism Γ1 is a unique minimal graph in its birational equivalence class.

4We thank Shulim Kaliman for suggesting this approach.
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Proof. Assume that Γ2 is a minimal graph birationally equivalent to Γ1. By Lemma
2.6.8 there exists a relatively minimal diagram (3) with Γ that dominates Γ1 and
Γ2 via birational morphisms p1 resp. p2. We may suppose that p1 is composed
of n ≥ 1 blowdowns and p2 also is composed of blowdowns. Let p−1

1 add vertices
v1, . . . , vn in this order. By the relative minimality assumption p2 cannot contract
any (−1)-vertex of Γ among v1, . . . , vn. Since n ≥ 1 such a (−1)-vertex of Γ does
exist.
Case 1: Γ1 = [[0]]. Let Vert(Γ1) = {v0}. We prove by induction that for every

k = 1, . . . , n the following hold.

(ik) The first k blowups in p−1
1 are outer and yield the graph [[−1,−2k−1,−1]], with

vertices v0, . . . , vk appearing in this order;
(iik) the further blowups in p−1

1 do not change the weights of v0, . . . , vk−1;
(iiik) the first k blowdowns in p2 contract the vertices v0, . . . , vk−1 of Γ in this order.

Since p2 contracts no (−1)-vertex of Γ different from v0 and Γ	{v0} is not minimal,
(i1)–(iii1) hold. Assume by induction that for some k ∈ {1, n − 1}, (ik)–(iiik) hold.
By (iik), the (k + 1)st blowup in p−1

1 must be the outer blowup at vk, hence (ik+1)
holds. Denote by Γ2,k the image of Γ under the first k blowdowns in p2. By (iiik),
Γ2,k	{vk} coincides with Γ\{v0, . . . , vk} and contains the at most linear (−1)-vertex
vn. Hence this graph is not minimal and no of its (−1)-vertices is contracted by p2.
Thus, vk is the only vertex of Γ2,k that can be contracted by the next blowdown. Its
weight is −1 in Γ2,k and −2 in Γ. Now (iik+1) and (iiik+1) follow. By recursion (in)
holds, i.e. Γ = [[−1,−2n−1,−1]]. So Γ2 = [[0]] due to the minimality of Γ2.
Case 2: Γ1 = ((m, 0)) with m ≤ −2. Since Γ1 is circular, Γ is also circular, and

p1, p2 consist of inner blowdowns, see Proposition 3.2.3(2). Let Vert(Γ1) = {u, v0},
where v0 is the (0)-vertex. The same recursion as in Case 1 shows that for k =
1, . . . , n we have:

(ik) the first k blowups in p−1
1 yield the graph ((m−k,−1,−2k−1,−1)) with vertices

u, v0, . . . , vk in this order;
(iik) the further blowups in p−1

1 do not change the weights of v0, . . . , vk−1;
(iiik) the first k blowdowns in p2 contract vertices v0, . . . , vk−1.

The only additional observation that we need is the following: the weight of u in
Γ2,k−1 is at most m− k+ (k− 1) ≤ −3, so u cannot be contracted on the next step.
Thus, we conclude as before that Γ2

∼= ((m, 0)).
Case 3: Γ1 = ((3)). After the first blowup we get Γ′1 = ((−1,−1)) with vertices v0

and v1 where v1 is contracted in Γ1. The second blowup would change the weight of
v0 to −2, which is not possible since v0 must be contracted under p2. So Γ2

∼= ((3)).
Case 4: Γ1 = ((4)). After the first blowup we get Γ′1 = ((−1, 0)). Letting now

m = −1, the argument from Case 2 can be applied mutatis mutandis to Γ′1 instead
of Γ1.
Case 5: Γ1 is admissible modulo charm earrings. By Proposition 3.2.3,

p2 ◦ p−1
1 : Γ1 99K Γ2 induces a bijection between Br(Γ1) and Br(Γ2), an isomorphism

between the corresponding admissible segments of Γ1 and Γ2 and a birational trans-
formation between every charm earring S of Γ1 and the corresponding segment of
Γ2. Let v0 be the (0)-vertex of S adjacent to a vertex u ∈ Br(Γ1). Since u cannot be
contracted by p2, the argument of Case 2 can be applied to the circular subgraph of
Γ1 with vertices u and v0. This shows that p2 ◦ p−1

1 sends every charm earring of Γ1

isomorphically onto a charm earring of Γ2 and induces an isomorphism Γ1
∼= Γ2.

Case 6: Γ1 = ((0, 0)). We claim that the circular graph B which appears at
any step of the birational transformation φ′ = p2 ◦ p−1

1 , except for the initial graph
Γ1 = ((0, 0)), is triangulable, see Definition 5.0.2. Indeed, the first blowup in p−1

1

yields the circular graph ((−1,−1,−1)) which has a triangulation with a single
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triangle. Assume a circular graph B is equipped with a triangulation C. Then the
blowup of B at the edge [vi, vi+1] with a new vertex u results in gluing along the
side [vi, vi+1] a new triangle to C with vertex u; this adds a new leaf to the incidence
tree of triangles. Conversely, a blowdown of a (−1)-vertex v of B is expressed in
removing the unique triangle in C with vertex v. This is always possible, except for
B = ((−1,−1,−1)).

So Γ2 is either ((0, 0)) or triangulable. In the latter case Γ2 is not minimal. Indeed,
the incidence tree of triangles associated with the triangulation C of Γ2 contains a
leaf that corresponds to a triangle with a vertex of weight −1. �

Remark 5.0.5. An alternative approach is based on the following observation. Sup-
pose we are in one of the first 4 cases or in case 6. We claim that Γ in the relatively
minimal diagram (3) contains exactly two (−1)-vertices unless Γ = ((−1,−1,−1)).
Indeed, let a graph Γ1 be as in Proposition 5.0.4 but not an admissible graph mod-
ulo charm earrings. It is easily seen that for the inertia indices of Γ1 we have
i0(Γ1) + i+(Γ1) = 1. Let v be a (−1)-vertex of Γ that belongs to the image of
Vert(Γ1). We may suppose that Γ is not isomorphic to Γ1 and is different from
((−1,−1,−1)). Then v is the unique (−1)-vertex of Γ contracted under p2. Assume
on the contrary that Γ contains two distinct (−1)-vertices u1 and u2 different from v.
They are not adjacent, see Corollary 2.4.5(b), are not contained among the vertices
of Γ1 and are not contracted under p2. Since Γ2 is minimal, the weights of u1 and u2

in Γ2 are non-negative. One can show that u1 and u2 in Γ2 cannot be adjacent. Then
the intersection form I(Γ2) is semipositive definite on the vector subspace spanned
by the mutually orthogonal vectors u1 and u2. However, this contradicts the fact
that i0(Γ2) + i+(Γ2) = i0(Γ1) + i+(Γ1) = 1, see Corollary 2.3.8.

Remark 5.0.6. A linear segment is called standard if it is one of the following:

[[02k, w1, . . . , wn]] and [[02k+1]]

where k, n ≥ 0 and wi ≤ −2 ∀i. Similarly, a circular segment is called standard if it
is one of the following:

((02k, w1, . . . , wn)), ((0l, w)) and ((02k,−1,−1))

where k, l ≥ 0, n > 0, w ≤ 0 and wi ≤ −2 ∀i, see [11, Definition 2.13]. Notice that
for w = 0 the second circular graph above becomes ((0l+1)). Any minimal segment
is birationally equivalent to a standard one, see [11, Theorem 2.15(b)]. Moreover,
for a minimal linear segment L its birational equivalence class contains at most two
standard graphs related by a reversion

[[02k, w1, . . . , wn]] 7→ [[02k, wn, . . . , w1]].

For a minimal circular segment C, the standard graph is unique in the birational
equivalence class up to a cyclic permutation of its nonzero weights and reversion,
see [11, Corrigendum, Corollary 3.33].

For instance, the circular graphs with sequences ((−1,−1)) and ((0,−1)), re-
spectively, are the unique standard graphs in the respective birational equivalence
classes of ((3)) and ((4)), while [[0]] is the unique standard graph in its birational
equivalence class.

Lemma 5.0.7. Let Γ be a (not necessarily minimal) non-contractible connected
weighted graph. Assume that Γ has a (0)-vertex v which is either of degree 1 or of
degree 2 with no incident loop and multiple edges. Then Γ admits an infinite number
of non-isomorphic minimal models.
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Proof. By our assumption Γ contains an edge [v, u] isomorphic to [[0, c]] for some
c ∈ Z. Applying iteratively elementary transformations at v,

(7) [[0, c]] [[−1,−1, c]] [[0, c+ 1]],

which is inner if deg(v) = 2 and outer otherwise, see Remark 2.7.10, we obtain an
infinite number of graphs {Γn} from the birational equivalence class of Γ with the
same number of vertices, where Γn has a vertex of weight n. Every Γn dominates a
minimal graph Γ′n. We claim that among the Γ′n there is an infinite number of non-
isomorphic minimal graphs. Indeed, the contraction Γn → Γ′n consists of at most
N = card(Vert(Γ)) blowdowns. Hence it drops the maximal weight of vertices in Γ
at most by 4N . Therefore, the range of maximal weights of all the Γ′n is unbounded,
which proves our claim. �

Proposition 5.0.8. Let Γ be a connected minimal weighted graph. Then the bira-
tional equivalence class of Γ contains an infinite number of non-isomorphic minimal
models if and only if Γ is not admissible modulo charm earrings and is different
from the graphs [[0]], ((3)), ((4)), ((0,m)) with m ≤ 0. In the opposite case, up to
isomorphism Γ is a unique minimal graph in its birational equivalence class.

Proof. The second assertion follows immediately from Proposition 5.0.4. To show
the first assertion we start with a non-admissible circular segment Γ with N vertices.
If N ≥ 3, then there is a linear vertex v of a non-negative weight a with two distinct
neighbors. Performing a inner blowups near v we drop the weight of v to 0, and
then Lemma 5.0.7 gives the result.

Let now N = 2. If Γ has a vertex of positive weight, then after an inner blowup
we are reduced to the previous case. Otherwise, Γ = ((0,m)) with m ≤ 0, which is
excluded by our assumption. Finally, if N = 1 and Γ = ((m)) where m ≥ 5 by our
assumption, then an inner blowup yields the 2-cycle ((m − 4,−1)) with a positive
weight and returns us to a previous case.

Let now Γ be non-circular. Since by assumption Γ is not admissible with charm
earrings, Γ 	 Br(Γ) contains a non-admissible linear segment with a vertex v of
weight a ≥ 0 where a > 0 if either Γ = [[a]] or v has two incident edges [v, u] with
the same branching vertex u ∈ Br(Γ). Performing a blowups near v we reduce the
setup to the one of Lemma 5.0.7, which implies the assertion. �

References

[1] I. V. Arzhantsev and S. A. Gaifullin, The automorphism group of a rigid affine variety, Math.
Nachr. 290 (2017), 662–671.
[2] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces. Second
edition. Springer-Verlag, Berlin, 2004.
[3] A. Beauville, Complex algebraic surfaces. Second edition. London Mathematical Society Student
Texts. 34. Cambridge: Cambridge Univ. Press, 1996.
[4] I. Boldyrev and S. Gaifullin, Automorphisms of nonnormal toric varieties, arXiv:2012.03346
(2020), 18 pp.
[5] S. Cantat and J. Xie, On degrees of birational mappings, Math. Res. Lett. 27:2 (2020), 319–337.
[6] D. Daigle, Classification of weighted graphs up to blowing-up and blowing-down.
math.AG/0305029, 2003, 47 pp.
[7] D. Daigle, Classification of linear weighted graphs up to blowing-up and blowing-down. Canad.
J. Math. 60 (2008), 64–87.
[8] V. I. Danilov and M. H. Gizatullin, Automorphisms of affine surfaces. I. Math. USSR Izv. 9
(1975), 493–534; II. ibid. 11 (1977), 51–98.
[9] D. Eisenbud and W. D. Neumann, Three-dimensional link theory and invariants of plane curve
singularities, Annals of Math. Studies, Princeton Univ. Press, 1985.
[10] K.-H. Fieseler. On complex affine surfaces with C+-action. Comment. Math. Helv. 69 (1994),
5–27.

28



[11] H. Flenner, S. Kaliman, and M. Zaidenberg, Birational transformations of weighted graphs, in:
Affine algebraic geometry, 107–147. Osaka Univ. Press, 2007. Corrigendum, in: Affine algebraic
geometry, 123–163. Centre de Recherches Mathématiques. CRM Proc. Lecture Notes, 54, Amer.
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