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RÉSUMÉ
Nous étudions la capacité des réseaux de neurones à apprendre des structures compositionnelles en
nous concentrant sur un corpus logique simple bien défini, et sur les phénomènes de compositionnalité
centrés sur les preuves. Nous menons notre étude dans un cadre minimal en créant un corpus logique
simple, où tous les phénomènes liés à la compositionnalité proviennent de la structure des preuves,
car toutes les phrases du corpus sont des implications en logique propositionnelle. En entraînant des
réseaux de neurones sur ce corpus, nous testons différents aspects de la compositionnalité, à travers
des variations de la longueur des preuves et des permutations des constantes en jeu.

ABSTRACT

We investigate the capacity of neural networks (NNs) to learn compositional structures by focusing on
a well-defined simple logical corpus, and on proof-centered compositionality. We conduct our investi-
gation in a minimal setting by creating a simple logical corpus, where all compositionality-related
phenomena come from the structure of proofs as all the sentences of the corpus are propositional logic
implications. By training NNs on this corpus we test different aspects of compositionality, through
variations of proof lengths and permutations of the constants.

MOTS-CLÉS : Compositionalité, logique, raisonnement, réseaux de neurones.
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1 Introduction

Compositionality is a vastly discussed subject across natural language semantics, logic, but also
natural language processing and nowadays, neural networks. Partee (1984) defines compositionality
as the principle according to which“the meaning of an expression is a function of the meanings of
its parts and of the way they are syntactically combined”. In the past years, the investigation of the
capacity of neural networks (NNs) to compositionally use/produce/deduce rules and/or sentences has
gained more and more importance in the natural language processing field, in particular through the
scope of natural language understanding tasks. Oscillating between mathematics and sentences in
English, works such as Bowman et al. (2015), Saxton et al. (2019), and most recently Ontanon et al.
(2022) show different ways in which NNs can be seen as more or less compositional, depending on
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the task and the mean of testing.

Bowman et al. (2015) test the capacity of LSTMs, using explicit clues, to discover and implicitely use
recursive compositional structures. To do so, the authors implement the task as a classification one,
outputting one of 7 possible logical relations between a given pair of sentences. Saxton et al. (2019)
take a very different approach to the compositionality question by investigating the capacity of neural
models to solve mathematical problems, in English, of various types (arithmetic, algebra, probability,
calculus). The goal of the authors is to study the capacity of Transformers and Recurrent Neural
Networks (RNNs) to compose and generalize mathematical concepts and operations. The results
and performances vary greatly from one type of mathematical problem to another. Ontanon et al.
(2022) introduce a dataset designed to evaluate the capacity of NNs to perform logical inferences.
The dataset is composed of sentences that use propositional logic, a fragment of first order logic, and
English. Hupkes et al. (2020) present a systematic set of tests for NNs capacity to compositionally
generalize a rule set: (1) capacity of the NN to recombine known parts and rules to produce results
it has never been exposed to before; (2) capacity of the NN to extend its predictions to data longer
than the one it has been exposed to in training; (3) preference of the NN to compose in a local or in
a global way; (4) robustness of the NN’s predictions w.r.t synonym substitution; (5) preference of
the NN towards rules or exceptions during training. The authors then instantiate the test suite on an
artificial dataset and apply it to a RNN, a convolution-based neural network, and a transformer. The
work presented in our article is placed in the footsteps of this latter approach.

The motivation for our work is two-fold: we want to investigate the capacity of neural networks
to produce natural reasoning, but the approach we are taking grows from mathematical reasoning
first. Indeed, implication is a fundamental element of natural language inference and understanding,
as well as logic. Because of this, we begin by considering a simple corpus of propositional logic
implications. Following approaches developed in previous work, in particular Hupkes et al. (2020),
we focus on compositionality. To our knowledge, we are the first to study inference in the presence
of multiple premises, and to work specifically on proof-structure compositionality and its different
aspects. We do a fine-grained analysis of the output errors of our models by computing the Hamming
distances between expected outputs and actual outputs of our models. As Hamming distances measure
the number of differences between the two compared vectors, they constitute a tool that allows
us to quantify how far away from the right answer the wrong answers are. In the following, we
present our data in section 2, then we develop our experimental set-up in section 3. In this section we
conduct an error analysis, and we introduce two compostionality tests. The data, code and materials
for this article are shared in the GitHub respository https://github.com/MBoritchev/
compostitionality-simple-corpus.

2 A simple corpus

The logical language of our corpus is defined as follows: let C = {X1 . . . Xn} be a set of constants,
we build formulas as logical implications: “Xi → Xj”. Then, we define a knowledge base KB which
is a set of formulas, called premises. From a KB, we can prove new formulas by using a unique
derivation rule:

Xi → Xj Xj → Xk

Xi → Xk

Given a KB, a formula h is a valid hypothesis or a conclusion, if h ∈ KB or if it can be derived from
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a set of premises π ⊆ KB by using the derivation rule. We write π ⊢ h to denote that there exists
such a proof; if h cannot be proved from KB, we write KB ⊬ h, and call it an invalid hypothesis.

We represent KB as a directed graph G = (V,E) where V is a set of vertices and E ⊆
{(u, v) | (u, v) ∈ V 2 and u ̸= v} is a set edges. In this graph, each vertice is a constant and each edge
corresponds to a premise. A proof corresponds then to a (directed) path between two vertices.

In our study, KB has the form of a tree. Since in this case, there is at most one path between any two
vertices, for any h such that KB ⊢ h, there is a unique shortest proof, comprised of premises from a
set π, that witnesses it. In particular, the length of the proof of h is the size of π.

Example : Let KB be the graph from figure 1, then KB ⊢ X3 → X24 as there is a path from
vertice X3 to vertice X24 in the graph, in other words, X3 → X24 can be derived from π = {X3 →
X9, X9 → X13, X13 → X24} ; therefore, X3 → X24 is a valid hypothesis/conclusion. On the other
hand, we have that KB ⊬ X30 → X27 since there is no path that connects those two vertices and
hence, the formula X30 → X27 is an invalid hypothesis.

We investigate neural models such that, for a given knowledge base KB and a hypothesis h, the model
provides the necessary set π of premises from KB to prove h, if they exist. Otherwise, it indicates
that there is no such π. We consider two architectures: a multilayer perceptron (MLP) and a recurrent
neural network (RNN).

Data encoding To train a model, we use a multi-label approach that consists of a neural network
f(X) = ŷ, where the input X = [KB, h] is a vector that encodes the set KB = {p1, . . . , pn} of all
premises and a hypothesis h, and the output ŷ is the predicted value of the label y, a binary vector of
size n such that for each element i ∈ y

i =

{
1 if pi ∈ π
0 otherwise

where π ⊆ KB is the set of necessary premises to prove h. Moreover, if KB ⊬ h, then y consists of n
zeros. Therefore in the sequel we also refer to invalid hypotheses as hypotheses with proof length 0,
premises in KB are hypotheses with proof length 1, etc.

Example : Let KB = {X1 → X3, X3 → X6, X6 → X4, X6 → X2, X6 → X5} and
h = X1 → X5. Then, the vectors X and y are built as follows:

X = [X1 → X3, X3 → X6, X6 → X4, X6 → X2, X6 → X5, X1 → X5]
y = [1 1 0 0 1]

The above vector encodes a proof of length 3.

Each formula from input X is encoded in a vector of dimension 2n (where n is the the size of the set
C) as a one-hot fashion. For instance, let C = {X1, X2, X3, X4, X5}, then the formula X2 → X5

is encoded as
[0 1 0 0 0 | 0 0 0 0 1]



where the first n digits represent X2 and the constant X5 is encoded within the last n bits from the
vector.

FIGURE 1 – A Knowledge Base built with 70 constants and 82 formulas

3 Tests and limits

In the preliminary study we present here, we only consider one KB, depicted in figure 1: it is randomly
built, with 70 constants and 82 premises. Among the 4,830 = 70× 69 hypothesis, 531 are valid in
the KB.

3.1 Initial experiment

First, we trained and tested our models with 75/25% split of the KB, stratified by length of proofs.
Table 1 shows the detailed data distribution for each class.



Length of proofs Total data Train data Test data
0 4299 3224 1075
1 82 62 20
2 75 56 19
3 63 47 16
4 60 45 15
5 51 38 13
6 54 40 14
7 41 31 10
8 42 32 10
9 35 26 9

10 28 21 7

TABLE 1 – Data distribution for our initial experiment

Neural networks setup We trained both the MLP and the RNN using the Adamax algorithm to
optimize the weight values with its default learning rate of 0.001. The MLP has a single hidden layer
of 2500 neurons, and the RNN is equiped with two hidden layers, each with 200 neurons. For both
architectures, the hyperbolic tangent function (tanh) is used in the hidden layers, and the sigmoid
function in the output layer. Moreover, every layer has its respective bias weight. We run between
200 and 300 epochs with a batch size of 20.

Accuracy The overall performance of the models is as follows : 97.76% and 97.93% of correct
predictions for the MLP and the RNN, respectively, and for valid hypotheses, the MLP achieved
80.45% and the RNN predicted correctly 82.71% of the test data. The results by length of proofs
(table 2) show a counter-intuitive shape: the models have poor accuracy for proofs of length 1, which
correspond to the task of recognizing the conclusion in the set of formulas; then, as the length of the
proofs goes up, so does accuracy, reaching 100% at length 5, with one exception.

This result is at least partly explained by the exploration of data we performed: the structure of our
KB entails that for long proofs (length ≥ 2), the model sees both the long proof and a number of its
sub-proofs in training. Therefore, the longer the proof, the more the model has learned about it, see
table 2 for details.

We computed the Hamming distances between the expected output and the rounded up actual output
of our NNs.

Example : Let y be the expected output vector (label) for our NN, ŷ the actual output vector
(prediction):

y = [1 1 0 0 1]
ŷ = [0.68 0.98 0.33 0.12 0.46]

Then ŷ rounded is [1 1 0 0 0]. The Hamming distance between y and ŷ rounded is equal to 1, as the
two vectors differ only in one of the coordinates, the last one.

Figure 2 shows the average Hamming distances. For proofs of length 1, these were at most 1, which
corresponds to only one wrong selected/not-selected formula, which suggests that the NNs do perform
the task that is expected of them while getting the formula wrong. For length 2, the distances were at



Length of proofs MLP test RNN test hypothesis # of sub-proofs # of formulas
0 99.91% 99.81% 3224 0 0
1 40.00% 50.00% 62 62 62
2 57.89% 63.16% 56 138 194
3 68.75% 75.00% 47 202 362
4 93.33% 93.33% 45 331 695
5 100.00% 100.00% 38 416 1017
6 100.00% 100.00% 40 640 1756
7 100.00% 100.00% 31 645 2002
8 100.00% 90.00% 32 839 2869
9 100.00% 100.00% 26 845 3178
10 100.00% 100.00% 21 827 3384

TABLE 2 – Models achieve better accuracy on longer proofs because of overlaps in training

most 2, and for all larger lengths, the average distances are lower than 0.5, for MLP and RNN alike.

(a) MLP (b) RNN

FIGURE 2 – Average Hamming distances between the expected output and the actual output for the
initial experiment

3.2 Compositionality tests

Then, we explored compositionality tests in the context of our simple corpus, through: (1) variations
in the number of formulas needed to prove a hypothesis ; (2) permutations in the order of constants.
(1) allows us to test the productivity of implication: as implication is transitive, it can be composed ;
then, with (2), we want to test the capacity of the model to abstract away from the order of constants,
which is irrelevant for the derivation rule considered in the study.

For (1), the NNs are trained on proofs from length n1 to n2, n1 < n2; then, we test their performance
by predicting all unseen hypothesis from the KB. Test (1) is split in two parts. First, we train the NNs
on proofs of length 0 to n2 and then test them on proofs of length larger than n2; this is the unseen



longer proofs setting. Second, we train the NNs on proofs of length n1 to 10 and then test them on
proofs of length smaller than n1; this is the unseen shorter proofs setting.

Accuracies Table 3 shows the results of test (1) in two settings: 3a when the difference between
train and test are the longer proofs, 3b when those are the shorter proofs. For the unseen longer
proofs test, we obtained better results by changing the train/test data split only for invalid hypothesis
to 20/80%. The models perform better predicting unseen longer proofs than unseen shorter proofs,
though in both cases the accuracy goes down quickly. The RNN shows a better accuracy than the
MLP.

Train data MLP test RNN test
0-9 100.0% 100.0%
0-8 92.06% 93.65%
0-7 73.33% 82.86%
0-6 45.89% 65.07%
0-5 17.0% 46.0%

(a) Unseen longer proofs

Train data MLP test RNN test
1-10 44.1% 48.08%
2-10 40.95% 41.61%
3-10 37.5% 40.13%
4-10 7.37% 11.06%
5-10 1.81% 2.16%

(b) Unseen shorter proofs

TABLE 3 – Compostionality tests: variations in the number of formulas

Test (2) is the following: if the model has been trained on a given KB, then a permutation function
σ : C → C has been applied to KB to obtain KB’, how will the model behave with inputs from KB’?
Our first results are straightforward, the models are incapable of adapting to permutation of constants,
the accuracy is of 17.84% for MLP, 66.43% for RNN for invalid hypotheses, and 0% for both models
for all valid hypotheses, with the exception of a 1.33% for RNN for length 2.

Figures 3 and 4 show the average Hamming distances for experiment (1). In each triple [n1,n2,m] on
the x-axis, n1 and n2 stand for the minimal and maximal lengths of unseen proofs, and m corresponds
to the length of evidence on which the model is being tested: for example, the triple [0,3,1] corresponds
to the model that has not been exposed to proofs of length 0 to 3 in training and is being tested on
proofs of length 1. The shape of the curves is similar to the ones for the initial experiment, while the
values of the average Hamming distances are quite large. In particular, for unseen lengths 6-10 for
tested length 10, where the distance is higher than 8 for MLP, higher than 3.5 for RNN. Thus, the
analysis of Hamming distances corroborates the results of the initial experiment.

4 Conclusion

Even though NNs appear to be able to pick up some structure from data, our results show that
the models have a hard time generalizing it to unseen proof lengths. Moreover, NNs appear to be
substantially more sensitive to the order of constants than to the overall structure of the KB. On the
other hand, the experiments show an increase in performance for longer seen lengths of proofs, which,
correlated with the number of sub-proofs seen by the model in training, suggests some amount of
compositionality. Our hypothesis is that the NNs may be able to use information learned on smaller
lengths of proofs to improve the performance for larger lengths.

The compositionality tests that we performed show results that are consistent with ones presented in



(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

FIGURE 3 – Average Hamming distances between the expected output and the actual output for the
unseen length experiment, MLP

(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

FIGURE 4 – Average Hamming distances between the expected output and the actual output for the
unseen length experiment, RNN

Hupkes et al. (2018). When confronted with sequences longer than the ones they where trained on,
the accuracy of NNs from Hupkes et al. (2018) drops significantly.

The preliminary study we present here shows that the overall performance cannot be used as the main
tool in evaluating the capacity of a model to compositionally select the right premises to prove a given
conclusion. The question this observation rises is what is the representation of the data that the NN
builds in training? We would like to investigate this through visualisation and diagnostic techniques
for NNs such as the ones presented in Hupkes et al. (2018).

An interesting remark that has been raised to us is the fact that our dataset is relatively small.
Another direction of investigation we are undertaking has to do with this dataset size: for economi-



nal/ecological/ethical reasons, we would like to run our training experiments on the smallest possible
datasets while not compromising on the quality of results. Therefore, we are conducting a comparative
study through different dataset sizes. Following the same logic, we also investigate other types of
encoding. The next step for our research will be its extension to other architectures of NNs, such as
Transformers.

Références

BOWMAN S. R., MANNING C. D. & POTTS C. (2015). Tree-structured composition in neural
networks without tree-structured architectures. arXiv preprint arXiv :1506.04834.

HUPKES D., DANKERS V., MUL M. & BRUNI E. (2020). Compositionality decomposed : how do
neural networks generalise? Journal of Artificial Intelligence Research, 67, 757–795.

HUPKES D., VELDHOEN S. & ZUIDEMA W. (2018). Visualisation and’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial
Intelligence Research, 61, 907–926.

ONTANON S., AINSLIE J., CVICEK V. & FISHER Z. (2022). Logicinference : A new datasaet for
teaching logical inference to seq2seq models. In ICLR2022 Workshop on the Elements of Reasoning :
Objects, Structure and Causality.

PARTEE B. (1984). Compositionality. Varieties of Formal Semantics, 3, 281–311.

SAXTON D., GREFENSTETTE E., HILL F. & KOHLI P. (2019). Analysing mathematical reasoning
abilities of neural models. arXiv preprint arXiv :1904.01557.


	Introduction
	A simple corpus
	Tests and limits
	Initial experiment
	Compositionality tests

	Conclusion

