Compositionality in a simple corpus - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Compositionality in a simple corpus

Résumé

We investigate the capacity of neural networks (NNs) to learn compositional structures by focusing on a well-defined simple logical corpus, and on proof-centered compositionality. We conduct our investigation in a minimal setting by creating a simple logical corpus, where all compositionality-related phenomena come from the structure of proofs as all the sentences of the corpus are propositional logic implications. By training NNs on this corpus we test different aspects of compositionality, through variations of proof lengths and permutations of the constants.
Fichier principal
Vignette du fichier
6761.pdf (699.26 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03846838 , version 1 (14-11-2022)

Identifiants

  • HAL Id : hal-03846838 , version 1

Citer

Manuel Vargas Guzmán, Maria Boritchev, Jakub Szymanik, Maciej Malicki. Compositionality in a simple corpus. Journées Jointes des Groupements de Recherche Linguistique Informatique, Formelle et de Terrain (LIFT) et Traitement Automatique des Langues (TAL), Nov 2022, Marseille, France. pp.55-63. ⟨hal-03846838⟩
51 Consultations
72 Téléchargements

Partager

More